Texas Commission on Environmental Quality

Remediation Division Correspondence Identification Form

SITE & PROGRAM	I AREA IDENTIFICATION				
SITE LOCATION	REMEDIATION DIVISION PROGRAM AND FACILITY				
	IDENTIFICATION				
Site Name: Former Cameron Iron Works Facility	Is This Site Being Managed Under A State Lead Contract?				
	☐ Yes ✓ No				
Address 1: 1000 Silber Road	Program Area: VOLUNTARY CLEANUP PROGRAM				
Address 2:	Mail Code: MC-221				
City: Houston State: Texas	Is This A New Site To This Program Area?				
	Yes No				
Zip Code: 77055 County: Harris	VCP No.: 221				
TCEQ Region: Region 12 - Houston	Leave This Field BlankLeave This Field Blank				
,	1				
DOCUMENT	(S) IDENTIFICATION				
PHASE OF REMEDIATION DOCUMENT	(S) IDENTIFICATION DOCUMENT NAME				
1					
2.	<u> </u>				
3.					
4					
4.					
5.					
5. <u> </u>	<u> </u>				
CONTAC	ΓINFORMATION				
CONTAC	INFORMATION				
RESPONSIBLE PART	TY/APPLICANT/CUSTOMER				
Name: Dawn Greening, Remediation Manager					
Company: Schlumberger Phone Number					
· · · · · · · · · · · · · · · · · · ·	agar Land State: TX Zip Code: 77478				
Address 2: Email Address	80				
	TANT/REPORT PREPARER/AGENT				
Name: John Knott, Project Manager	(400) 5 04 004 5				
Company: CH2M HILL Engineers, Inc. Phone Number					
•	eaumont State: TX Zip Code: 77713				
Address 2: Email Addres	s: john.knott@jacobs.com				

	TCEQ INTERNAL USE ONLY						
Document No.	TCEQ Database Term	Document No.	TCEQ Database Term				
1.	RAP REV	4.					
2.		5.					
3.							

2022 Response Action Plan Addendum

Voluntary Cleanup Program No. 221 Former Cameron Iron Works Facility 1000 Silber Road, Houston, Texas

September 2022

Prepared by:

CH2M HILL Engineers, Inc.

Cameron International Corporation

121 Industrial Boulevard Sugar Land, TX 77478 Tel: (281) 285-4747

September 30, 2022

Ms. Vitalie Morrison, P.G., Project Manager Voluntary Cleanup Section Texas Commission on Environmental Quality Mail Code 221 12100 Park 35 Circle, Building D Austin, Texas 78753

Re: 2022 Response Action Plan Addendum

Former Cameron Iron Works Facility 1000 Silber Road, Houston, Texas

Voluntary Cleanup Program (VCP) No. 221 CN No. 600374821; RN No. 101474880

Dear Ms. Morrison,

This 2022 Response Action Plan Addendum (2022 RAP Addendum) is submitted in response to the Texas Commission on Environmental Quality (TCEQ) comment letters dated June 7, 2022,¹ and July 5, 2022,² for the Former Cameron Iron Works Facility located at 1000 Silber Road, Houston, Texas (site). A written response to comment No. 2 of the June 7, 2022, letter was provided in the letter dated June 17, 2022.³ Response to comments 3, 8, and 9 of the June 7, 2022, letter were provided in the letter dated August 22, 2022.⁴ The remaining comments Nos. 1 and 4 through 7 of the June 7, 2022, letter and Nos. 1 through 6 of the July 5, 2022, letter are addressed in this RAP Addendum. For ease of review below, the TCEQ comment is restated, followed by the response of Cameron International Corporation (Cameron; a Schlumberger Company).

1. Response to TCEQ Comment Letter Dated June 7, 2022

Monitored Natural Attenuation (MNA) Results

TCEQ Comment No. 1

Based on information provided, chemical of concern (COC) concentrations appear to be increasing over time within the onsite plume, downgradient of the former facility (at MW-113, MW-15R, and MW-16R); along the downgradient (southern) edge of the offsite plume (at MW-161, MW-168, MW-97, MW-93R, MW-98, and MW-179); and at scattered locations within the off-site plumes (MW-89, MW-74, and MW-147). Furthermore, the southern offsite plume appears to be migrating to the south. Finally, the contaminant plumes are no longer delineated at MW-113, MW-65, MW-106, and MW-

¹ Texas Commission on Environmental Quality (TCEQ). 2022a. Comments to 2021 Response Action Effectiveness Report (RAER), Cameron – Katy Road Facility (Site), located at 1000 Silber Road, Houston, Harris County, TX. June 7.

² Texas Commission on Environmental Quality (TCEQ). 2022b. Comments to 2022 Predesign Investigation Data Submittal and Request for Response Action Plan Addendum Extension, Cameron – Katy Road Facility (Site), located at 1000 Silber Road, Houston, Harris County, TX. July 5.

³CH2M HILL Engineers, Inc. (CH2M). 2022a. 2022 Pre-Design Investigation Data Submittal and Request for Response Action Plan Addendum Extension. June 17.

⁴ CH2M HILL Engineers, Inc. (CH2M). 2022b. Response to TCEQ Comments on 2021 Response Action Effectiveness Report Dated June 7, 2021. August 22.

93R. As such, data indicates that MNA alone is not a sufficient remedy for the on-site and off-site plumes. The TCEQ understands that the revised RAP will address plume migration and the increasing COC concentrations. Remedial activities should be conducted as soon as possible at the monitoring wells/areas mentioned above.

Response to TCEQ Comment No. 1: Cameron will close the groundwater protective concentration level exceedance (PCLE) zone under Remedy Standard B (onsite plume) and Remedy Standard A (offsite plume), using a combined in situ chemical oxidation (ISCO) and monitored natural attenuation (MNA) approach under a reasonable time frame. The target treatment zone (TTZ), proposed ISCO injection wells, and performance monitor well locations are shown in Attachments 2A-1 and 2A-2 of the 2022 RAP Addendum.

Specifically, the ISCO will focus on treating TTZs with concentrations of indicator COCs, i.e., tetrachloroethene, trichloroethene, 1,1-dichloroethene, and vinyl chloride (VC), greater than 0.050 milligram per liter, and selected well locations as commented by TCEQ as follows:

- Former Burn Pit, MW-108, MW-111, and MW-113 (onsite)
- MW-15R and MW-16R
- MW-89, MW-74, MW-187, and MW-188
- MW-161 and MW-93R

The ISCO treatment zones will be addressed in two phases. The Phase 1 ISCO well installation and injection will be implemented as a pilot study between November 2022 and the first half of 2023, focusing on the onsite burn pit and MW-113 areas. The Phase 2 ISCO injection will treat remaining areas and locations mentioned previously in the second half of 2023.

The ISCO response action to prevent plume migration at the southern leading-edge plume, including MW-168 and MW-97, is pending access by the residential property owners for a predesign investigation. The proposed predesign investigation and potential response actions focusing on mitigating potential plume migration at the leading edge of the plume in the southern portion of the site depend on receiving approval to access this area from the residential property owner, which to this point has not been provided. The 11 soil borings planned within the leading-edge downgradient plume were not advanced because the property owner has not responded to the several requests made for access over the last 10 months in 2021 and 2022, including emails on December 10, 2021, January 31, 2022, February 10, 2022, March 7, 2022, March 29, 2022, and April 7, 2022, and formal letters on May 26, 2022, and September 28, 2022.

Because MW-147 is located crossgradient of groundwater flow direction, and COC concentrations are less than the critical protective concentration level (cPCL), ISCO treatment is not proposed at MW-147. Likewise, because MW-179 is located far downgradient, and COC concentrations are less than cPCLs, ISCO treatment is not proposed at MW-179.

Additional delineation and predesign investigation involving grab groundwater sampling was performed in May and June 2022 to refine the plume extent. MW-106 contained one sample in which one COC (VC) was detected slightly greater than the cPCL; therefore, further delineation is not recommended at MW-106 at this time. Further delineation of the plume south of MW-93R is limited by a lack of access from the residential property owner. However, MW-98 located downgradient of MW-93R does not contain COCs at concentrations greater than the cPCLs; therefore, the plume to the south of MW-93R is unlikely to have migrated beyond MW-98.

Additional Sampling

TCEQ Comment No. 4

Due to the apparently increasing trend in COC concentrations at MW-98 and MW-179, please sample downgradient monitoring well MW-180 during the next site-wide sampling event.

Response to TCEQ Comment No. 4: MW-180 has been designated as a point of exposure (POE) well, which will be sampled annually during future events (see Worksheet 3.1 of RAP Addendum).

Proposed Plume Management Zone (PMZ)

TCEQ Comment No. 5

Monitoring well MW-65 is located along the downgradient boundary of the proposed PMZ. As such, the well must be considered point of exposure (POE) well and concentrations be compared with groundwater ingestion PCLs.

Response to TCEQ Comment No. 5: MW-65 has been designated as a POE well (see Worksheet 3.1 of RAP Addendum).

TCEQ Comment No. 6

The proposed PMZ includes three attenuation monitoring points (AMPs) along the centerline of the onsite plume. Due to the size of the plume, AMP wells are also needed in the southeastern portion of the former facility. While these wells were not required when the North Treatment system was in operation, they are now requested for plume monitoring, especially detection of plume migration before it reaches POE wells. Please add additional AMPs on the southeastern portion of the site (upgradient of POE wells MW-110, MW-111, MW-112, MW-113 and MW-65).

Response to TCEQ Comment No. 6: The revised PMZ network consists of four AMPs (MW-50R, MW-181, MW-182, and MW-184) to monitor plume stability along the center line of the PMZ (Attachment 2D of RAP Addendum). MW-50R is an existing AMP well and will continue to be monitored as such. One proposed new AMP well (MW-184) has been added to the southeastern portion of the site upgradient of POE well MW-113. Two existing wells, MW-181 and MW-182, were installed in 2021, located upgradient of MW-109 and MW-110, and are designated as AMP wells.

PCL Exceedance (PCLE) Zone Map

TCEQ Comment No. 7

Please extend the groundwater PCLE zones to include locations where exceedances were previously documented. If you choose instead to collect grab groundwater samples at these locations to justify the proposed PCLE zone boundaries, please note that 1) grab samples are not representative of groundwater conditions and will be accepted as delineation samples only if results are not detected or below the quantitation limit; and 2) results from grab samples will be valid for a limited time – new delineation samples may be required at the same locations in the future.

Response to TCEQ Comment No. 7: The TCEQ comment is acknowledged. However, an evaluation of the data indicates that the use of the results from grab samples for delineation in combination with results from the broad network of existing wells and historical data supports the current interpretation of the overall PCLE zone for groundwater. Cameron does acknowledge that future delineation could be necessary based on changing conditions. Note too that analytical results from grab groundwater samples collected from locations SB-10, SB-17, SB-37, and SB-45 are less than the quantitation limit, and as a result served as delineation

samples for the groundwater PCLE zone at those locations. With the exception of 1,1-dichloroethene, COCs were detected at concentrations lower than the cPCL in samples from SB-16. With that in mind, a new monitor well (MW-190) has been proposed to monitor conditions at the location of SB-16. One additional permanent monitor well (MW-189) has also been proposed at SB-17 to monitor the extent of the offsite plume boundary confirmed during the predesign at SB-17 (Attachment 2D of RAP Addendum).

Response to TCEQ Comment Letter Dated July 7, 2022

TCEQ Comment No. 1

The extension for the RAP submittal is approved. The new due date is September 30, 2022.

Response to TCEQ Comment No. 1: See enclosed RAP Addendum.

TCEQ Comment No. 2

While the TCEQ concurs that the proposed locations for remedial actions are high priority, other areas with increasing chemical of concern (COC) concentrations will require active remediation as discussed in Comment 1 of our June 7, 2022 letter.

Response to TCEQ Comment No. 2: See response to TCEQ comment No. 1 of June 7, 2022, letter.

TCEQ Comment No. 3

Newly installed monitoring wells MW-181 and MW-182 are proposed to be plugged after two sampling events. Well construction details were not provided. If these wells were constructed as permanent wells, TCEQ strongly discourages plugging these wells even if COC concentrations are currently not detected because the plume does not appear to be stable in all directions.

Response to TCEQ Comment No. 3: Monitor wells MW-181 and MW-182 will be retained as AMP wells, and well construction details are provided in the 2022 RAP Addendum.

TCEQ Comment No. 4

The protective concentration level exceedance (PCLE) zones have been modified based on the grab sample groundwater results. It appears that some locations in which COC were detected above the quantitation limit but below the PCL were not included in the PCLE zone. The TCEQ reiterates Comment 7 of our June 7, 2022 letter regarding the extent of the PCLE zone: if you choose to collect groundwater grab samples to justify the proposed PCLE zone boundaries, they will be accepted as delineation samples only if results are not detected or below the quantitation limit.

Response to TCEQ Comment No. 4: TCEQ comment acknowledged. See response to Comment No. 7 of the TCEQ June 7, 2022, letter. The groundwater PCLE zone extent has been refined based on the most current 2021 sitewide annual monitoring and grab groundwater samples collected from soil borings installed where exceedances were previously documented. Two new monitor wells, MW-189 and MW-190, as well as one existing well, MW-180, are proposed to monitor potential future plume migration (Attachment 2D of 2022 RAP Addendum).

TCEQ Comment No. 5

Please address the modifications of the PCLE zone when responding to Comments 8 and 9 of our June 7, 2022 letter (regarding 30 Texas Administrative Code §350.55 notification requirements).

Response to TCEQ Comment No. 5: The PCLE zone has been modified as presented in Attachment 1A-9 of the 2022 RAP Addendum.

TCEQ Comment No. 6

Please include the field work methodology, boring logs, and data usability summaries for the May 2022 groundwater samples/new monitoring wells in the next most appropriate submittal.

Response to TCEQ Comment No. 6: The sampling procedures, data usability summaries, boring logs, and well construction diagrams for the May and June 2022 predesign investigation are provided in Appendix 2 and 6 of the 2022 RAP Addendum. In addition, Appendix 2 includes boring logs for monitor wells used for geological cross sections.

Please call me at (318) 393-6480 with any questions or concerns. I can also be emailed at DGreening@slb.com.

I look forward to our continued work with you.

Sincerely,

Dawn Greening

Remediation Manager on behalf of Cameron International Corporation

Enclosure:

• 2022 Response Action Plan Addendum

c: Alma L. Jefferson/TCEQ Region 12
Matthew Parish/Taunton, Snyder & Slade
Monica Schneider/CH2M HILL Engineers, Inc.
David Urann/CH2M HILL Engineers, Inc.
John Knott/CH2M HILL Engineers, Inc.
Sally Scott/CH2M HILL Engineers, Inc.

2022 Response Action Plan Addendum Voluntary Cleanup Program No. 221 Former Cameron Iron Works Facility 1000 Silber Road, Houston, Texas

Prepared for

Cameron International Corporation

September 2022

Prepared by CH2M HILL Engineers, Inc.

Professional Signatures and Seals

Bret R. Rahe		
DICE IV. IVano	2798	November 30, 2022
Professional Geoscieptist TBPG Profession No. 90264	Geoscientist License number	Expiration date
Signature	Date	
210-403-6326		bret.rahe@jacobs.com
Telephone number	FAX number	E-mail
Professional Engineer		
Kui Tan	101739	September 30, 2022
Professional Engineer IBPE Firm Registration No. 3699	P.E. License number 09/30/2022	Expiration date
Signature	Date	
281-891-5658	Date	kui tan@iasahs sam
201-091-0000 	FAX number	kui.tan@jacobs.com E-mail
Desistent d'Occupation Action Consciolist	DOAC Desistantian asserban	Fining data
Registered Corrective Action Specialist	RCAS Registration number	Expiration date
	RCAS Registration number Date	Expiration date
Signature		Expiration date Expiration date
Signature Corrective Action Project Manager	Date	
Registered Corrective Action Specialist Signature Corrective Action Project Manager Signature Telephone number	Date CAPM Registration number Date FAX number	

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY Response Action Plan Cover Page

Regulatory ID nul	mber (Solid w	aste regis	stration nun	nber, vc	ים מו אי	imber, etc	,, , , , , ,	NO. 221
				_		quent sub	omittal for the	his onsite property
Report date:	September 30	, 2022	TCEQ	Region	No.:	12		<u></u>
TCEQ Program (concentration Corrective Action X Voluntary Clear RPR Section (N	on (Mail Code nup Program	(Mail Code	e 221)				d (Mail Cod te Permits	le 143) (Mail Code 124)
On-Site Property								
On-Site Property N	lame: Forme				ty			
Street no. 1000	Pre dir:	Street	name Silb	er		Street ty	pe: Road	Post dir:
City: Houston		County	: Harris			Cou	nty Code: 1	01 Zip: 77024
Nearest street inte description:	rsection or loc	cation	Shavelson	n Street	and Sill	per Road	north of Into	erstate 10 (I-10)
Latitude: Degrees,	Minutes See	onda OP I	Docimal D	ograce (oirele er	o) North	20047	"10" N
Longitude Degree		_		•		•		"13" N "56" W
Off-Site Affected P Physical Address: Street no.	roperty Name	e: Offsite	s in letter t		dated A	August 22 Street t		2M 2022a) Post dir:
City:	<u></u>	ounty:	·			_ County (• •	Zip:
<u> </u>	off-site proper	_	ed			-		_ '
Contact Person In	nformation and ny) Name:	nd Ackno Cameron	wledgeme		oration (Cameron)		berger Company
Contact Person:	Dawn Greeni	ng				Title:	Remedia	tion Manager
Mailing Address:	121 Industria	al Bouleva	ırd					
City: Sugar Land	t		State:	TX Zip	o: 7747	'8 E-mail	address <u></u>	Greening@slb.com
Phone: (318) 393	3-6480		Fax:				_	
		vladae the	requireme	nt of 83!	50 2(a) :	hat no no	roon aball a	ou do moit

ID No.: VCP No. 221

Report Date: September 2022

Use this worksheet to summarize the report. Be sure to complete and submit the Checklist for Report Completeness. Attach a chronology of activities associated with the affected property.

Briefly describe the affected property and PCLE zones, the conclusions from the assessment activities, identify any affected or threatened receptors, and describe any other major considerations taken into account when developing this response action plan. If any portion of the response action is necessitated due to an aesthetic or nuisance condition, identify the nature of that condition and identify that portion of the response action proposed to address it. If any media that contains a PCLE zone is not addressed in this RAP, provide justification.

This fourth addendum to the Response Action Plan (RAP) dated August 28, 2003 (hereafter referred as the 2022 RAP Addendum) was prepared for the Former Cameron Iron Works Facility (site), located at 1000 Silber Road, Houston, Texas. Site groundwater has been affected by historical usage and release associated with chlorinated organic constituents used for degreasing, as well as lubrication and hydraulic oils used in machining metals. This addendum describes proposed response actions, including in situ chemical oxidation (ISCO) treatment at target treatment zones (TTZs) and/or selected well locations per Texas Commission on Environmental Quality (TCEQ) comment letter dated June 7, 2022 (TCEQ 2022a) to expedite chemical of concern (COC) concentration decline and mass reduction, and to prevent further migration at the leading edge of the plume.

The site-specific COCs consist of tetrachloroethene (PCE), trichloroethene (TCE), 1,1-dichloroethene (1,1-DCE), cis-1,2-dichloroethene (cis-1,2-DCE), 1,1-dichloroethane (1,1-DCA), 1,2-dichloroethane (1,2-DCA), and vinyl chloride (VC). Concentrations of COCs, except 1,1-DCA, were greater than the respective critical protective concentration level (cPCL) during the most recent December 2021 annual groundwater sampling and May and June 2022 predesign grab groundwater sampling. The TTZ is defined as the groundwater plume area corresponding to 10 times the cPCLs for PCE and TCE, that is, 0.05 milligram per liter (mg/L). 1,1-DCE or VC greater than 0.05 mg/L are also defined as TTZ.

The ISCO treatment onsite plume management zone (PMZ) and offsite monitored natural attenuation (MNA) are anticipated to meet response action objectives (RAOs) within a reasonable time frame under Remedy Standard B closure for groundwater.

This 2022 RAP Addendum does not include soil, because the affected soil at the site has been remediated to residential protective concentration levels (PCLs) (Environmental Resources Management Group, Inc. [ERM] 2003a).

Site Background and Regulatory History

Previous investigations and remediation activities are summarized in the Chronology included at the end of this Executive Summary. This section provides a summary of the historical groundwater response actions. Site groundwater response actions were performed in accordance with the 2003 RAP (ERM 2003a), 2009 RAP Addendum (ERM 2009), 2014 RAP Addendum (ERM 2014), and 2018 RAP Addendum (CH2M 2018a), which included ISCO treatment using permanganate at multiple areas, operation of the North and South Treatment Systems, and MNA:

- **ISCO Treatment:** Numerous rounds of ISCO injections using permanganate were performed by ERM at multiple areas (onsite and offsite) between 2004 and 2012.
- Operation of Onsite North Treatment System: A recovery, treatment, and injection system was in operation from September 2003 to November 2016. The system included six extraction wells that captured water from the southern property boundary of the site on the north side of I-10. The water was pumped through two granular activated carbon (GAC) vessels for treatment and then reinjected into nine injection wells located along the former northern boundary of the site.
- Operation of Offsite South Treatment System: The system (comprised of five extraction wells) operated from 2009 to November 2016 to provide hydraulic control and treat (via GAC) the offsite leading-edge downgradient plume. The treated water was directly discharged to the sanitary sewer of the City of Houston Publicly Owned Treatment Works collection system under City of Houston Industrial Waste Permit Number 10799. The South Treatment System was decommissioned in 2021.

ID No.: VCP No. 221

Report Date: September 2022

In 2021, the TCEQ commented that MNA alone would not meet RAOs, due to increasing concentration trends at selected locations and potential migration of the leading-edge downgradient plume. Therefore, a predesign investigation was performed in May and June 2022, to refine the site conceptual model and confirm plume extent.

The extent of the groundwater protective concentration level exceedance (PCLE) zone was refined, based on the most current 2021 annual groundwater sampling event data in combination with results from the predesign investigation conducted in May and June 2022. The predesign investigation was conducted by using direct-push technology (DPT) to collect discrete grab groundwater samples from 36 soil boring locations for analysis of site-specific volatile organic compounds (VOCs). Generally, up to three grab samples at different vertical intervals were collected from each boring. In some instances grab samples could not be collected from the target sampling intervals due to low recharge rates. The sampling methods and procedures used during the predesign investigation are detailed in Appendix 6. The 11 soil borings planned within the leading-edge downgradient plume were not advanced because the property owner has not responded to the several requests made for access over the last 10 months in 2021 and 2022, including emails on December 10, 2021, January 31, 2022, February 10, 2022, March 7, 2022, March 29, 2022, and April 7, 2022, and formal letters on May 26, 2022, and September 28, 2022.

The 2021 groundwater VOC concentration data, field parameters, and groundwater elevation data are included in Appendixes 2-1, 2-2, and 2-3, respectively. Surface water samples collected in 2021 and 2022 are included in Appendix 2-4. Grab groundwater sample data collected during the 2022 predesign investigation are included in Appendix 2-5. Appendix 2-6 includes the data usability summary and laboratory reports for the 2022 predesign investigation data. The boring logs and well diagrams of available existing monitor wells and borings advanced in 2022 are included in Appendixes 2-7 and 2-8, respectively.

Maps and cross sections depicting the COC concentrations and PCLE zones are provided in Attachments 1A-1 through 1A-15. The COC concentrations versus time graph for the indicator COCs is provided in Attachment 1B.

Geology and Hydrogeology

The site geology consists of three strata:

- Stratum I consists of an asphalt, concrete, and fill layer underlain by clay. The Stratum I thickness varies between 10 and 25 feet.
- Stratum II is the uppermost water-bearing zone consisting of fine-grained sand with lenticular silty and clayey features and layers of consolidated sand. The top of the water-bearing zone is approximately 18 to 20 feet below ground surface (bgs) in the onsite and northern plume, and 22 to 30 feet bgs in the south and east plumes. Stratum II is approximately 15 to 35 feet thick, extending up to 50 feet bgs.
- Stratum III is beneath the water-bearing zone, consisting of more than 50 feet of clay.

The depth to groundwater varies between 18 and 30 feet bgs from the northern portion to the southern portion of the plumes. Groundwater flows generally toward the south.

Updated Groundwater PCLE Zone

The major findings of the 2022 predesign investigation include the following:

- Site groundwater has been affected by chlorinated volatile organic compounds (CVOCs). The CVOC-affected groundwater extends southward approximately 5,300 feet from the site boundary.
- The total groundwater PCLE zone includes an area of approximately 170 acres, including approximately 16 acres (onsite) and 154 acres (offsite). The offsite PCLE zones consist of primarily three large and disconnected PCLE zones, the north plume to the south of I-10 (19 acres), which is connected to and immediately downgradient of the onsite plume, the south plume to the west of the Harris County Flood Control Ditch (HCFCD) (21 acres), and the east plume to the east of the HCFCD (111 acres).
- The groundwater plume is characterized as a large and dilute-concentration plume. Based on 2022 grab groundwater sampling, the highest concentrations of PCE (5.6 mg/L) and TCE (2.85 mg/L) were measured at the former burn pit area onsite (north of I-10).

ID No.: VCP No. 221

Report Date: September 2022

Groundwater Response Action Objectives

The groundwater RAOs are to achieve Remedy Standard B for the onsite groundwater PCLE zone, and to achieve Remedy Standard A for the offsite groundwater PCLE zones:

- Prevent human exposure of affected groundwater within the PMZ.
- Reduce the COC concentrations at TTZs with concentrations of PCE, TCE, 1,1-DCE, or VC greater than 0.05 mg/L, and/or selected well locations to less than the groundwater cPCLs within a reasonable time frame using combined ISCO treatment and MNA.
- Prevent offsite migration of groundwater containing COC concentrations exceeding cPCLs.
- Prevent further migration of COCs at concentrations exceeding the cPCLs at the leading-edge downgradient plume.
- Prevent the groundwater PCLE zone from migrating to adjacent surface water at concentrations exceeding the cPCLs for surface water protection.

The North Treatment System has achieved significant mass reduction, as evidenced by stable and declining trends within the onsite groundwater PCLE zone (Attachment 1B). The findings of the groundwater fate and transport modeling (Appendix 3) indicate that the groundwater PCLE zones will naturally attenuate to concentrations less than the cPCLs within a similar time period regardless of continued operation of the North Treatment System. In addition, the proposed ISCO treatment will replace the North Treatment System to reduce COC concentrations at the TTZs. Therefore, continued operation of the North Treatment System is not necessary.

Phased Conditional Certificates of Completion (CCOCs) are included in the real property records as institutional controls (ICs) to meet Remedy Standard B closure. These include Tier 1 residential use standards for soil and a PMZ for groundwater under the Texas Risk Reduction Program (TRRP) for three tracts of land:

- One 38.3-acre tract of land in 2003 under Voluntary Cleanup Program (VCP) No. 221
- One 5.96-acre tract of land in 2006 under VCP No. 1408
- One 7.37-acre tract of land in 2007 under VCP No. 1870

The fourth 35.7-acre tract of land consisting of three parcels owned by the same owner within the southern portion of the PMZ was historically closed under Risk Reduction Rules (predecessor to TRRP) for soil and groundwater between 1998 and 2000. A CCOC will be filed for this tract of land instead of filing CCOCs for each individual parcel, pending TCEQ review and approval of the draft CCOC included in Appendix 4 and the owner's consensus.

Proposed Response Actions

Cameron will close the groundwater PCLE zones under Remedy Standard B (onsite plume) and Remedy Standard A (offsite plume), using a combination of ISCO and MNA. The proposed response actions include the following:

- Install ISCO injection wells and new performance monitor wells, and perform ISCO injections using potassium or sodium permanganate.
- Use ISCO technology to reduce COC concentrations within selected TTZs with PCE, TCE, 1,1-DCE, or VC concentration greater than 0.05 mg/L, and/or at the selected monitor well locations described in the TCEQ comment letter dated June 7, 2022 (TCEQ 2022a). Treatment will commence in a phased approach, Attachment 2A-1 shows the Phase 1 and Phase 2 ISCO injection well locations.
- Conduct the Phase 1 ISCO injections as a pilot study that focuses on the former burn pit area and MW-113 area, shown in Attachment 2A-2, to reduce individual COC concentrations to less than 0.05 mg/L. The Phase 1 ISCO injections will serve as a pilot study to determine achievable injection flow rates, pressures, and logistics for oxidant delivery and mixing for implementation of Phase 2 injections where there is limited space available/less flexibility for adaptive management of injections in the streets or driveways.

ID No.: VCP No. 221

Report Date: September 2022

- Conduct ISCO performance monitoring semiannually for the initial 5 years after ISCO injections, and then transition to annual MNA monitoring. Future ISCO injection events will be based on the results of the performance monitoring after the initial round of injections at each location.
- Conduct annual MNA monitoring for the groundwater PCLE zones until cPCLs are met within a reasonable time frame.
- The VCP CCOCs currently in place as ICs for the onsite plume will continue to restrict groundwater use within the PMZ. Coordinate with the owner of the 35.7-acre parcel to obtain a VCP CCOC as an IC to restrict groundwater and formally incorporate the property into the existing PMZ.
- Continue to attempt to gain access to complete the predesign investigation at the leading-edge downgradient plume and potentially implement additional ISCO injection.
- Perform surface water sampling (annually) at the HCFCD to confirm no exceedances of surface water cPCLs.
- Provide affected property owners or landowner associations with groundwater monitoring results for the wells sampled on their properties.

ISCO treatment will replace the North Treatment System as the selected response action. The inactive North Treatment System, including associated extraction wells, piezometers, injection wells, and treatment vessels, will be decommissioned and permanently removed from the site after TCEQ approval is received. Cameron will submit semiannual Class V Aquifer Remediation Injection Well Reports, to document ISCO injection activities and to comply with the requirements in the Amendment and Registration of Class V Aquifer Remediation Injection Wells letter from the TCEQ Underground Injection Control (UIC) and Remediation Division, dated April 11, 2011, and subsequent amendments, including for the proposed Phase 1 and Phase 2 ISCO injections described in Worksheet 2.0. Once ISCO injection is initiated, the UIC reports will be submitted to document ISCO injection status. Response Action Effectiveness Report (RAERs) will continue to be submitted on an annual basis. A Response Action Completion Report (RACR) will be submitted once groundwater concentrations have reached levels less than the cPCLs.

Future Modifications of Response Actions and Monitoring Network

The following updates to the schedule are proposed by Cameron:

- Recommendations and optimization of ISCO treatment and performance monitoring will be communicated to TCEQ, and the results and modifications included in future RAERs, without the need to revise the 2022 RAP Addendum unless otherwise requested by TCEQ.
- The predesign investigation will be completed at the leading edge of the plume following the property owner's approval to access the property. It is assumed that an additional ISCO treatment zone will be implemented to address further migration at the leading edge of the plume, upon approval to access the property and following the completion of the predesign investigation in this area. The layout and performance monitoring of the leading-edge downgradient plume ISCO treatment zone will be provided to the VCP program of TCEQ in a concise letter report for TCEQ approval in lieu of submittal of another RAP addendum.
- Upon TCEQ approval of the letter report, a UIC amendment will be submitted to the TCEQ UIC
 Division for review and approval of the injection plan (including injectate quantity and well construction
 diagrams).
- For future injection events, the injection dosage, injectate concentration, number of injection wells, and/or reinjection frequency will be evaluated based on previous performance monitoring results.
 The injection summary will be presented in Semiannual UIC Status Reports submitted to the TCEQ UIC Division.

The progress of groundwater response actions and monitoring will be provided annually in the RAER, which will be submitted by March 31 each year.

What is the selected reme	ly standard for this affected	property?	Α	XВ
---------------------------	-------------------------------	-----------	---	----

¹ Cameron will close the groundwater PCLE zone under Remedy Standard B (onsite plume) and Remedy Standard A (offsite plume).

ID No.: VCP No. 221

Report Date: September 2022

List all media that contains a PCLE zone and specify the proposed response action for each media. Indicate the type of removal, decontamination, physical control and/or institutional control action that is proposed.

oroposea.							
Media	COCs1	Removal	Decontamination		(Control	
				Physical/ Institutional	Modifie	ed Groundwa Objectiv	ater Response ve ²
				Control	PMZ	WCU	TI
Groundwater	VOCs		Х		Χ		
Is there a medi RAP?	a that contains a	PCLE zone	that is not address	sed in this		yes X	. no
f yes, provide ju	stification for not	addressing	the PCLE zone in	this RAP.			
Not applicable							
		of a previous	Commercial/Indus RAP? <u>X</u> Yes or resubmitted.	strial (chec	k all that	apply)	
	expedite COC cor		clude ISCO injection decline and mass				
•	propriate notificat hy notifications we		n accordance with le:	§350.55?	X Yes	sN	0
In accordance v	with §350.55, noti	fications ha	ve been made to t	he affected pr	operty o	wners. On /	August 22,

In accordance with §350.55, notifications have been made to the affected property owners. On August 22, 2022, Cameron provided a letter report responding to TCEQ comments that included a notarized affidavit and documentation of recent and prior notifications.

¹ Specify either a specific COC or, if the response action is the same for all COCs in one type, specify the type of COC (for example, VOCs, SVOCs, metals).

² If a modified groundwater response objective is proposed, check the type(s) of proposed modifications.

ID No.: VCP No. 221

Report Date: September 2022

Chronology

Event	Date of Actions	Description of all release abatement activities, assessment activities, and response actions conducted
Response to Comments No. 2, 3, 8, and 9 (CH2M 2022a)	August 22, 2022	Cameron provided written responses to comments No. 2, 3, 8, and 9 (TCEQ 2022a), and included a summary of residential affected property notifications.
TCEQ Approval of 2022 RAP Addendum Extension (TCEQ 2022b)	July 5, 2022	TCEQ approved the 2022 RAP Addendum submittal extension to September 30, 2022, with additional comments to be considered in the 2022 RAP Addendum.
2022 RAP Addendum Extension Request and Predesign Investigation Results (CH2M 2022b)	June 17, 2022	Cameron requested a 2022 RAP Addendum submittal deadline extension from June 30, 2022, to September 30, 2022. The letter also included a summary of results from the predesign investigation completed in May 2022 and path forward for an additional predesign investigation to fill data gaps at the former burn pit area.
TCEQ Comments on 2021 RAER (TCEQ 2022a)	June 7, 2022	TCEQ provided nine comments on the 2021 RAER, and requested written responses to comments No. 2, 3, 8, and 9 within 90 days. TCEQ requested incorporation of responses to remaining comments into the 2022 RAP Addendum.
2021 RAER (CH2M 2022c)	March 30, 2022	Cameron submitted the 2021 RAER.
South Treatment System Decommissioning	November 2021	Decommissioning of the South Treatment System and abandonment of associated extraction wells and piezometers were completed.
Response to TCEQ Comments on 2020 RAER (CH2M 2021a)	October 29, 2021	Cameron provided response to comment on the 2020 RAER.
TCEQ Comments on 2020 RAER (TCEQ 2021)	August 31, 2021	TCEQ provided 13 comments on 2020 RAER. As noted, TCEQ requested submittal of an amended RAP using TCEQ-10326/RAP, to depict the PMZ boundary and network wells, to evaluate MNA effectiveness, to propose additional response actions to supplement MNA to meet RAOs within 15 years, and to update the groundwater modeling.
2020 RAER (CH2M 2021b)	March 30, 2021	Cameron submitted the RAER based on the updated PMZ network in the conditionally accepted 2018 RAP Addendum.
Revised 2018 RAP Addendum (CH2M 2020a)	April 28, 2020	Cameron submitted the Revised 2018 RAP Addendum in response to TCEQ comments dated February 7, 2019.
TCEQ Approval of 2019 RAER (TCEQ 2020)	April 20, 2020	TCEQ approved the 2019 RAER.
2019 RAER (CH2M 2020b)	March 30, 2020	Cameron submitted the RAER based on the updated PMZ network in the conditionally accepted 2018 RAP Addendum.
2019 Semiannual Monitoring Data Submittal (CH2M 2019a)	September 6, 2019	Cameron submitted the 2019 semiannual monitoring event results. TCEQ approved and indicated that no new notifications to property owners were warranted at this time (TCEQ 2019a).
Site Status Update Meeting	June 11, 2019	Cameron met with TCEQ on June 11, 2019, to provide a site status update. The meeting summary and presentation slides were provided to TCEQ on June 24, 2019.
TCEQ Approval of 2019 Semiannual Monitoring Data Transmittal (TCEQ 2019a)	September 24, 2019	TCEQ approved the 2019 Semiannual Monitoring Data Transmittal.

ID No.: VCP No. 221

Report Date: September 2022

Event	Date of Actions	Description of all release abatement activities, assessment activities, and response actions conducted
2019 Semiannual Monitoring Data Submittal (CH2M 2019a)	September 6, 2019	Cameron submitted the 2019 semiannual monitoring event results.
TCEQ Approval of 2018 Annual Progress Report (TCEQ 2019b)	June 4, 2019	TCEQ approved the 2018 annual report.
2018 Annual Progress Report (CH2M 2019b)	March 27, 2019	Cameron submitted the 2018 annual report.
TCEQ Comments on 2018 RAP Addendum (TCEQ 2019c)	February 7, 2019	TCEQ conditionally accepted the 2018 RAP Addendum and provided additional comments.
2018 Semiannual Monitoring Data Submittal (CH2M 2018b)	August 28, 2018	Cameron submitted the 2018 semiannual monitoring event results.
2017 Annual Progress Report (CH2M 2018c)	April 12, 2018	Cameron submitted the 2017 annual report.
2018 RAP Addendum (CH2M 2018a)	February 15, 2018	The 2018 RAP Addendum was submitted to TCEQ.
2017 Semiannual Monitoring Data Submittal (CH2M 2017a)	September 8, 2017	Cameron submitted the 2017 semiannual monitoring event results.
Installation of Additional Delineation Wells and Replacement Wells	April 11, 2017, and November 27, 2017	MW-178 was installed south of the intersection of I-10 and east of the church near North Post Oak Road, and reinstallation was completed for two new replacement wells for MW-164 and MW-165.
TCEQ Approval of 2016 Annual Progress Report	June 1, 2017	Following review of 2016 Annual Progress Report (CH2M 2017b), TCEQ approved the request for well plugging and abandonment, the sampling method of HydraSleeve, and installation of two new wells near North Post Oak Road.
Plugging and Abandonment of 128 Wells	January-June 2017	A total of 55 ISCO injection wells and 73 monitor wells were plugged and abandoned.
Well Optimization Strategy Letter (CH2M 2017c)	March 2, 2017	Changes to the site groundwater sampling program were submitted to TCEQ, including the proposed plugging and abandonment of injection and monitor wells, changing of leading-edge plume well sampling frequency from quarterly to semiannually, and changing the groundwater sampling method from low flow to HydraSleeve method.
Status Meeting among TCEQ, Cameron, and CH2M	February 2017	CH2M presented modeling results and preliminary well network optimization recommendations.
TCEQ Approval of Rebound Study	December 15, 2016	TCEQ acknowledged the ongoing rebound test, approved abandonment of 24 wells and requested submittal of results of aquifer responses in a Revised RAP Addendum.
Rebound Study	November 15, 2016	The North and South Treatment Systems located onsite and offsite, respectively, were shut off to begin the rebound study.
Request for Rebound Study and Abandonment of Wells in the City of Houston Right- of-Way	November 2, 2016	A request was submitted to TCEQ, seeking approval of the shutdown of two pump-and-treat systems for a rebound study, and abandonment of 24 wells along City of Houston right-of-way regarding a sewerline capital improvement project along Memorial Drive.

ID No.: VCP No. 221

Report Date: September 2022

		Description of all release abatement activities,
Event	Date of Actions	assessment activities, and response actions
Second Addendum to RAP (ERM 2014)	March 2014	The second Addendum to Groundwater RAP (2014 RAP Addendum) was submitted to TCEQ on March 12, 2014, to control plume expansion of onsite and offsite groundwater as requested in the TCEQ letter dated June 25, 2013. This addendum evaluated the effect of the Silber Tunnel dewatering system operated by TxDOT since 2007 on potential plume migration, with proposed response actions, including (1) maintaining the onsite PMZ, (2) continued groundwater monitoring of offsite PCLE zones, and (3) notification of affected property owners. The second pump-and-treat system for leading-edge downgradient plume hydraulic control was proposed for shutdown. The 2014 RAP Addendum was not approved by TCEQ as stated in a letter dated July 22, 2014.
Submittal of TxDOT Dewatering System Evaluation and Response Report	April 2013	This report summarized construction of the TxDOT Silber Tunnel dewatering system, evaluated the observed changes in groundwater elevations and flow direction, and included a summary of potential response actions evaluated.
ISCO Treatment	July 2011	45,000 gallons of oxidant solution (over 6.5 tons of permanganate total weight) was injected at over 60 offsite injection wells (ERM 2014).
	March 2012	15,000 gallons of oxidant solution (over 2 tons of permanganate total weight) was injected at 16 injection wells in Pinewood Estates to control plume migration (ERM 2014).
Identification of Silber Tunnel Dewatering System	May 2011	Information from a TxDOT Open Records Request identified the Silber Tunnel dewatering system, which started operation in early 2007 (ERM 2014).
Semiannual Pump-and-Treat System Discharge Report	2009–2017	Semiannual System Discharge Reports were submitted to the City of Houston as required by Industrial Waste Permit No. 10799.
First Addendum to RAP (ERM 2009)	July 2009	The first addendum to the groundwater RAP (2009 RAP Addendum) was submitted to TCEQ on July 30, 2009, to address comments of TCEQ's June 19, 2009, letter. This addendum proposed an additional response action to address the PCLE zone at the Stablewood subdivision, via installation of the second pump-and-treat system (five extraction wells) for hydraulic control, with treated water discharged to the sanitary sewer, to meet cPCLs within an anticipated time frame of 3 to 5 years.
Installation of ISCO Injection Wells	May 2004	21 ISCO injection wells were installed along Carnarvon Drive, north of Stablewood, for ISCO treatment of the southern portion of the Sandringham Drive plume.
Quarterly Plume Perimeter and Plume Leading Edge Groundwater Monitoring and Reporting	2003 to 2016	Plume perimeter and plume leading edge monitoring wells have been sampled quarterly with quarterly reporting (ERM 2009, 2014).
Semiannual Groundwater Monitoring and Reporting	2003 to 2016	Sitewide monitor wells were sampled semiannually with semiannual reporting, including notification of affected property owners (ERM 2009, 2014).
Operation of North Treatment System	September 2003– November 2016	The north groundwater pump-and-treat system started operation on September 16, 2003. The operation ceased on November 15, 2016, for a rebound study.

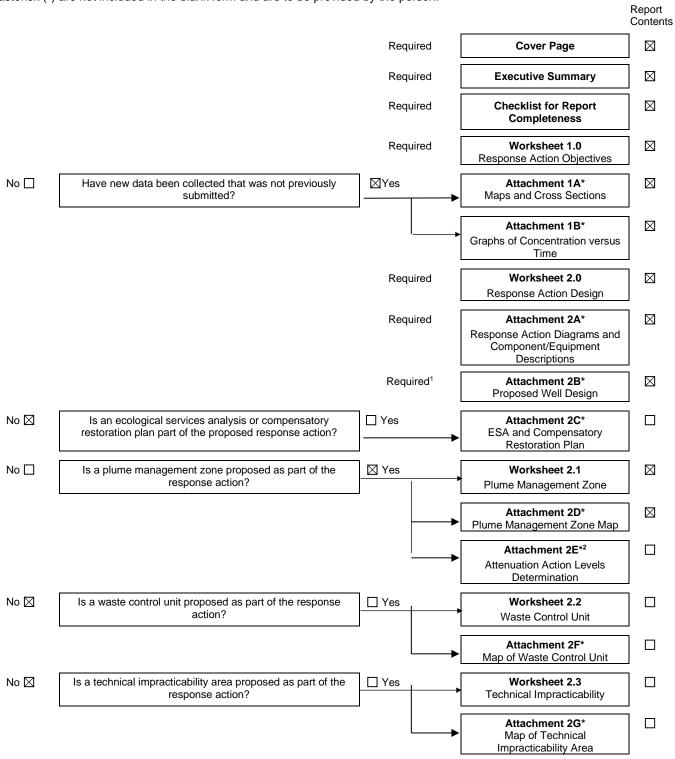
ID No.: VCP No. 221

Report Date: September 2022

Event	Date of Actions	Description of all release abatement activities, assessment activities, and response actions conducted
2003 RAP	August 2003	The RAP was submitted to TCEQ on August 28, 2003 (ERM 2003a). The 2003 RAP proposed a combination of groundwater recovery and reinjection, permanganate injection, and a PMZ for the onsite PCLE zone to meet Remedy Standard B, and natural attenuation and ISCO injection (as necessary) to meet Remedy Standard A for offsite PCLE zone within a reasonable time frame. The RAP was approved by TCEQ on May 14, 2004.
Indoor Air, Soil, and Groundwater Assessment	2002–2003	Air, soil, and groundwater samples were collected from 10 residences to address a TCEQ request to evaluate the indoor air pathway in November 2002 (ERM 2003b).
Offsite Plume Delineation	2000–2003	An offsite groundwater assessment was performed.
ISCO Pilot Test Injection	March-July 2002	A pilot-scale permanganate injection at MW-49 was performed (ERM 2003a).
Installation of an LNAPL Recovery System	2001	The system was installed for the former UST area as approved by TCEQ (ERM 2003a).
Groundwater APAR Submittal	October 3, 2001	The groundwater APAR for the 39-acre northern portion of the site was submitted to TNRCC (ERM 2001).
Soil Closure Approval	January 2003	TNRCC issued a letter of assurance to approve the completion of soil remediation meeting residential PCLs at the site (ERM 2003).
Soil Excavation	1993–1994 and 1997–1999	Soil was excavated in the southern portion of the site to meet Risk Reduction Rule Standard 2.
	1999–2000	Soil was excavated in the northern portion of the site to meet residential cleanup levels (ERM 2001).
	June 2, 2000	A RACR for soil was submitted.
Operation of Nine-well Groundwater Recovery System	1995–1997	The nine-well recovery system was installed and operated at the southern portion of the site for 2 years and then approved for shutdown by TNRCC in 1997 (ERM 2003a).
Initial Onsite Soil and Groundwater Assessment	1989–1991	A soil boring investigation and groundwater assessment were performed at the onsite facility.

APAR = affected property assessment report
LNAPL = light nonaqueous phase liquid
TCEQ = Texas Commission on Environmental Quality
TNRCC = Texas Natural Resource Conservation Commission

TxDOT = Texas Department of Transportation

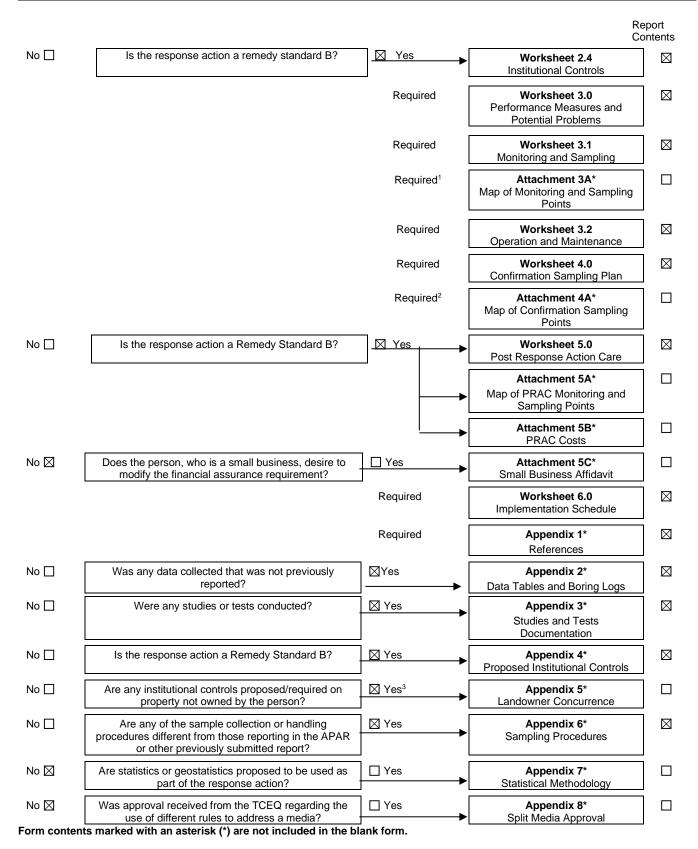

UST = underground storage tank

Checklist for Report Completeness

ID No.: VCP No. 221

Report Date: September 2022

Use this checklist to determine the portions of the form that must be submitted for this report. Answer all questions by checking Yes or No. If the answer is Yes include that portion of the report. If the answer is No, do not complete or submit that portion of the report. All form contents that are marked "Required" must be submitted. Form contents marked with an asterisk (*) are not included in the blank form and are to be provided by the person.


¹ Proposed well design will be included in the UIC Permit Submittal.

² Attachment 2E is not included, because the AAL is based on the cPCL for 1,1-DCA or 10 times the cPCLs for other COCs. TCEQ-10326/RAP February 2005

Checklist for Report Completeness

ID No.: VCP No. 221

Report Date: September 2022

¹ Refer to Worksheet 3.1 and Attachment 2D (confirmation sampling has been covered by ISCO performance and MNA sampling).

² Refer to Worksheet 3.1 and Attachment 2D (confirmation sampling has been covered by ISCO performance and MNA sampling).

³ Landowner concurrence will be obtained after TCEQ review and approval of proposed CCOC language.

Associated Information: Attachment 1A, 1B

RAP Worksheet 1.0 Page 1 of 5

ID No.: VCP No. 221 Report Date: September

2022

Use this worksheet to describe the objectives for the response action in each media.

Response Action Objectives

List the environmental media to which this applies

Groundwater

Repeat this section for each medium that has a different response action objective.

State the property-specific response objectives for the PCLE zone in each media in the context of the response objectives set forth in §350.32 or §350.33 as applicable. Explain how the response action is appropriate based on the hydrogeologic characteristics, COC characteristics, and potential unprotective conditions that could continue or result during the remedial period.

The groundwater RAOs are to achieve Remedy Standard B for the onsite groundwater PCLE zone, and to achieve Remedy Standard A for the offsite groundwater PCLE zones:

- Prevent human exposure of affected groundwater within the PMZ.
- Reduce the COC concentrations at TTZs with PCE, TCE, 1,1-DCE, or VC concentration
 greater than 0.05 mg/L, and/or selected well locations to less than the groundwater cPCLs
 within a reasonable time frame using a combined ISCO treatment and MNA.
- Prevent offsite migration of groundwater containing COC concentrations exceeding cPCLs.
- Prevent further migration of COCs at concentrations exceeding the cPCLs at the leading-edge downgradient plume.
- Prevent the groundwater PCLE zone from migrating to adjacent surface water at concentrations exceeding the cPCLs for surface water protection.

A predesign investigation was conducted at the site between May and June 2022 to delineate the horizontal and vertical extent of the groundwater PCLE zone. The predesign investigation was conducted by using DPT to collect discrete grab groundwater samples from 36 soil boring locations for analysis of site-specific VOCs. Generally, up to three grab samples at different vertical intervals were collected from each boring unless grab samples could not be collected from the target sampling intervals due to low recharge rates. The sampling methods and procedures used during the predesign investigation are detailed in Appendix 6. The 11 soil borings planned within the leading-edge downgradient plume were not advanced, because the property owner has not responded to the several requests made for access over the last 10 months in 2021 and 2022, including emails on December 10, 2021, January 31, 2022, February 10, 2022, March 7, 2022, March 29, 2022, and April 7, 2022, and formal letters on May 26, 2022 and September 28, 2022.

The groundwater data collected during the 2022 predesign investigation and the most recent 2021 annual groundwater monitoring data collected in December 2021 were evaluated to refine the groundwater PCLE zone. The 2021 groundwater VOC concentration data, field parameters, and groundwater elevation data are included in Appendix 2-1, 2-2, and 2-3, respectively. Surface water samples collected in 2021 and 2022 are included in Appendix 2-4. 2022 predesign investigation grab groundwater sample data are included in Appendix 2-5. Appendix 2-6 includes the data usability summary and laboratory reports for 2022 predesign investigation data. The boring logs and well diagrams of available existing monitor wells and 2022 borings are included in Appendixes 2-7 and 2-8, respectively.

The site-specific COCs consist of PCE, TCE, 1,1-DCE, cis 1,2-DCE, 1,1-DCA, 1,2-DCA, and VC. Concentrations of COCs, except 1,1-DCA, were greater than the respective cPCL during the most recent December 2021 annual groundwater sampling and May-June 2022 predesign grab groundwater sampling. The TTZ is defined as the groundwater plume area corresponding to 10 times the cPCLs for PCE and TCE, that is, 0.05 mg/L. Groundwater PCLE zones with 1,1-DCE or VC greater than 0.05 mg/L are also included in the TTZ. Maps and cross sections depicting the COC concentrations and PCLE zones are provided in Attachments 1A-1 through 1A-15. The COC concentration versus time graphs for the COCs are provided in Attachment 1B.

The affected groundwater-bearing unit (GWBU) is classified as a Class 2 GWBU. As shown in Attachment 1A-9, the PCLE zone encompasses an area of approximately 170 acres, including

Associated Information: Attachment 1A, 1B

RAP Worksheet 1.0 Page 2 of 5

ID No.: VCP No. 221 Report Date: September

2022

approximately 16 acres (onsite) and 154 acres (offsite). The plume is migrating in a southerly direction toward the southern gaining stream of the HCFCD and Buffalo Bayou. Currently, surface water in the downgradient southern gaining stream of the HCFCD and Buffalo Bayou does not contain COCs at concentrations exceeding surface water cPCLs (Appendix 2-4). Exposure to site-related COCs in groundwater greater than cPCLs is unlikely, due to the availability of a public water supply to the affected offsite properties.

The response action under Remedy Standard B is appropriate, based on the following hydrogeologic characteristics, COC characteristics, and potential unprotective conditions that could continue or result during the remedial period:

- Based on the geologic cross sections, the uppermost GWBU is generally overlain by 10 to 25 feet of clay.
- ISCO injections will accelerate site remediation by focusing on TTZs where COC concentrations are greater than 0.05 mg/L and select locations noted by TCEQ in a letter dated June 7, 2022 (TCEQ 2022a).
- The groundwater PCLE zone contains COCs at concentrations less than the Tier 1 residential PCL for inhalation of volatile COCs from Class 1, 2, or 3 groundwater (AirSoilInh-V) and less than the groundwater discharge to surface water (SWGW) PCLs at the groundwater-to-surface-water interface. Residents south of I-10 obtain their water from a municipal supply, and previous vapor intrusion investigations and modeling results indicate that the indoor air exposure pathway is not a concern either onsite or offsite (ERM 2002a, 2002b). The only exposure pathway of concern is potential future use of groundwater within the PCLE zone as a source of drinking water. The proposed onsite and offsite response actions will reduce COC concentrations in the groundwater PCLE zone to less than cPCLs in a reasonable time frame and ultimately eliminate potential future exposure risk.
- Potential unprotective conditions are not anticipated during the remedial period because the
 proposed treatment technologies are well known and have been successfully implemented at
 this site and many other sites.
- The VCP CCOCs currently in place as ICs for the onsite plume will continue to restrict
 groundwater use within the PMZ. Cameron will coordinate with the owner of the 35.7-acre
 parcel to obtain a VCP CCOC as an IC to restrict groundwater and formally incorporate the
 property into the existing PMZ.
- Cameron is continuing attempts to gain access to complete a predesign investigation at the leading-edge downgradient plume and implement ISCO injection in this area.

Explain how the COCs will be handled, treated, disposed, or transferred to another media and document that the response action will not result in any additional potential exposure conditions due to response action activities.

The proposed response actions to reduce the COC concentrations in the groundwater PCLE zone consist of the following:

- Install ISCO injection wells, new performance monitor wells, and perform ISCO injections. Use ISCO technology to reduce COC concentrations within selected TTZs with PCE, TCE, 1,1-DCE, or VC concentrations greater than 0.05 mg/L, and/or at the monitor well locations per TCEQ comment letter dated June 7, 2022 (TCEQ 2022a). Attachment 2A-1 shows the Phase 1 and Phase 2 ISCO injection well locations.
- Conduct Phase 1 ISCO injection as a pilot study to focus on the former onsite burn pit area shown in Attachment 2A-2 to reduce COC concentrations to less than 0.05 mg/L. The Phase 1 ISCO injection pilot study will also reduce COC concentrations at MW-113 and stabilize the plume. The Phase 1 ISCO injection will serve as a pilot study to determine achievable injection flow rates, pressures, and logistics for oxidant delivery and mixing for implementation of Phase 2 injections where there is limited space available or less flexibility for adaptive management of injections in the streets or driveways.

Associated Information: Attachment 1A, 1B

RAP Worksheet 1.0 Page 3 of 5

ID No.: VCP No. 221 Report Date: September

2022

- Conduct ISCO performance monitoring semiannually for 5 years after ISCO injections, and then transition to annual MNA monitoring. Future ISCO injection events will be based on the results of the performance monitoring after the initial round of injections at each location.
- Conduct annual MNA monitoring for the remaining groundwater PCLE zone until cPCLs are met within a reasonable time frame.

Bench-scale natural oxidant demand (NOD) testing was performed using persulfate and permanganate in 2022. The laboratory report is included in Appendix 2-6. Two soil samples from SB-07 (18 to 23 feet bgs) and SB-14 (30 to 35 feet bgs) and two grab groundwater samples from SB-07 and SB-14 were sent to Ursus Remediation Testing & Technologies, LLC for analysis of NOD for persulfate and permanganate. The measured persulfate NOD ranged from 0.6 to 1.7 grams persulfate per kilogram soil. The measured permanganate NOD ranged from 1.5 to 1.6 grams permanganate per kilogram soil. Due to the low to moderate NOD for both permanganate and persulfate at the site, but longer persistence and oxidation effectiveness for the site COCs of permanganate, permanganate is retained as the oxidant for the ISCO application at the site.

State the proposed "reasonable time frame" and provide the justification for that time frame in the context of any potential for unprotective exposures to exist or develop, COC characteristics, hydrogeologic and affected property characteristics. If the reasonable time frame is different for the different affected media or for particular tracts of land, be sure to discuss that. Provide how the proposed response action will meet the objectives in a reasonable time frame.

Overall concentrations within the PCLE zone beyond TTZs are low and generally decreasing over time. It is anticipated that ISCO injections will effectively reduce COC concentrations in TTZs in the upgradient portion of the site where COC concentrations are greater than 0.05 mg/L. This approach, in combination with isolated treatment in offsite areas (Phase 2), will collectively expedite COC mass reduction and subsequently promote further concentration reductions in downgradient areas over time. Collectively, these will achieve RAOs and facilitate meeting cPCLs in a reasonable time frame. Overall progress and potential modifications to the response action based on results from future performance monitoring will continue to be provided as a component of the annual RAERs submitted to TCEQ each year.

Soil Response Action Objectives

When using removal and/or decontamination with controls or controls only, demonstrate how that physical control or combination of measures will reliably contain COCs within and/or derived from the surface soil and subsurface soil PCLE zone materials over time.

Removal and/or decontamination of soils is not applicable because sitewide soils were closed to meet residential PCLs. This 2022 RAP Addendum addresses only the groundwater PCLE zone.

Explain how the removal or decontamination action will reduce the concentration of COCs to the critical surface soil and subsurface soil protective concentration level (PCL) throughout the soil PCLE zone and prevent COC concentrations above the critical soil PCLs from migrating beyond the existing boundary of the soil PCLE zone.

Removal and/or decontamination of soils is not applicable because this 2022 RAP Addendum addresses only the groundwater PCLE zone.

Groundwater Response Action Objectives

Name of groundwater-bearing unit to which this information Upp applies	permost Groundwater Bearing Unit
Repeat this section for each groundwater-bearing unit for which a diffe	rent response action is proposed.
Groundwater classification 1 2 3	
Is a modified groundwater response action being proposed for any pa	art of the
groundwater PCLE zone (§350.33(f)(2), (3), or (4))	X Yes No
TCFO-10326/RAP February 2005	<u> </u>

Associated Information: Attachment 1A, 1B

RAP Worksheet 1.0 Page 4 of 5

ID No.: VCP No. 221 Report Date: September

2022

If yes, does the affected property meet the qualifying criteria for a modified groundwater response action using a waste control unit, plume management zone, or technical impracticability?

X Yes No

If yes, complete the appropriate portions of this report.

If no to either question, complete the following:

Explain how the removal or decontamination action will reduce the concentration of COCs to the critical groundwater PCL throughout the groundwater PCLE zone and prevent COC concentrations above the critical groundwater PCL from migrating beyond the existing boundary of the groundwater PCLE zone.

ISCO injections will treat the portion of selected TTZs with PCE, TCE, 1,1-DCE, or VC concentration greater than 0.05 mg/L as well as selected well locations per TCEQ comment letter dated June 7, 2022 (TCEQ 2022a), including onsite locations (Former Burn Pit, MW-108, MW-111, and MW-113) and offsite locations (MW-15R and MW-16R, MW-89, MW-74, MW-187, MW-188, MW-161, and MW-93R), as shown in Attachments 2A-1 and 2A-2. The ISCO response action to prevent plume migration at the southern leading-edge plume, including MW-168 and MW-97, is pending access by the residential property owners for a predesign investigation. The remaining portion of the groundwater PCLE zone with concentrations slightly greater than cPCLs will be addressed by MNA.

With the implementation of ISCO and MNA combined, COC concentrations are expected to decrease to less than cPCLs within a reasonable time frame. Future ISCO injection events will be based on the results of the performance monitoring after the initial round of injections at each location.

Performance monitoring as described in Worksheet 3.0 will be conducted to evaluate the ISCO effectiveness and to determine whether additional response actions will be required to achieve the RAOs for the groundwater PCLE zone.

In addition, the current onsite PMZ groundwater monitoring program will verify that the onsite attenuation monitoring point (AMP) well will not exceed attenuation action levels (AALs) and that the onsite plume is stable or shrinking. COC concentrations will be monitored annually at the offsite plume until cPCLs are met at the point of exposure (POE) wells. The purpose of groundwater monitoring for the offsite plume is to verify declining COC concentrations as a result of ISCO and MNA. Performance monitoring, as described in Worksheet 3.0, will be conducted to evaluate the effectiveness of ISCO and MNA.

Explain how the response action will prevent COCs from migrating to air at concentrations above the PCLs for air if the groundwater-to-air PCLs (AirGWInh-V) is exceeded.

Not applicable because the groundwater-to-air PCL (AirGWInh-v) is not exceeded.

Explain how the response action will prevent COCs from migrating to surface water at concentrations above the PCLs for groundwater discharges to surface water if surface water is a factor.

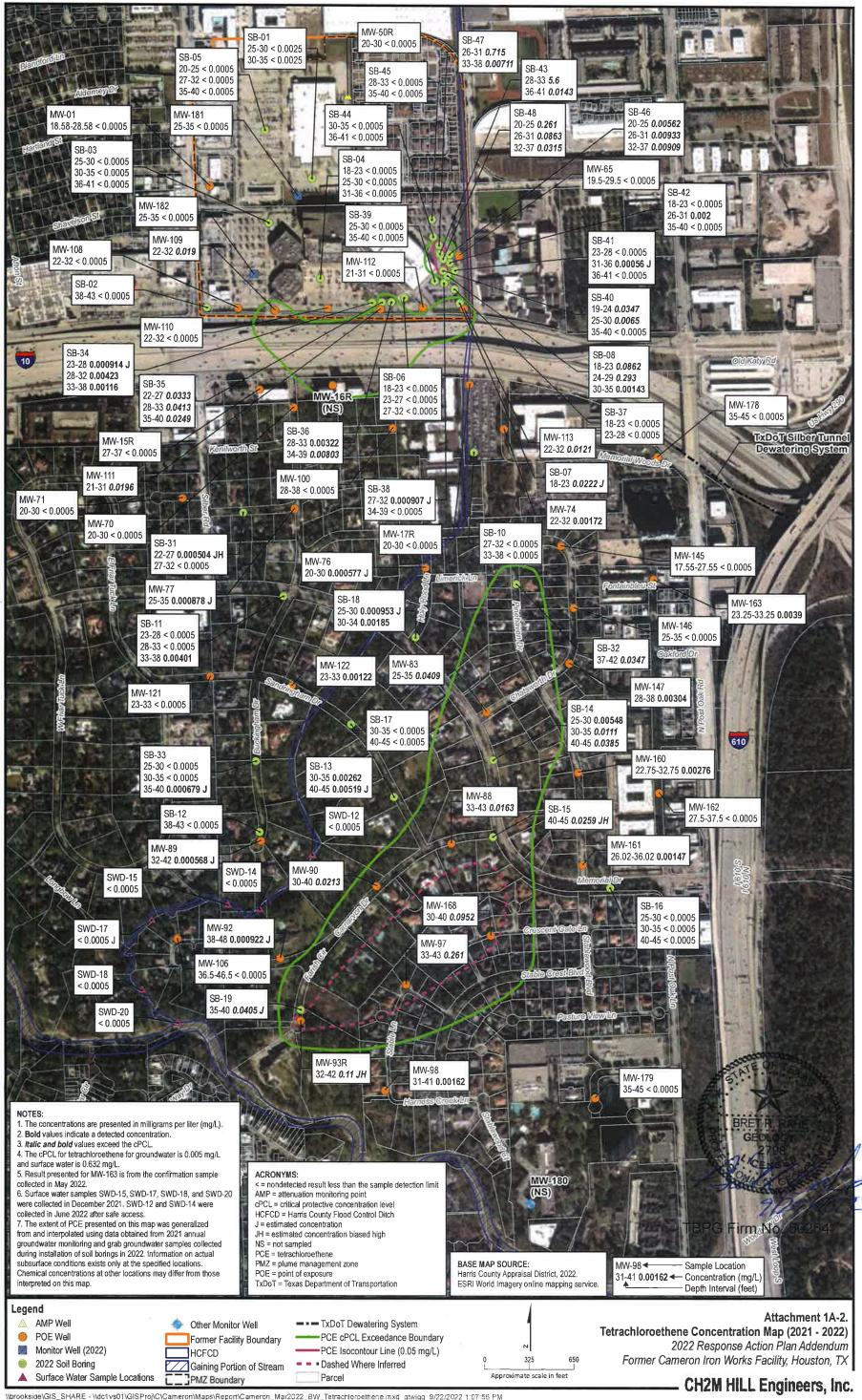
The affected groundwater in the shallow GWBU flows in a southerly direction toward the HCFCD, before it enters Buffalo Bayou. Although the leading edge of the groundwater PCLE zone has not reached the downgradient HCFCD and Buffalo Bayou, surface water (SWSW) PCLs for COCs were developed in the 2003 RAP by ERM (Appendix 2-4) to evaluate the potential impacts of the groundwater COCs on surface water quality. It is unlikely that potential discharge of affected groundwater from the PCLE zone to the downgradient southern gaining stream of the HCFCD will impact overall surface water quality. In addition, the proposed ISCO treatment for the onsite and offsite groundwater TTZs will further reduce the potential for COC migration from the groundwater PCLE zone to the downgradient surface water body.

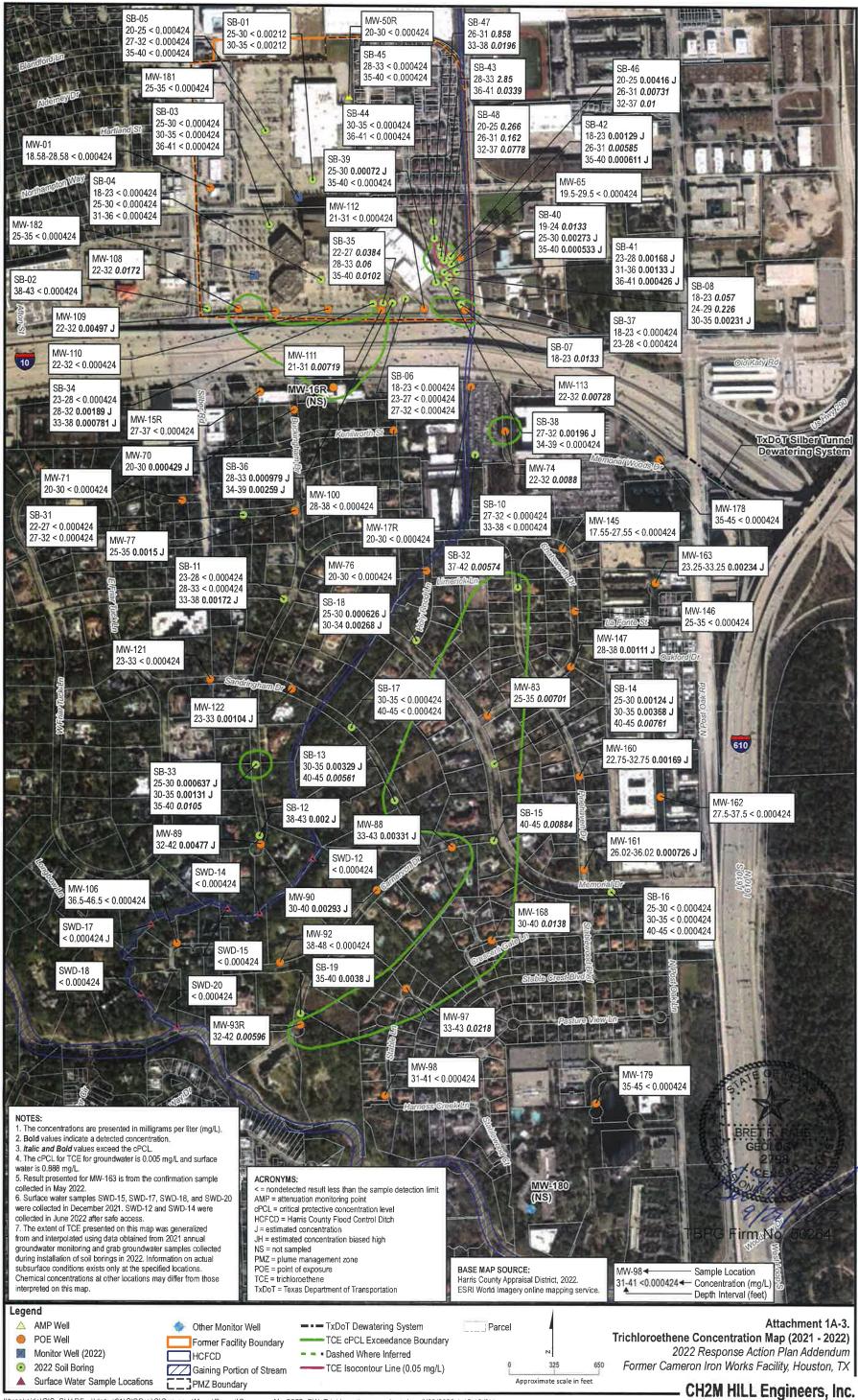
Associated Information: Attachment 1A, 1B

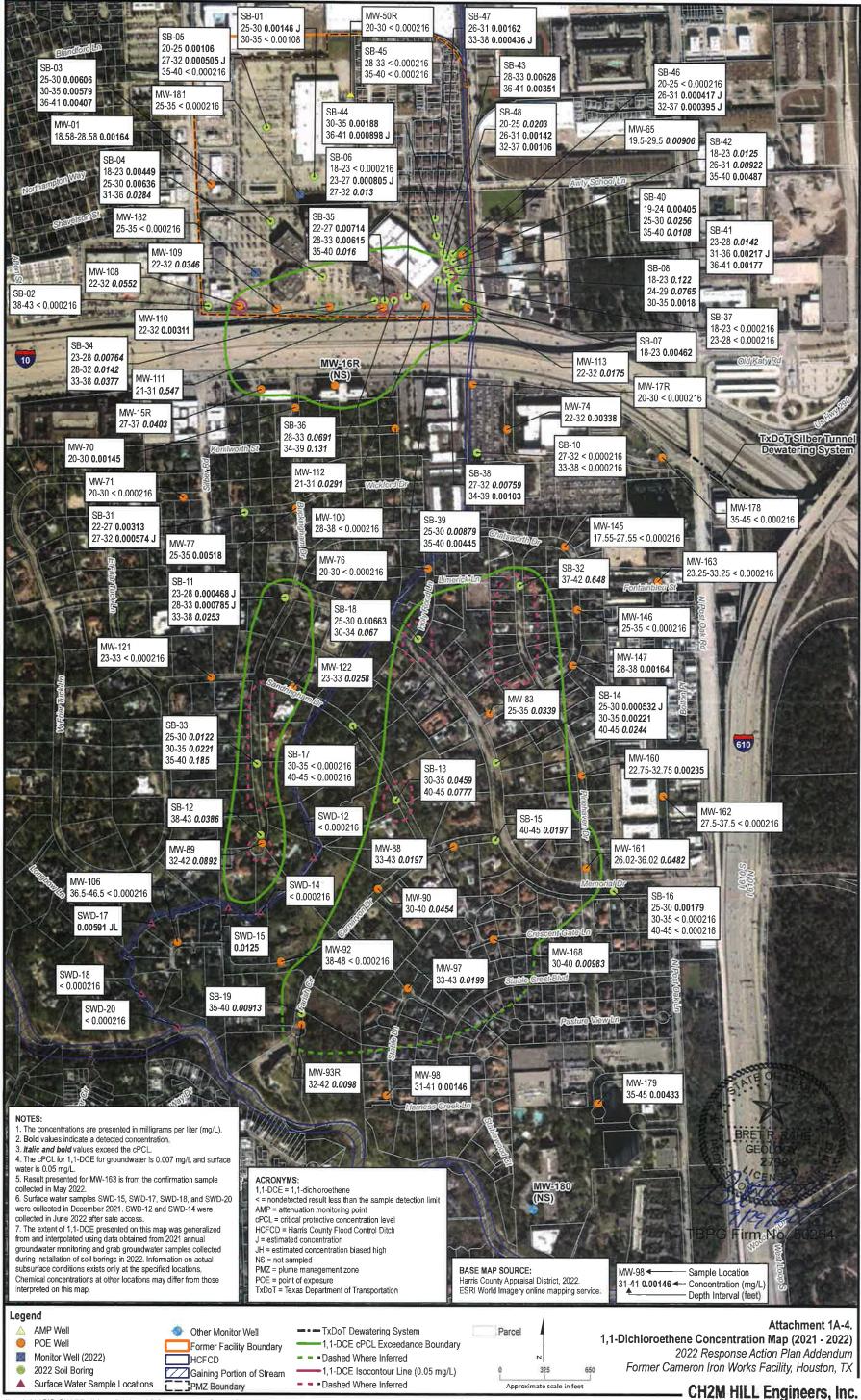
RAP Worksheet 1.0 Page 5 of 5

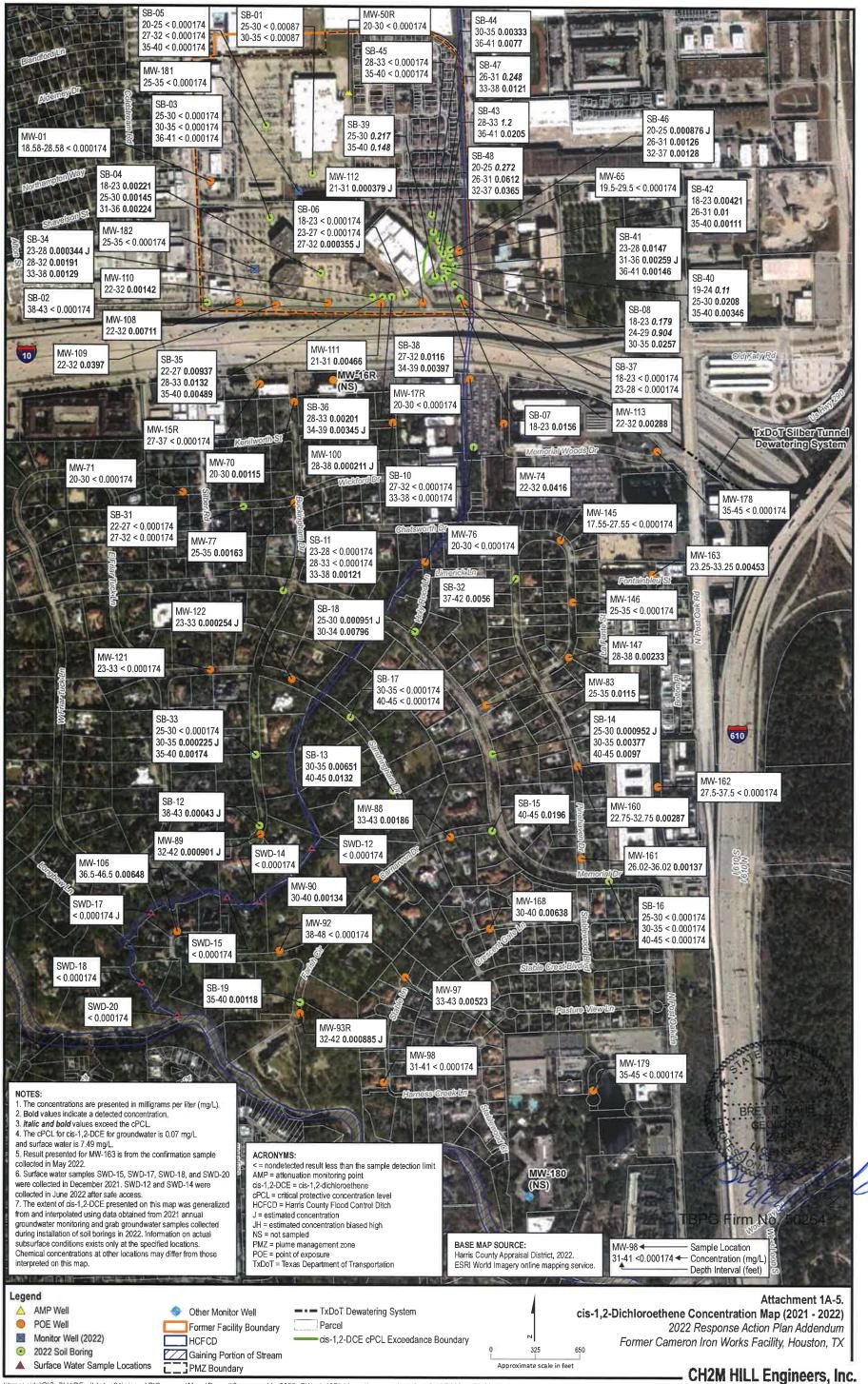
ID No.: VCP No. 221 Report Date: September

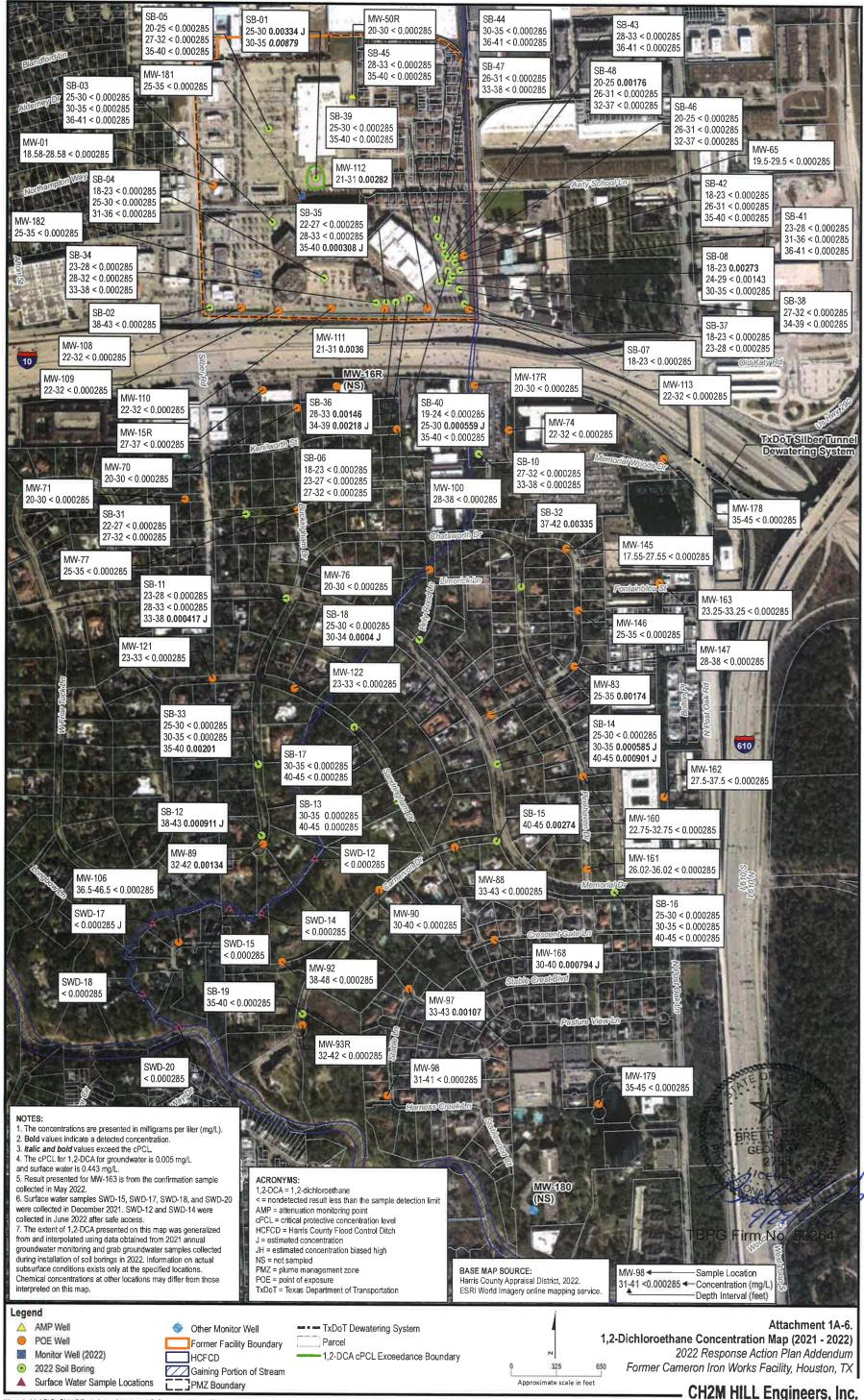
2022

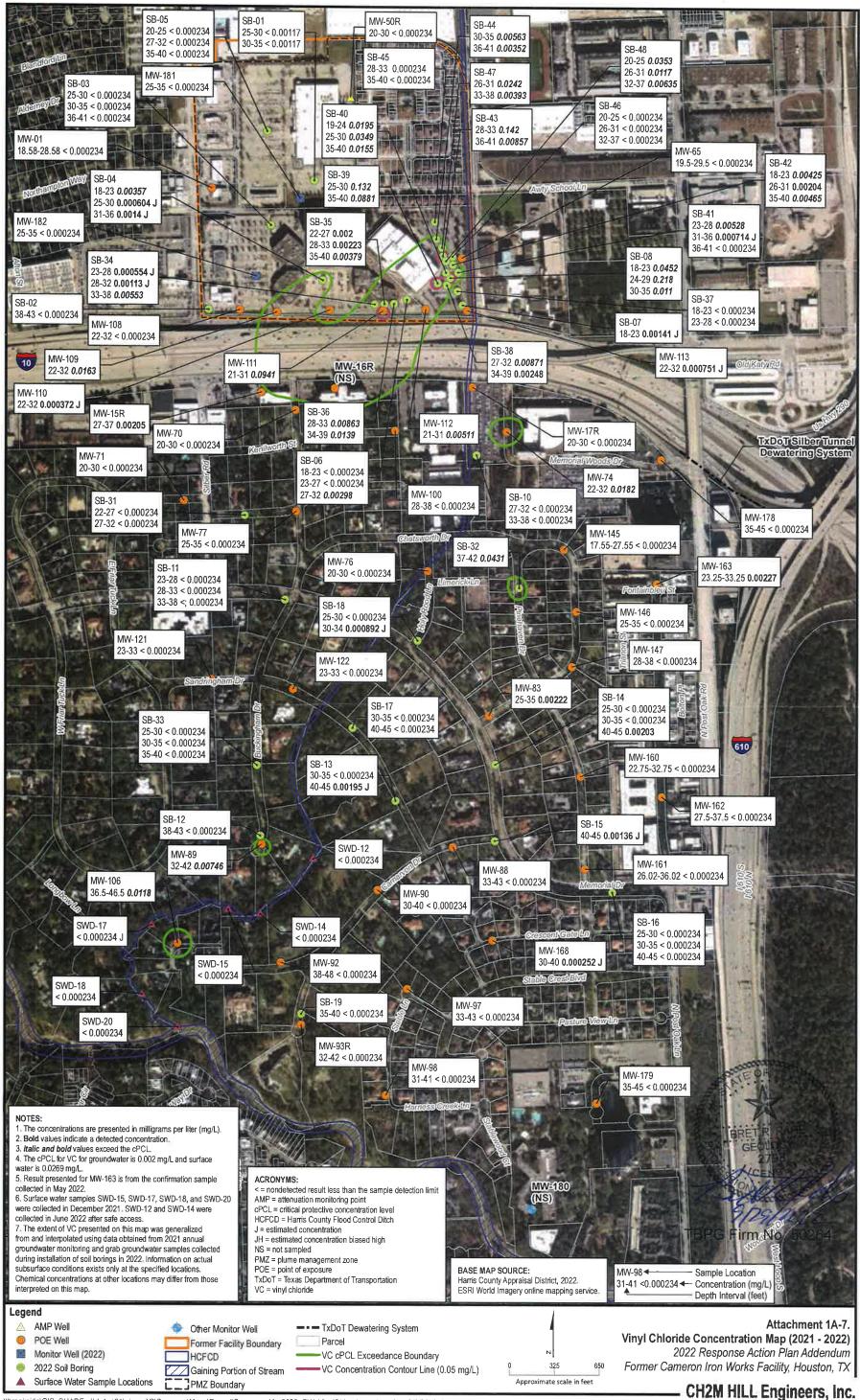

Explain how the response action will prevent human and ecological receptor exposure to the groundwater PCLE zone.

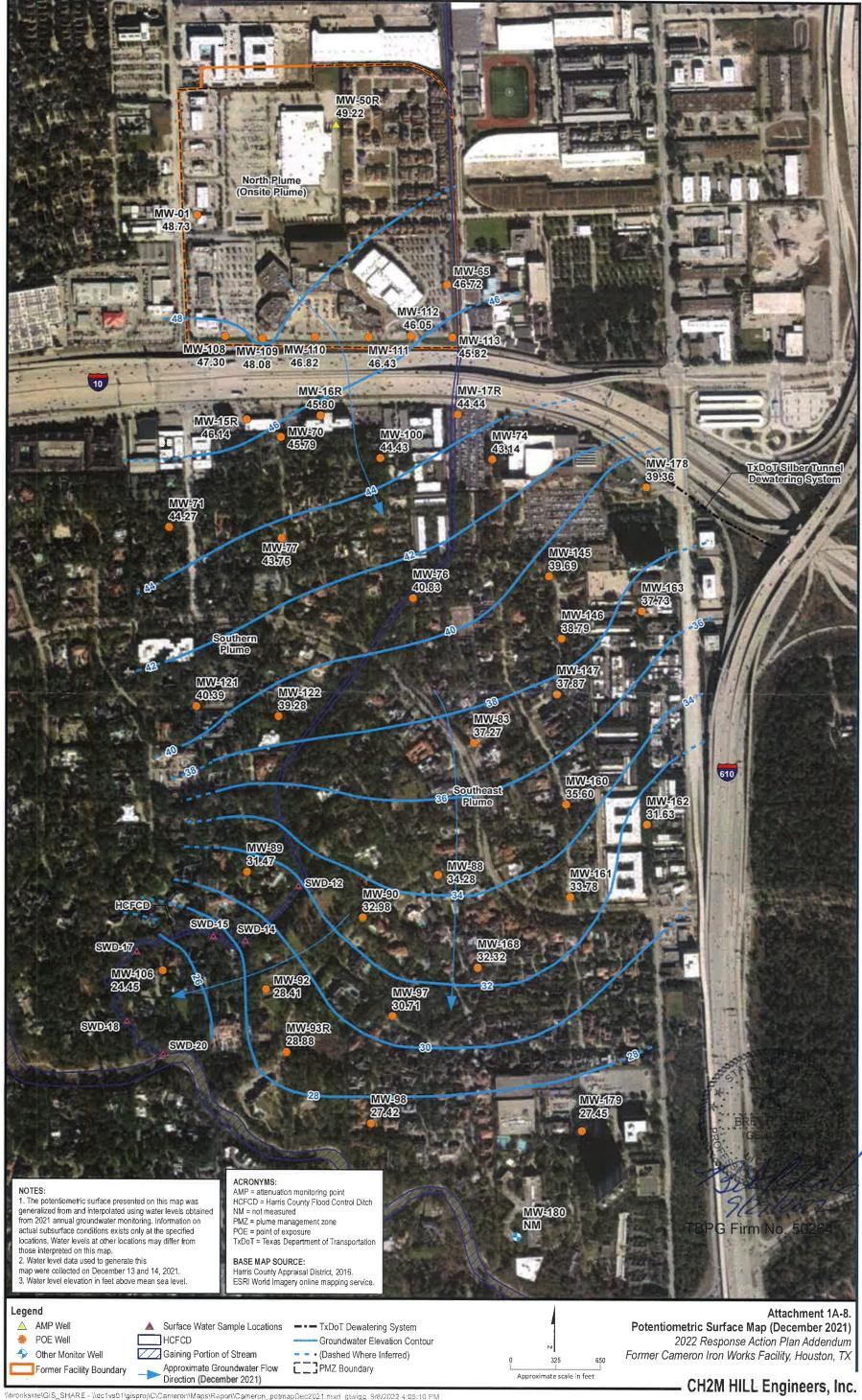

The top of the groundwater PCLE zone is approximately 20 to 25 feet bgs, and the PCLE zone has not reached the downgradient surface water body. The pathway for exposure of ecological receptors to the underlying groundwater PCLE zone is not complete. Municipal water supply is available for the affected offsite properties, so there is no direct human exposure to the groundwater PCLE zone.

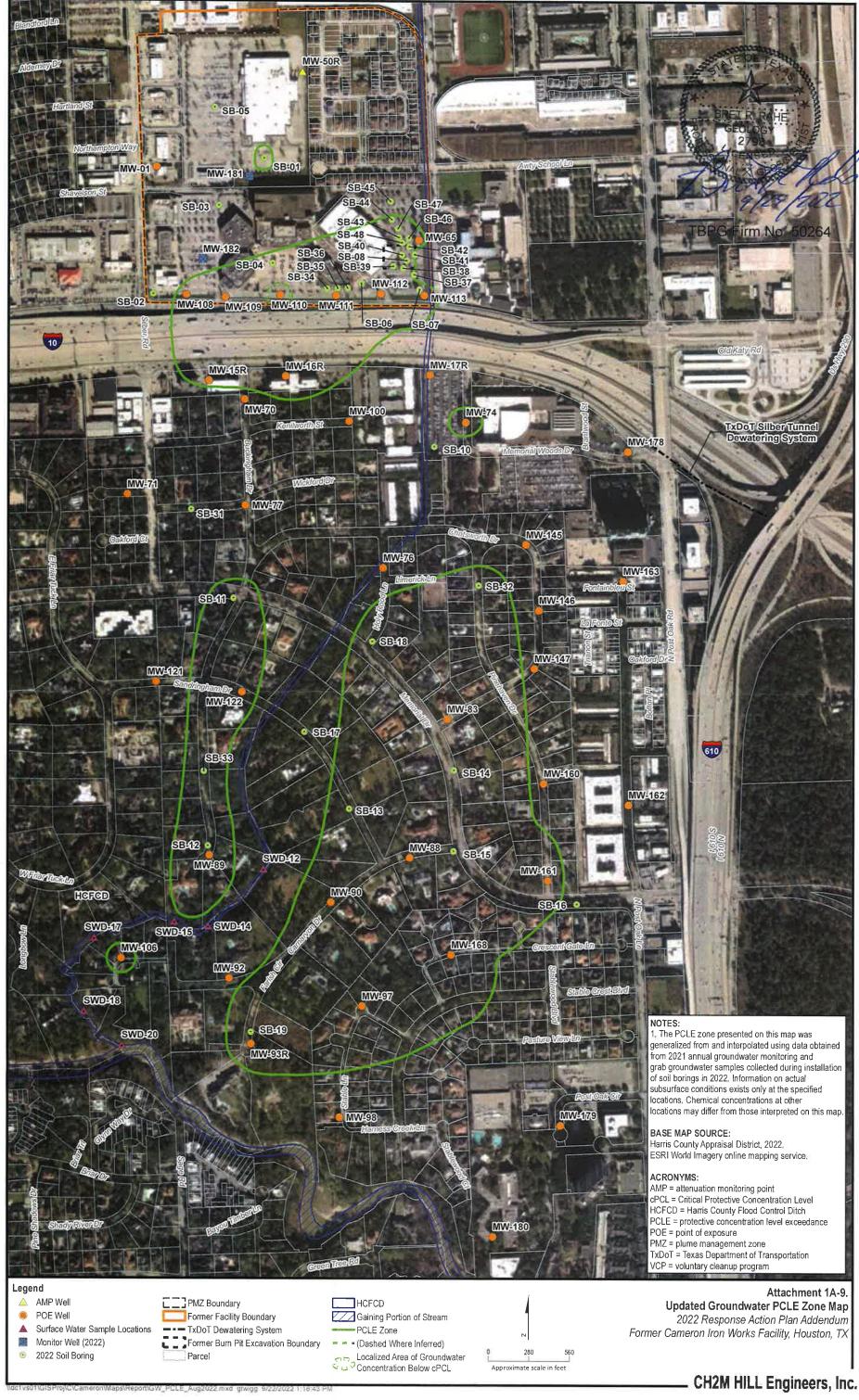

ISCO injection with follow-on MNA will further reduce the COC concentrations to less than the cPCLs within a reasonable time frame. New monitor wells will be installed crossgradient and downgradient of the ISCO TTZs and will be monitored to evaluate changes of COC concentrations over time. Given the distance of ISCO injection wells to the HCFCD, it is unlikely that injected oxidant would migrate into the HCFCD.

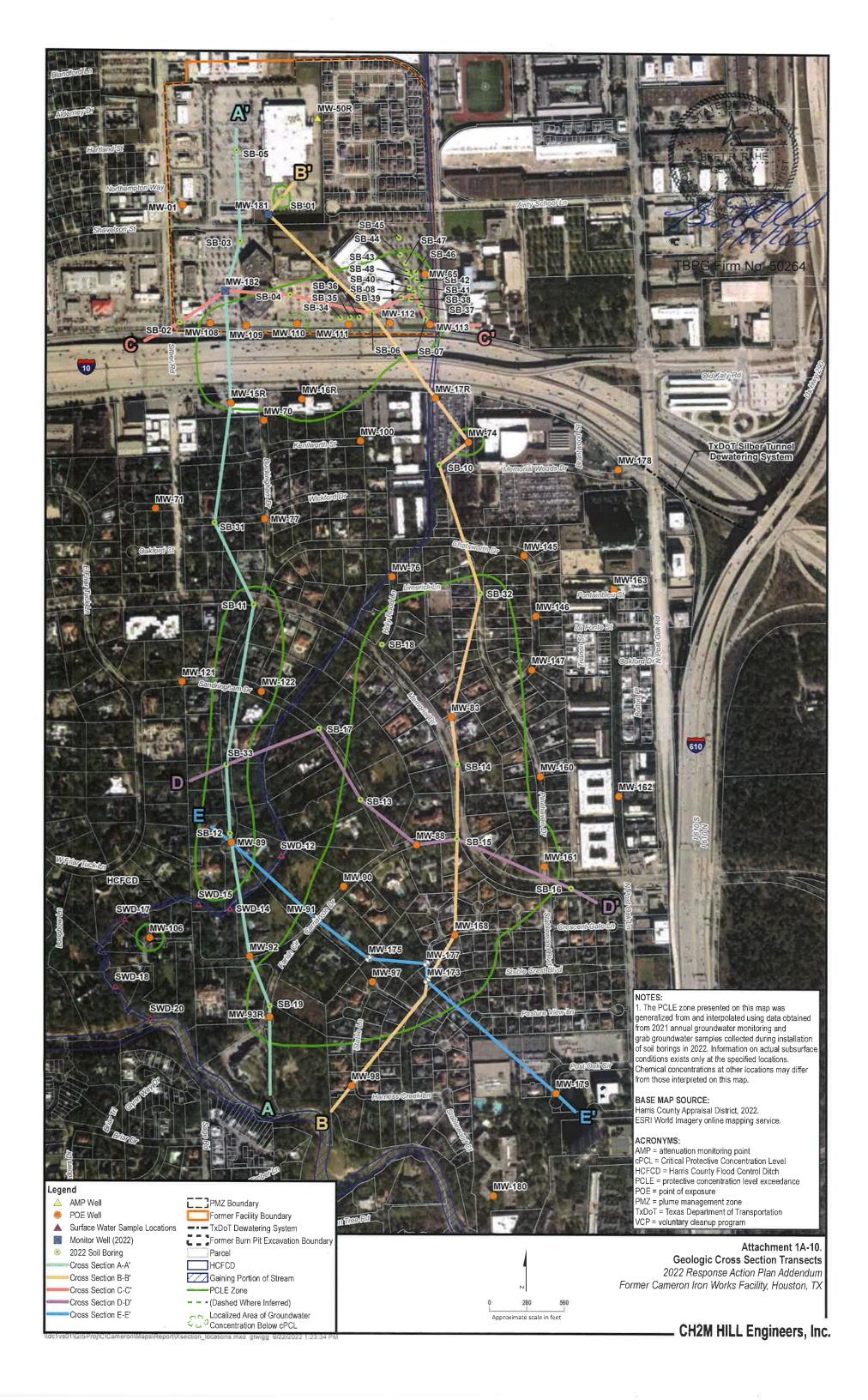

Attachment 1A Maps and Cross Sections

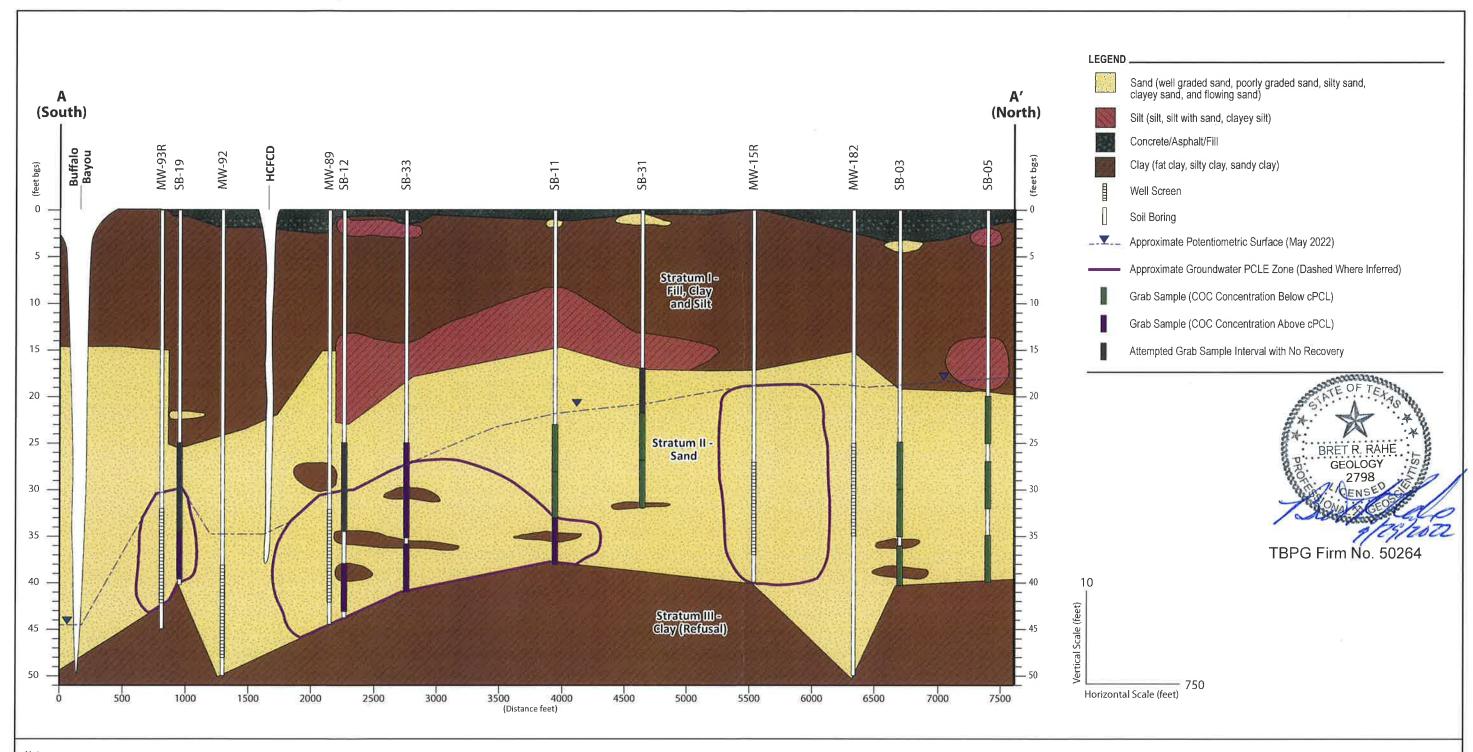












Notes:

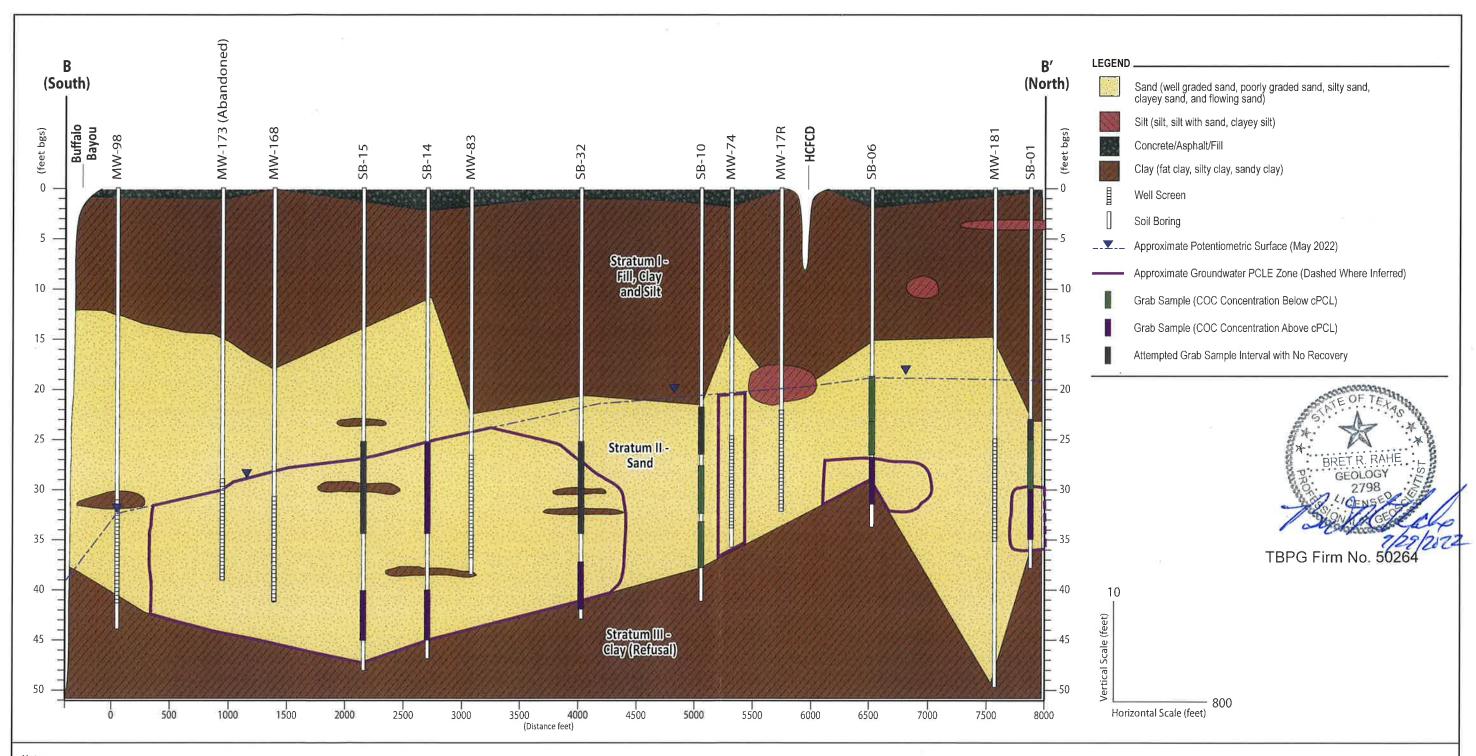
- 1. The geologic interpretations were generalized from and interpolated between soil boring locations. Information on actual subsurface conditions exist only at the specified locations.
- 2. Water levels for monitoring wells were measured in December 2021. Water levels for soil borings were measured in May 2022.
- 3. Groundwater PCLE zones shown are refined based on 2021 annual groundwater monitoring and grab groundwater samples collected during 2022 pre-design investigation.
- 4. Cross section viewed to the west.
- 5. The lithology is shown related to depth from ground surface (feet bgs) given the limited change in elevation across the site.

bgs = below ground surface

COC= chemical of concern

cPCL = critical protective concentration level

HCFCD = Harris County Flood Control Ditch


PCLE = protective concentration level exceedance

Attachment 1A-11.

Geologic Cross Section A-A'

2022 Response Action Plan Addendum Former Cameron Iron Works Facility, Houston, TX

CH2M HILL Engineers, Inc. —

Notes

- 1. The geologic interpretations were generalized from and interpolated between soil boring locations. Information on actual subsurface conditions exist only at the specified locations.
- 2. Water levels for monitoring wells were measured in December 2021. Water levels for soil borings were measured in May 2022.
- 3. Groundwater PCLE zones shown are refined based on 2021 annual groundwater monitoring and grab groundwater samples collected during 2022 pre-design investigation.
- 4. Cross section viewed to the west.
- 5. The lithology is shown related to depth from ground surface (feet bgs) given the limited change in elevation across the site.

bgs = below ground surface

COC= chemical of concern

cPCL = critical protective concentration level

HCFCD = Harris County Flood Control Ditch

PCLE = protective concentration level exceedance

Attachment 1A-12.

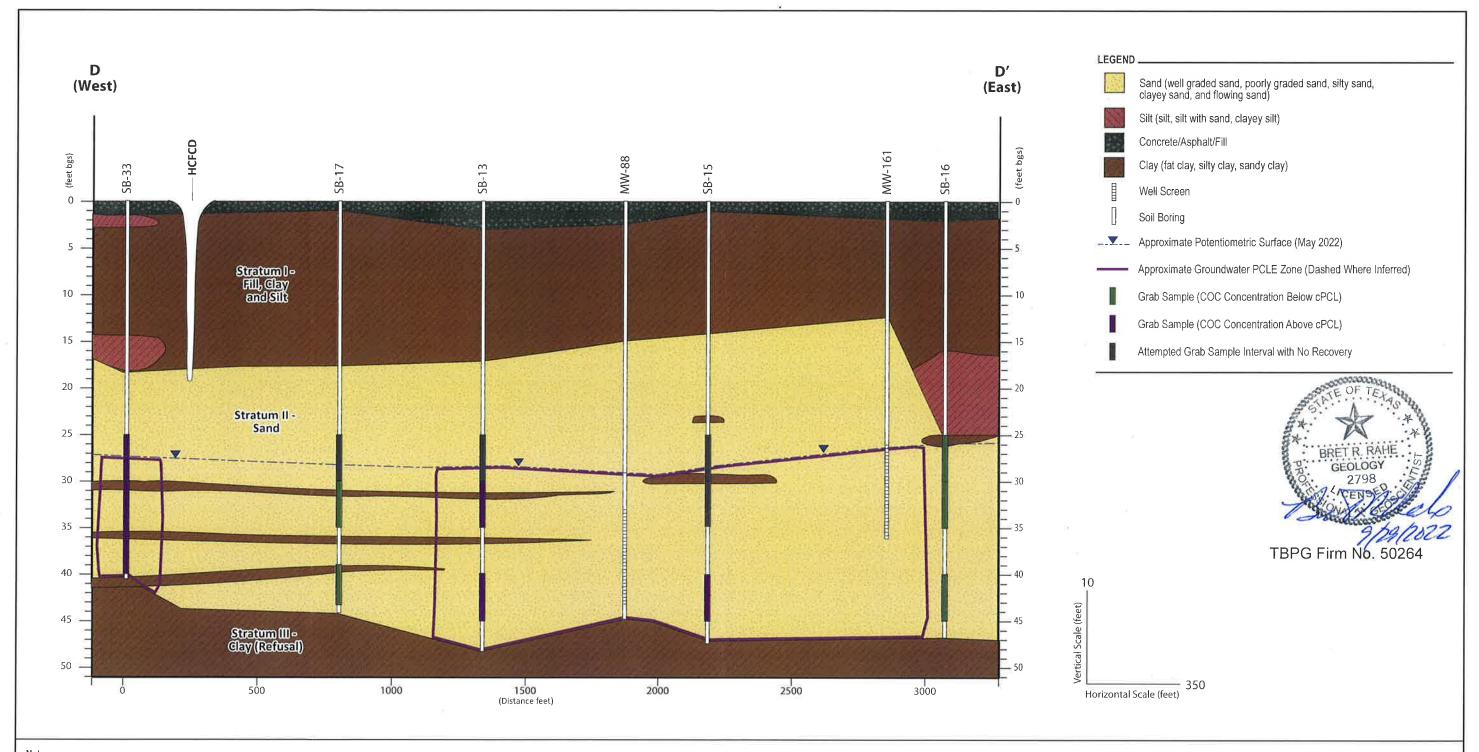
Geologic Cross Section B-B'

2022 Response Action Plan Addendum Former Cameron Iron Works Facility,

Houston, TX

CH2M HILL Engineers, Inc.

- 1. The geologic interpretations were generalized from and interpolated between soil boring locations. Information on actual subsurface conditions exist only at the specified locations.
- 2. Water levels for monitoring wells were measured in December 2021. Water levels for soil borings were measured in May 2022.
- 3. Groundwater PCLE zones shown are refined based on 2021 annual groundwater monitoring and grab groundwater samples collected during 2022 pre-design investigation.
- 4. Cross section viewed to the west.
- 5. The lithology is shown related to depth from ground surface (feet bgs) given the limited change in elevation across the site.
- bgs = below ground surface COC= chemical of concern
- cPCL = critical protective concentration level
- HCFCD = Harris County Flood Control Ditch
- PCLE = protective concentration level exceedance


Attachment 1A-13.

Geologic Cross Section C-C'

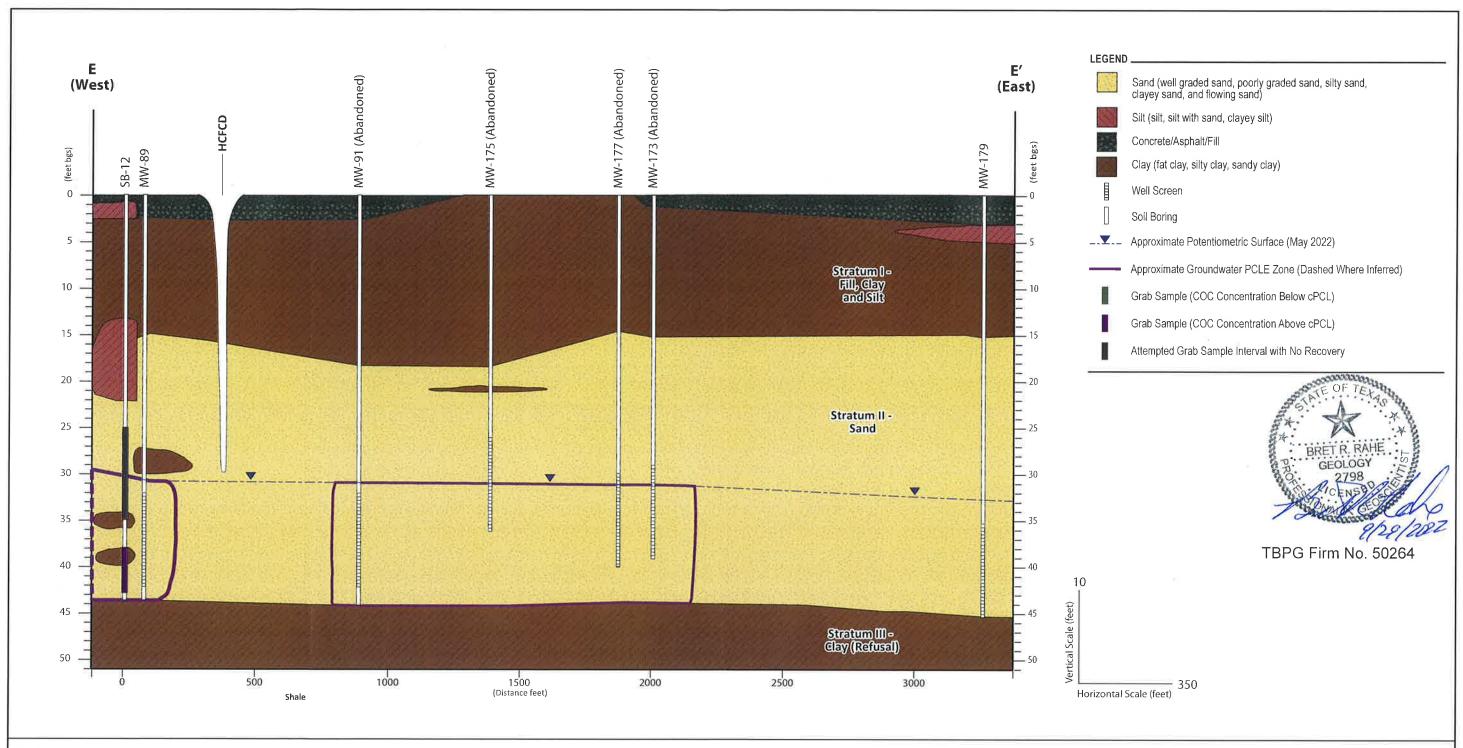
2022 Response Action Plan Addendum Former Cameron Iron Works Facility,

Houston, TX

CH2M HILL Engineers, Inc. —

Notes

- 1. The geologic interpretations were generalized from and interpolated between soil boring locations. Information on actual subsurface conditions exist only at the specified locations.
- 2. Water levels for monitoring wells were measured in December 2021. Water levels for soil borings were measured in May 2022.
- 3. Groundwater PCLE zones shown are refined based on 2021 annual groundwater monitoring and grab groundwater samples collected during 2022 pre-design investigation.
- 4. Cross section viewed to the west.
- 5. The lithology is shown related to depth from ground surface (feet bgs) given the limited change in elevation across the site.
- bgs = below ground surface
- COC= chemical of concern
- cPCL = critical protective concentration level
- HCFCD = Harris County Flood Control Ditch
- PCLE = protective concentration level exceedance


Attachment 1A-14.

Geologic Cross Section D-D'

2022 Response Action Plan Addendum Former Cameron Iron Works Facility,

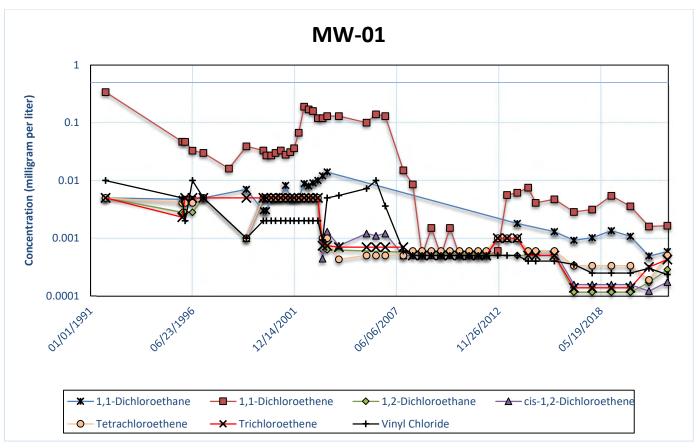
Houston, TX

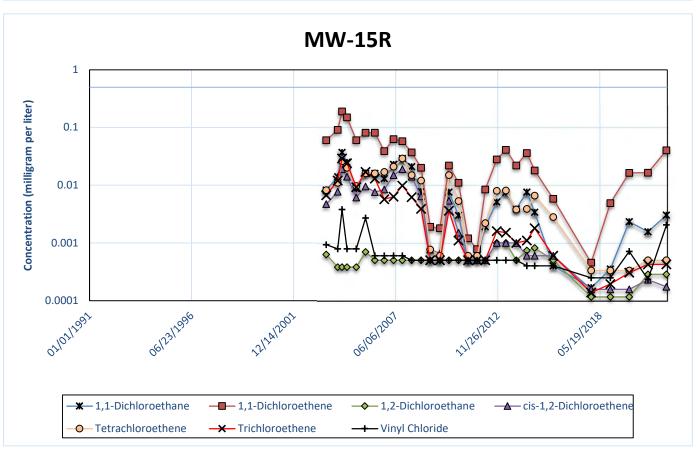
CH2M HILL Engineers, Inc. ...

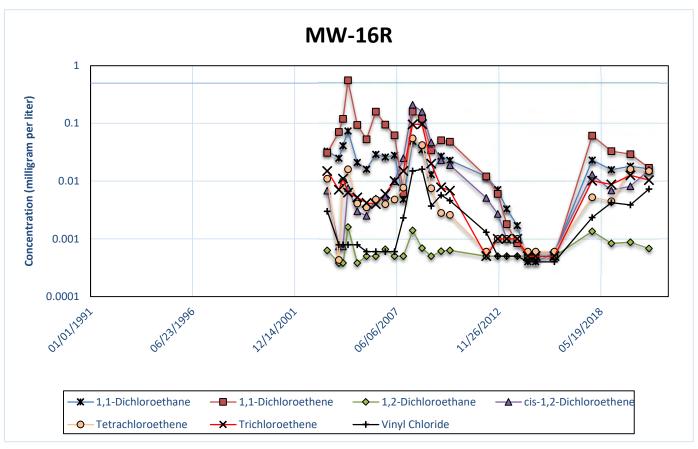
Notes

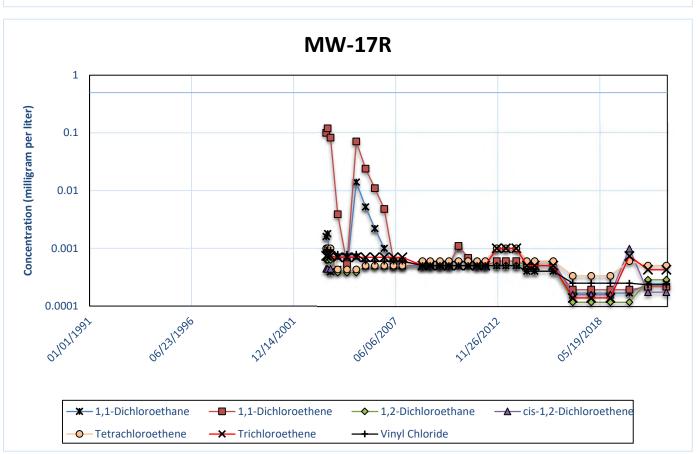
- 1. The geologic interpretations were generalized from and interpolated between soil boring locations. Information on actual subsurface conditions exist only at the specified locations.
- 2. Water levels for monitoring wells were measured in December 2021. Water levels for soil borings were measured in May 2022.
- 3. Groundwater PCLE zones shown are refined based on 2021 annual groundwater monitoring and grab groundwater samples collected during 2022 pre-design investigation.
- 4. Cross section viewed to the west.
- 5. The lithology is shown related to depth from ground surface (feet bgs) given the limited change in elevation across the site.
- bgs = below ground surface
- COC= chemical of concern
- cPCL = critical protective concentration level
- HCFCD = Harris County Flood Control Ditch
- PCLE = protective concentration level exceedance

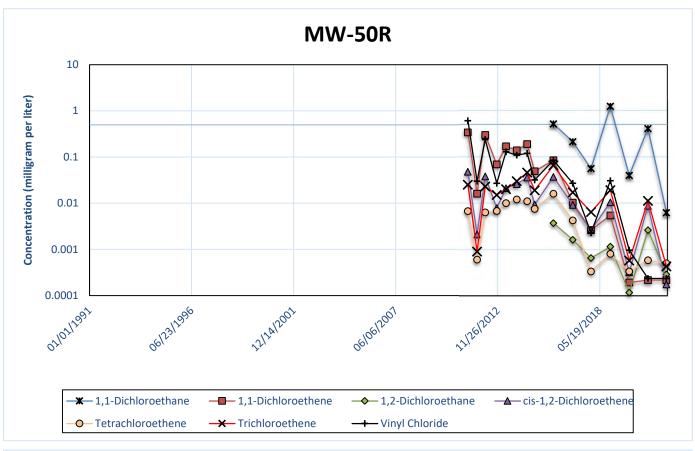
Attachment 1A-15.

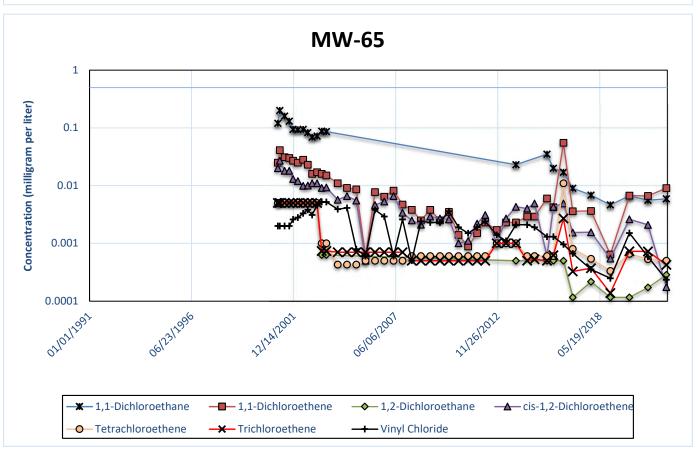

Geologic Cross Section E-E'

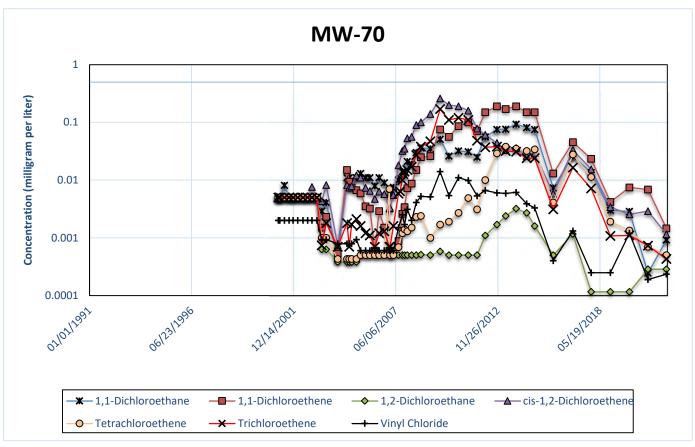

2022 Response Action Plan Addendum Former Cameron Iron Works Facility,

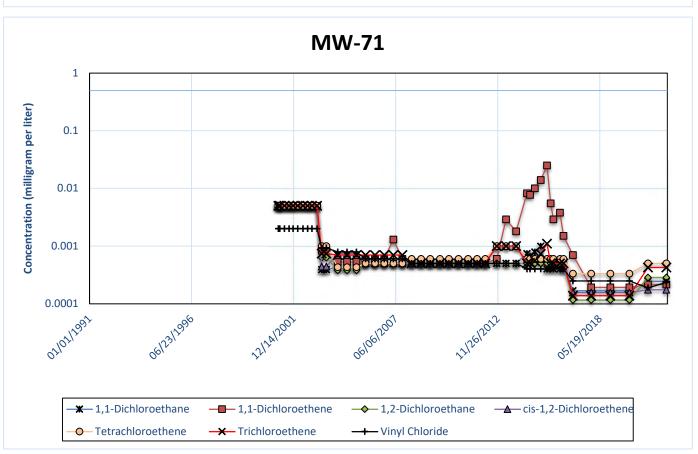

Houston, TX

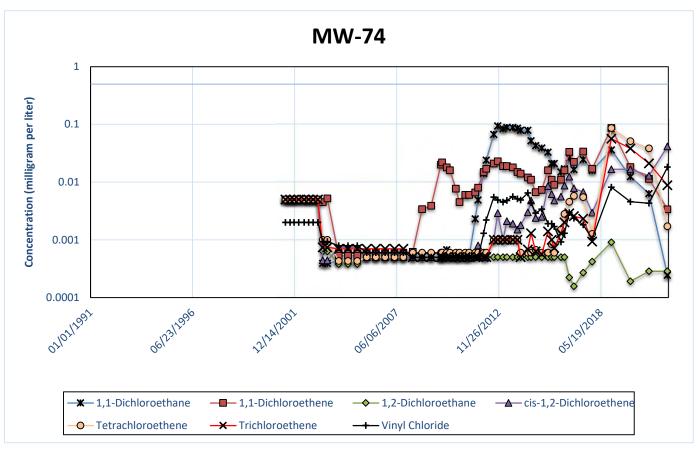

CH2M HILL Engineers, Inc. —

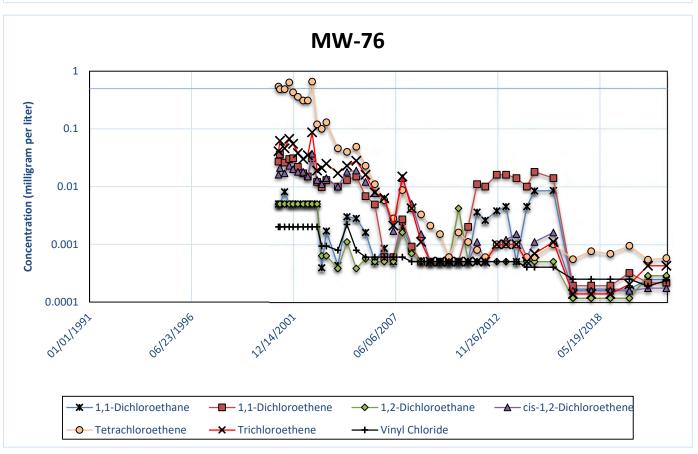

Attachment 1B Graphs of Concentration versus Time

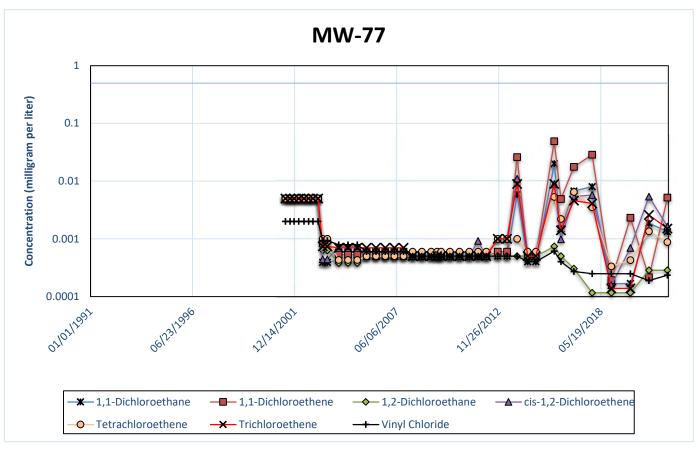


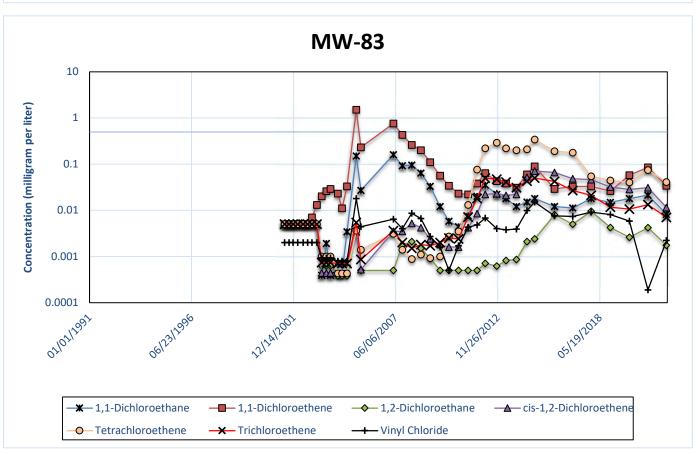


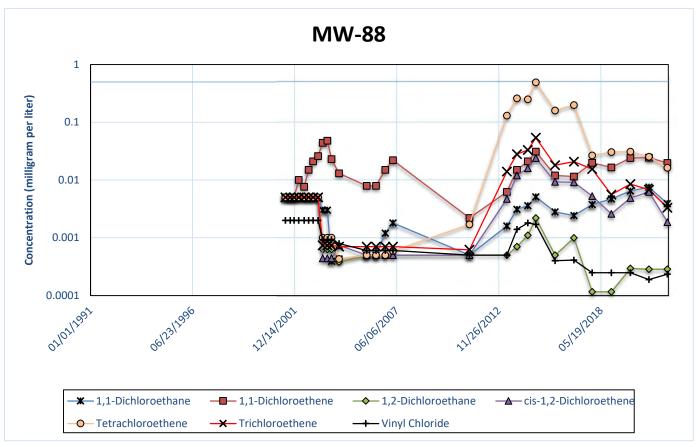


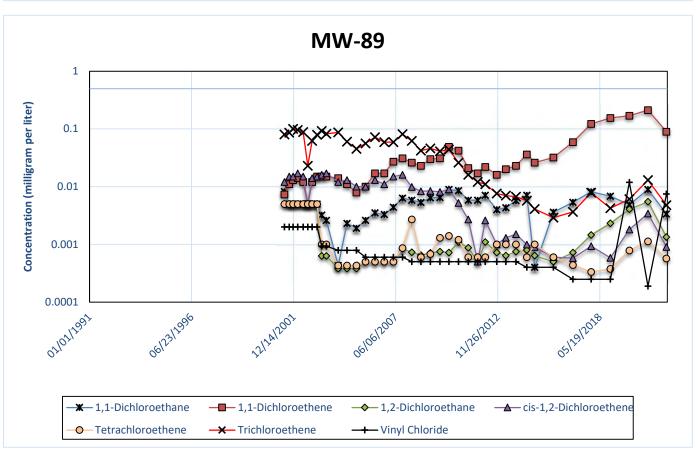


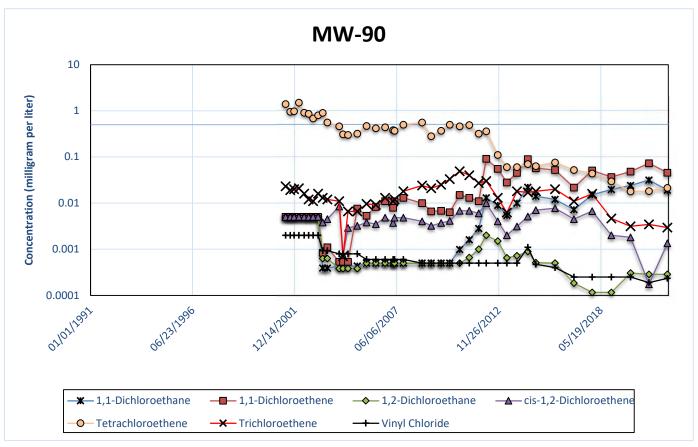


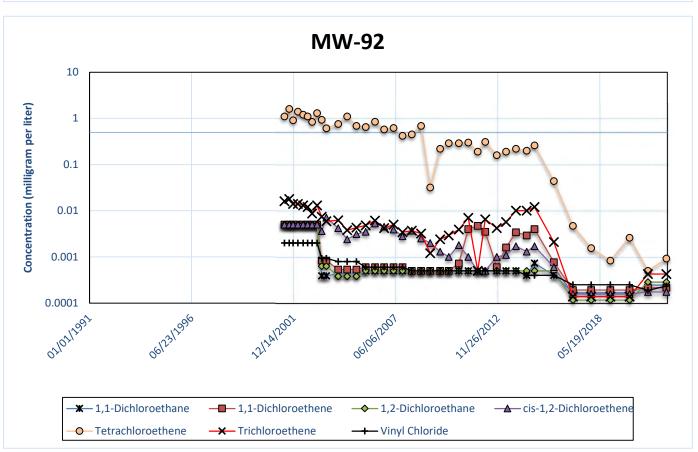


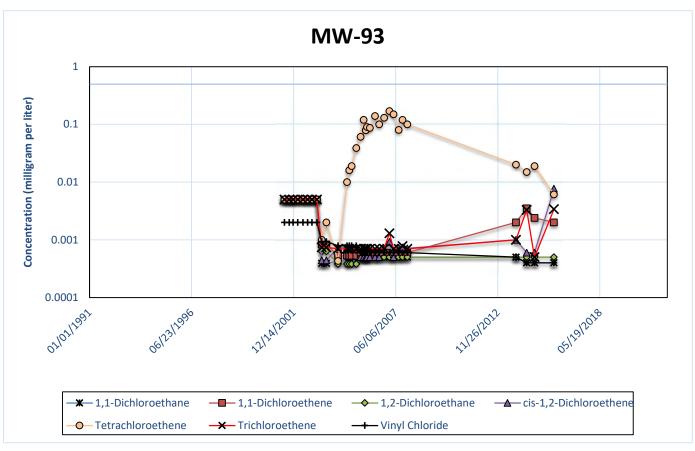


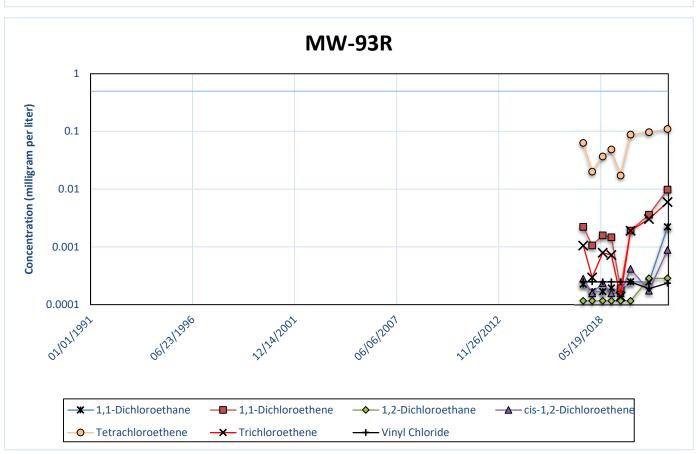


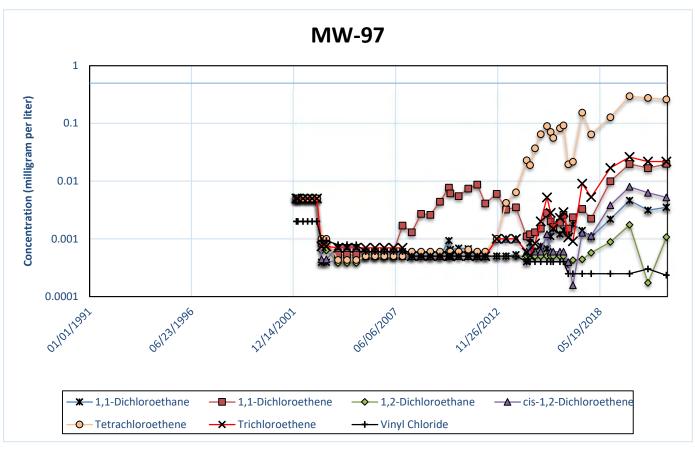


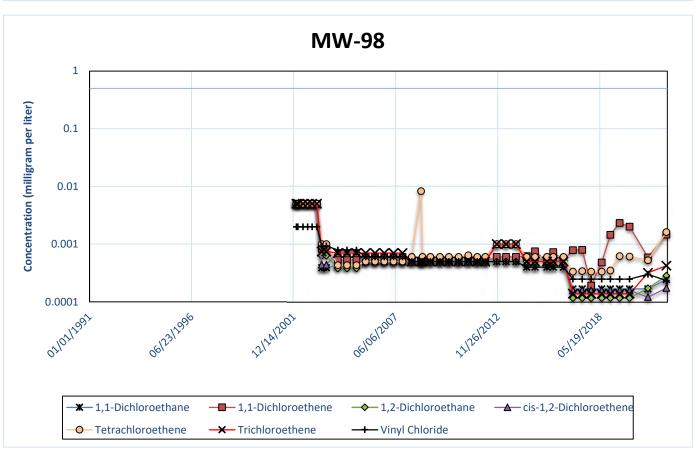


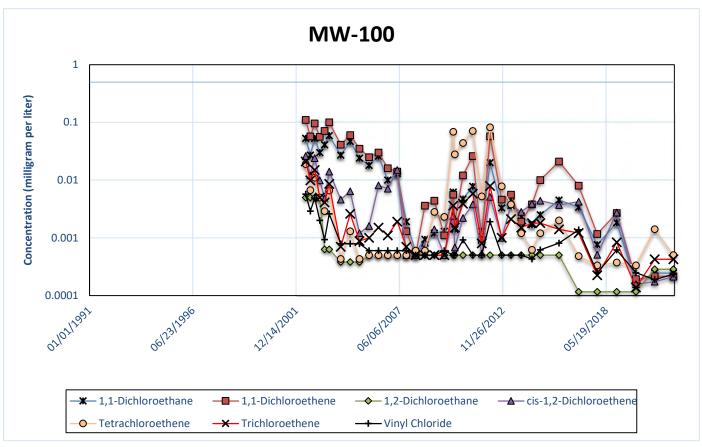


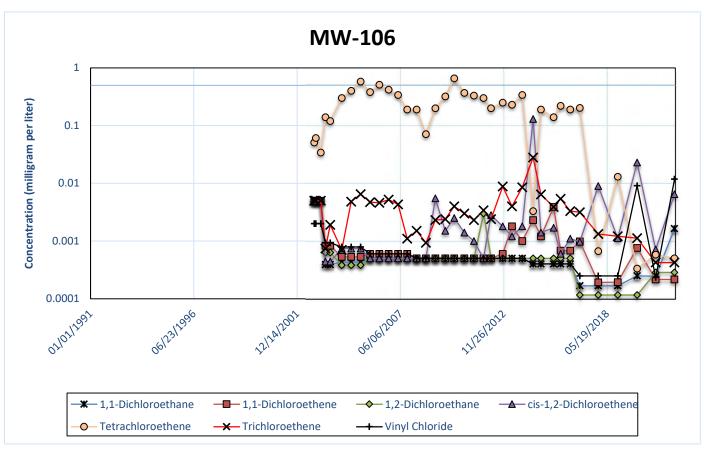


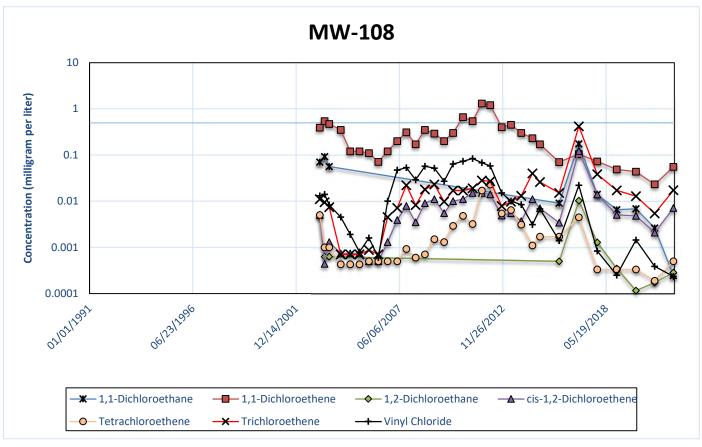


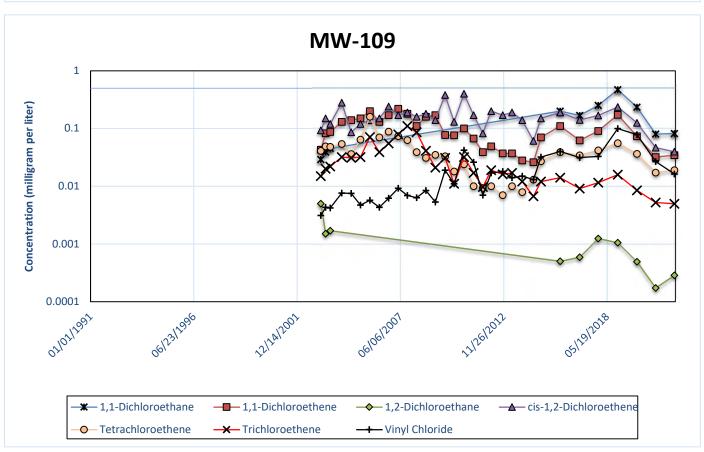


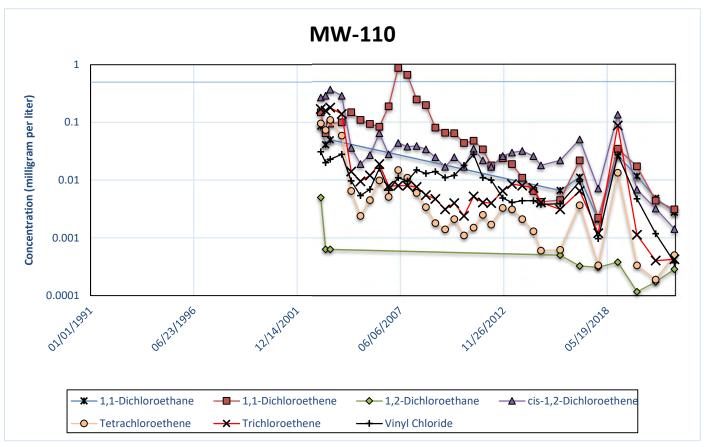


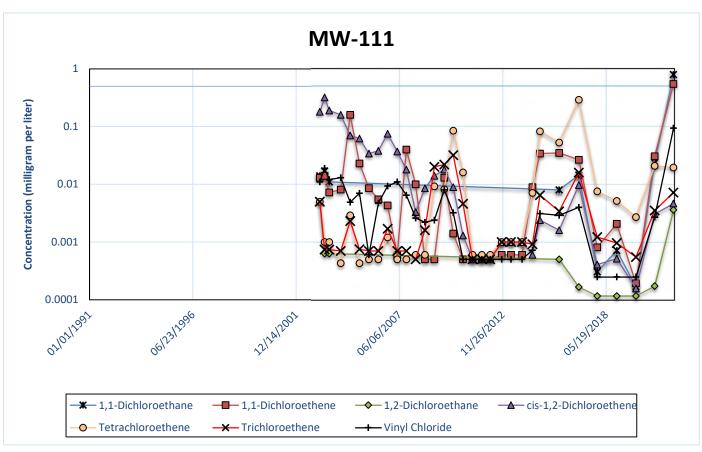


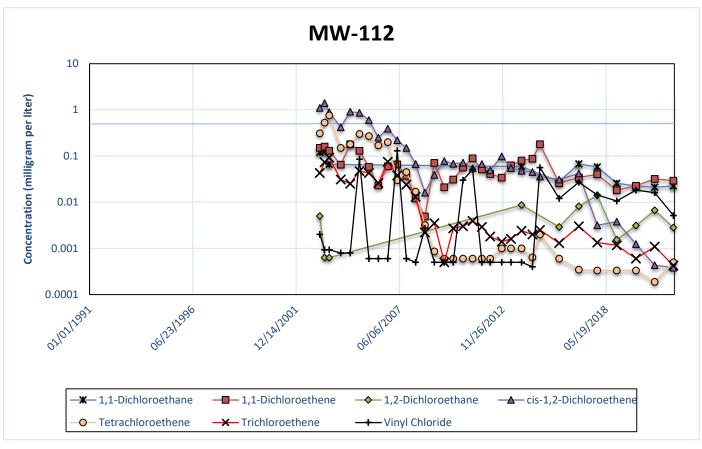


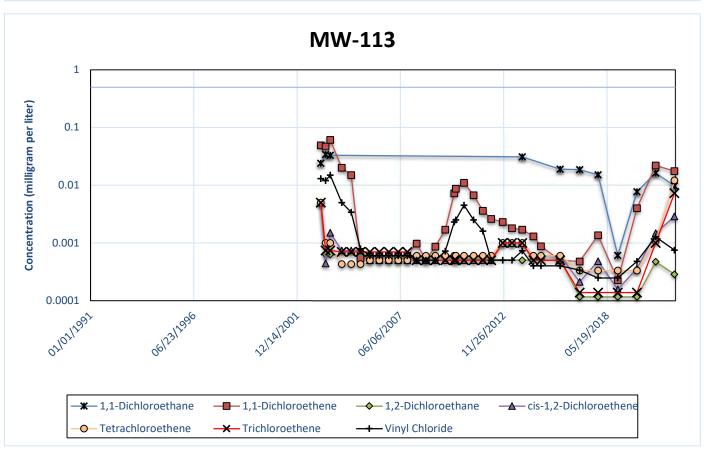


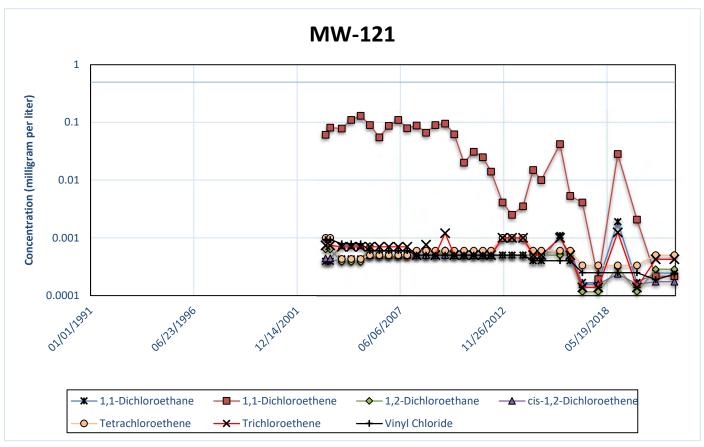


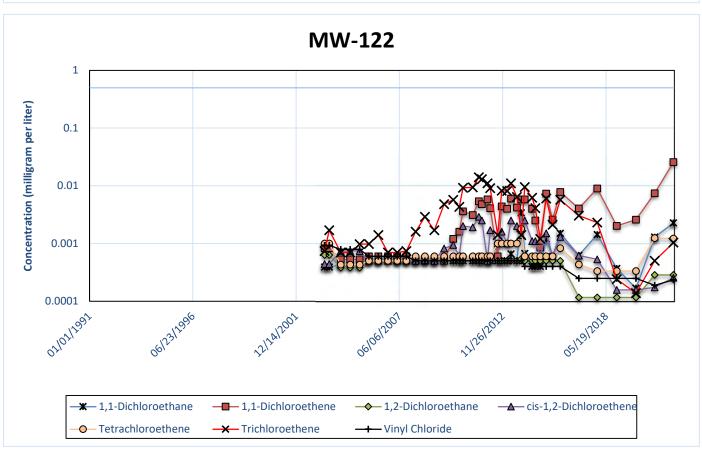


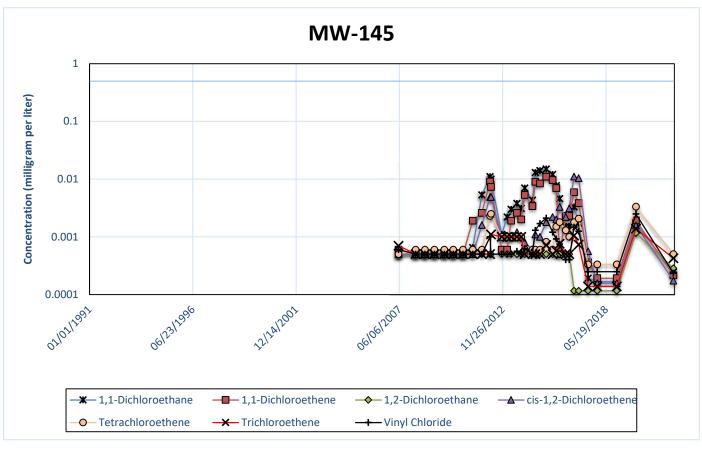


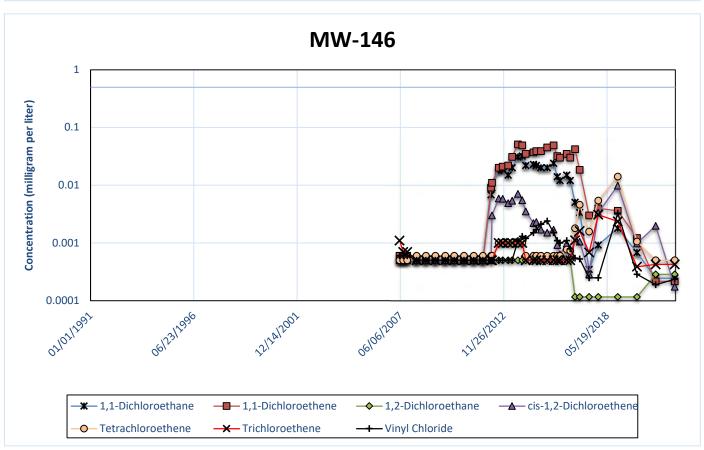


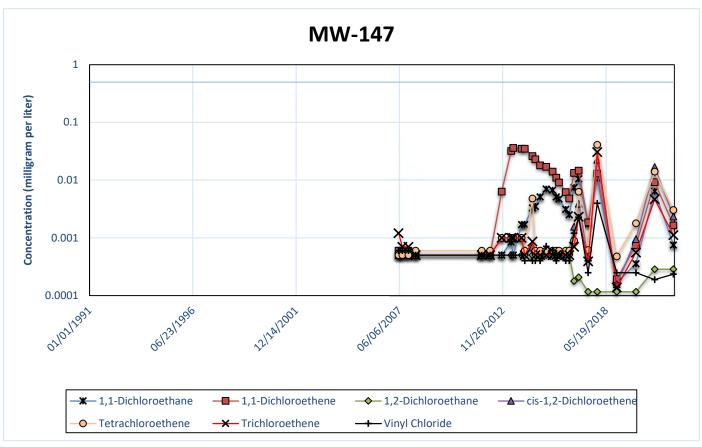


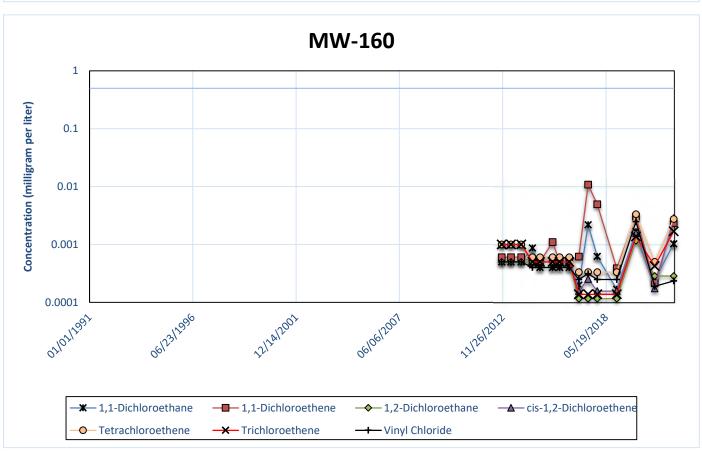


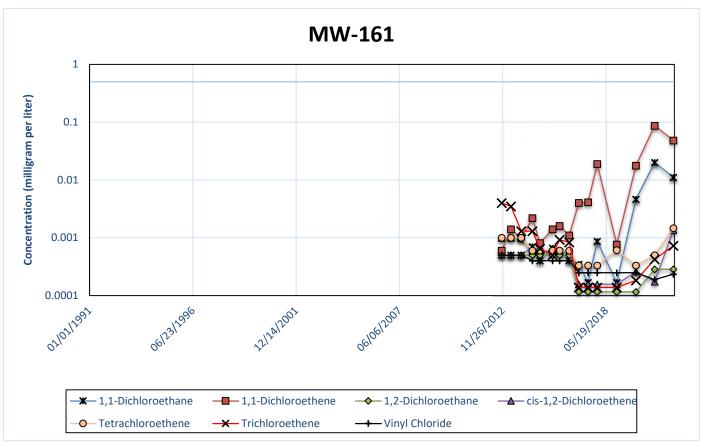


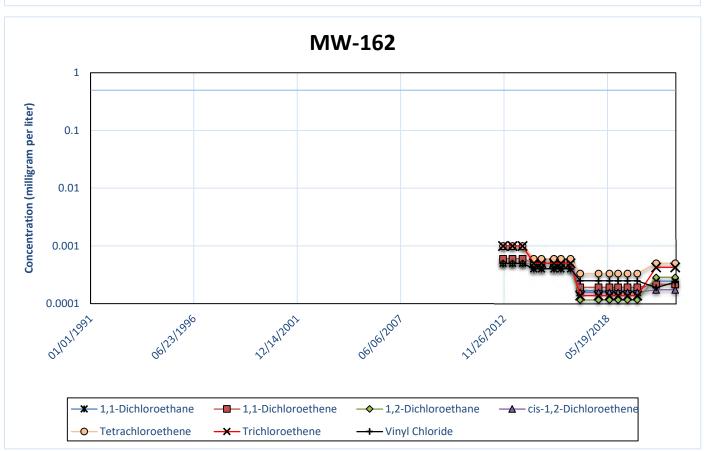


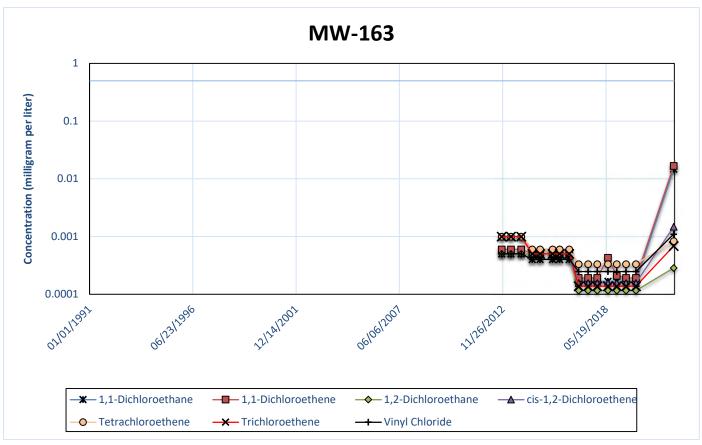


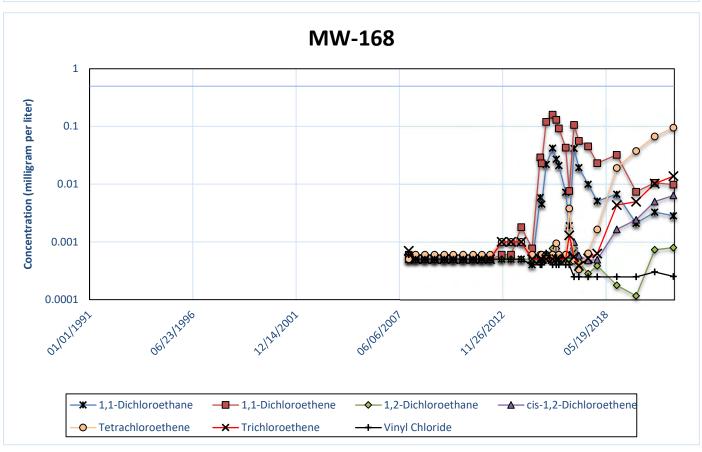


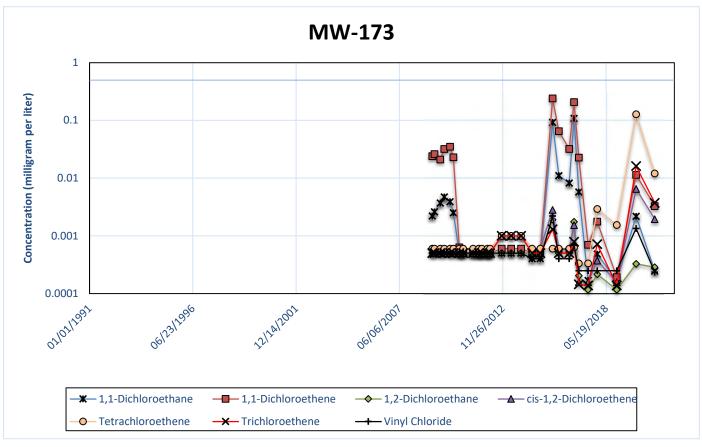


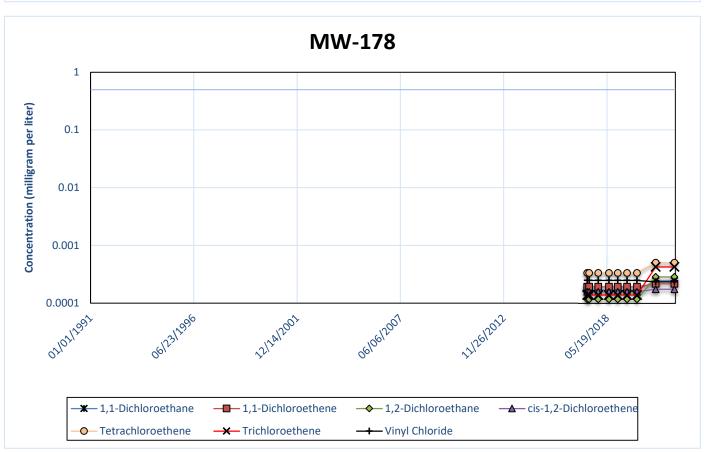


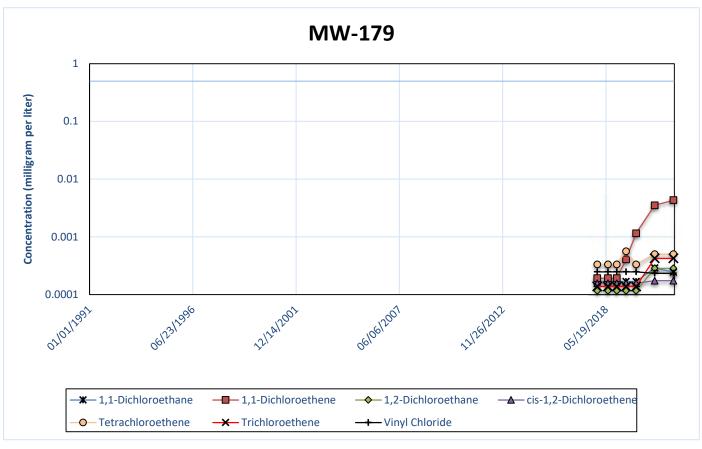


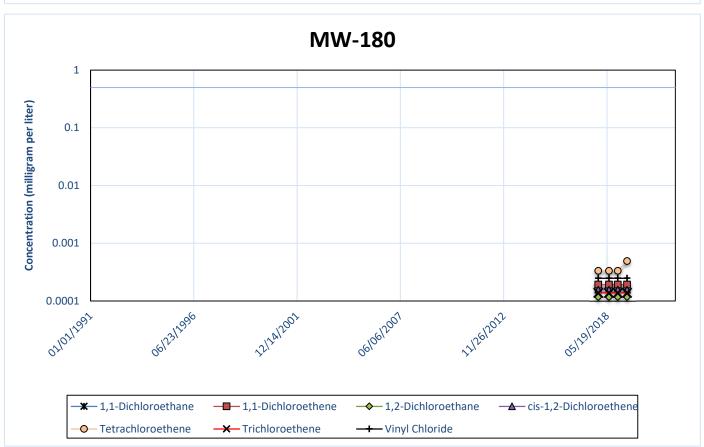












Response Action Design

Associated Information: Attachment 2A, 2B, 2C

RAP Worksheet 2.0 Page 1 of 4

ID No.: VCP No. 221 Report Date: September

2022

Response Action Design

Use this worksheet to provide detailed descriptions of the response action. Attach design and layout drawings and equipment specifications in Attachment 2A.

Media: Groundwater

List all media to which this information applies. If the response action is different for another media, complete a separate worksheet.

Provide a detailed description of the response action. Describe the removal action, decontamination, treatment system(s), and/or physical or institutional control actions that are proposed for each media and discuss the reasons for choosing the response action(s). Identify and describe any ecological services analysis and compensatory restoration plan that will be utilized (if so, include the complete ESA and compensatory restoration plan in Attachment 2C).

The response actions for the groundwater PCLE zone include the following major components:

- Install additional monitor wells crossgradient and downgradient to establish baseline conditions
 prior to implementation of the response action (injections), to monitor the potential plume
 migration, and to monitor the decline of COC concentrations resulting from ISCO and MNA.
- Install injection wells and perform ISCO injections in select groundwater TTZs that contain PCE, TCE, 1,1-DCE, and VC concentrations greater than 0.05 mg/L as well as selected monitor well locations per TCEQ comment letter dated June 7, 2022 (TCEQ 2022a).
- Conduct semiannual ISCO performance monitoring for selected performance monitor wells to evaluate the effectiveness of the response actions.
- Conduct annual groundwater monitoring for PMZ and MNA monitoring network wells until COC concentrations meet cPCLs.
- Provide affected property owners with groundwater monitoring results for the wells sampled on their properties.
- Submit a RAER annually to document groundwater monitoring results, evaluate the
 effectiveness of ISCO and MNA, propose additional response actions as necessary, and update
 the monitor well network to accommodate changes to the PCLE zone until cPCLs are met.

Modification of the PMZ Monitoring Network for Onsite PCLE Zone

The 2003 RAP established a PMZ for the onsite PCLE zone north of I-10. The findings of the groundwater fate and transport modeling (Appendix 3) indicate that the groundwater PCLE zones will naturally attenuate to concentrations less than the cPCLs within a similar time period regardless of continued operation of the North Treatment System. Because the plume is a large and diluted plume that is generally stable except for some localized areas with elevated COC concentrations greater than 0.050 mg/L, ISCO is the proposed response action to replace the North Treatment System. Therefore, further operation of the North Treatment System is not required to meet the RAOs for the site. The PMZ monitoring has been modified with the following changes:

- The updated PMZ monitoring network consists of four AMP and nine POE wells (Attachment 2D).
- The proposed AALs for AMP wells are the cPCL for 1,1-DCA and 10 times the cPCLs for remaining COCs.
- The AMP wells will be sampled annually for site-specific VOCs consisting of PCE, TCE, 1,1-DCE, cis-1,2-DCE, 1,1-DCA, 1,2-DCA, and VC.

Response Action Design

Associated Information: Attachment 2A, 2B, 2C

RAP Worksheet 2.0 Page 2 of 4

ID No.: VCP No. 221 Report Date: September

2022

Modifications to the PMZ monitoring network may be proposed in a future RAER and implemented after TCEQ approval.

MNA Monitoring Network for Offsite PCLE Zone

The purpose of MNA monitoring is to evaluate the effectiveness of natural attenuation to reduce COC concentrations in the areas downgradient of I-10 to less than cPCLs. Attachment 2D depicts the proposed MNA monitoring network, which consists of the offsite POE wells. A total of 34 POE wells will be sampled annually for site-specific VOCs consisting of PCE, TCE, 1,1-DCE, cis-1,2-DCE, 1,1-DCA, 1,2-DCA, and VC.

ISCO Treatment Zone Operation and Performance Monitoring

The ISCO treatment zones will be addressed in two phases. The objective of the Phase 1 onsite burn pit and MW-113 ISCO treatment zone is to further reduce the concentrations of CVOCs in the onsite groundwater PCLE zone. The objective of the Phase 2 ISCO treatment zones is to reduce CVOC concentrations in onsite groundwater PCLE zones at MW-108 and MW-111, as well as offsite groundwater PCLE zones at locations (MW-115R and MW-116R, MW-89, MW-74, MW-161, and MW-93R):

- The Phase 1 ISCO injection will be implemented as a pilot study for implementation of Phase 2 injections where there is limited space available or less flexibility for adaptive management of injections in the streets or driveways, and to obtain data regarding achievable injection flow rates and injection pressure. The Phase 1 pilot study ISCO treatment zone will consist of 14 injection wells (IW-80 through IW-93) and two performance monitor wells (MW-185 and MW-186) (Attachment 2A-2).
- The Phase 2 ISCO treatment zones consist of 16 injection wells (IW-94 through IW-109) and two performance monitor wells (MW-187 and MW-188) (Attachment 2A-1 and Attachment 2A-2).
- Permanganate will be injected into 30 injection wells over Phases 1 and 2. Injection pressure, injectate volume, and flow rates will be recorded during injection at each injection well.
- ISCO performance monitoring will be conducted semiannually for the initial 5 years after ISCO injections. Future ISCO injection events will be based on the results of the performance monitoring after the initial round of injections at each location. The ISCO performance monitoring network includes four proposed new ISCO performance monitor wells (MW-185 through MW-188) and 11 monitor wells located within and downgradient of the injection zone used for dual purpose of PMZ/MNA and ISCO performance monitoring (Worksheet 3.1). Sampling will be performed as follows:
 - o Semiannual sampling will be performed for laboratory analyses of site-specific COCs.
 - During each event, field parameters (dissolved oxygen [DO], oxidation-reduction potential [ORP], temperature, pH, conductivity, and permanganate) will be measured.

The performance monitoring results will be used to determine when and if future oxidant injection events are warranted.

Surface Water Monitoring

The cPCLs for surface water shown in Worksheet 3.1 are based on the cPCLs calculated and approved in the Human Health Ecological Risk Assessment for Surface Water and Sediment (ERM 2003b). Six surface water sampling locations (SWD-12, SWD-14, SWD-15, SWD-17, SWD-18, and SWD-20) will be sampled annually for site-specific COCs.

Describe all major treatment system components and equipment of the response action. Illustrate the response action design and provide equipment specifications in Attachment 2A.

Response Action Design

Associated Information: Attachment 2A, 2B, 2C

RAP Worksheet 2.0 Page 3 of 4

ID No.: VCP No. 221 Report Date: September

2022

The proposed new ISCO injection well and performance monitor well locations are shown in Attachments 2A-1 and 2A-2. The proposed ISCO TTZ for the Phase 1 pilot study at the former burn pit and MW-113 area are illustrated in Attachment 2A-2. The injection quantity will be provided in the UIC amendment for TCEQ review and approval.

Permanent injection wells will be used to deliver the oxidant solution to the subsurface. The injection interval will be set based on the depth of the groundwater PCLE zone or depths with elevated COC concentrations documented at specific locations. In the northern portion of the PCLE zone (onsite plume and near I-10), the injection well screen intervals will be generally 10 to 20 feet long within varying TTZ depths of 20 feet to 40 feet bgs; in the southern PCLE zones, the injection well screen intervals will be generally 10 to 20 feet long within varying TTZ depths of 23 feet to 43 feet bgs. Attachment 2B shows conceptual ISCO injection well and monitor well diagrams. The actual length of screen, depth intervals, and injectate volume anticipated for each injection well will be submitted in the UIC permit amendment authorization requests for Phase 1 and Phase 2 injections.

UIC amendment authorizations will be submitted to TCEQ during the field planning phase and prior to injection. In addition, monitor wells will be installed and sampled to collect baseline data prior to injection. Proposed locations of monitor wells are presented in Attachment 2A-1.

During the injection event, injection rates and pressures, and the start and end times for delivering the designated amount of solution to each injection well, will be monitored and recorded to ensure that the injection is performed as designed. Water level, DO, ORP, conductivity, pH, temperature, and permanganate concentration will be monitored at the nearby monitor wells during the injection process. The groundwater parameters will be measured using a peristaltic pump or in-well pump or bailer, YSI multi-parameter water quality instrument, and permanganate color chart or Hach colorimeter. These field measurements will be used to optimize the radius of influence of the ISCO injection locations and to adjust the injection rates and volumes as needed. Monitoring will also be implemented to inhibit potential impacts to the nearby surface water bodies during the injection process.

List permits or registrations needed to construct or implement the response action, including permits or registrations needed to conduct studies or tests. For VCP sites, list the permits that would be required if the site was not in the VCP (required by the VCP).

	(1040110010) 1110 101 /1		
Permitting/Registration Authority	Type of permit/registration	Permit or registration number if already issued	Anticipated application date
TCEQ	UIC Authorization Amendment ¹	5X2600281	Prior to ISCO Injection

Identify and discuss the results of any studies or tests, such as pilot studies, feasibility studies, technical impracticability studies, treatability studies, and/or toxicity studies conducted or proposed to be conducted at the affected property. Discuss the reason for the study or test and how it verifies the effectiveness and appropriateness of the chosen response action or documents that a particular response action is not appropriate for the affected property. Describe how the results of completed studies or tests determined the design or choice of response action. Attach any separate reports and supporting documentation in Appendix 3.

Groundwater modeling was performed to predict cleanup time with and without the north pump-and-treat system. The groundwater modeling assumptions and results are included in Appendix 3.

Summary of Groundwater Fate and Transport Modeling

To address comments received from TCEQ on August 31, 2021, the groundwater models originally prepared in 2017 were updated to include the analysis of additional COCs, including PCE, TCE,

¹ This UIC amendment would be required for in situ groundwater remedy involving injection of chemical oxidants.

Response	Action	Design
----------	--------	--------

Associated Information: Attachment 2A, 2B, 2C

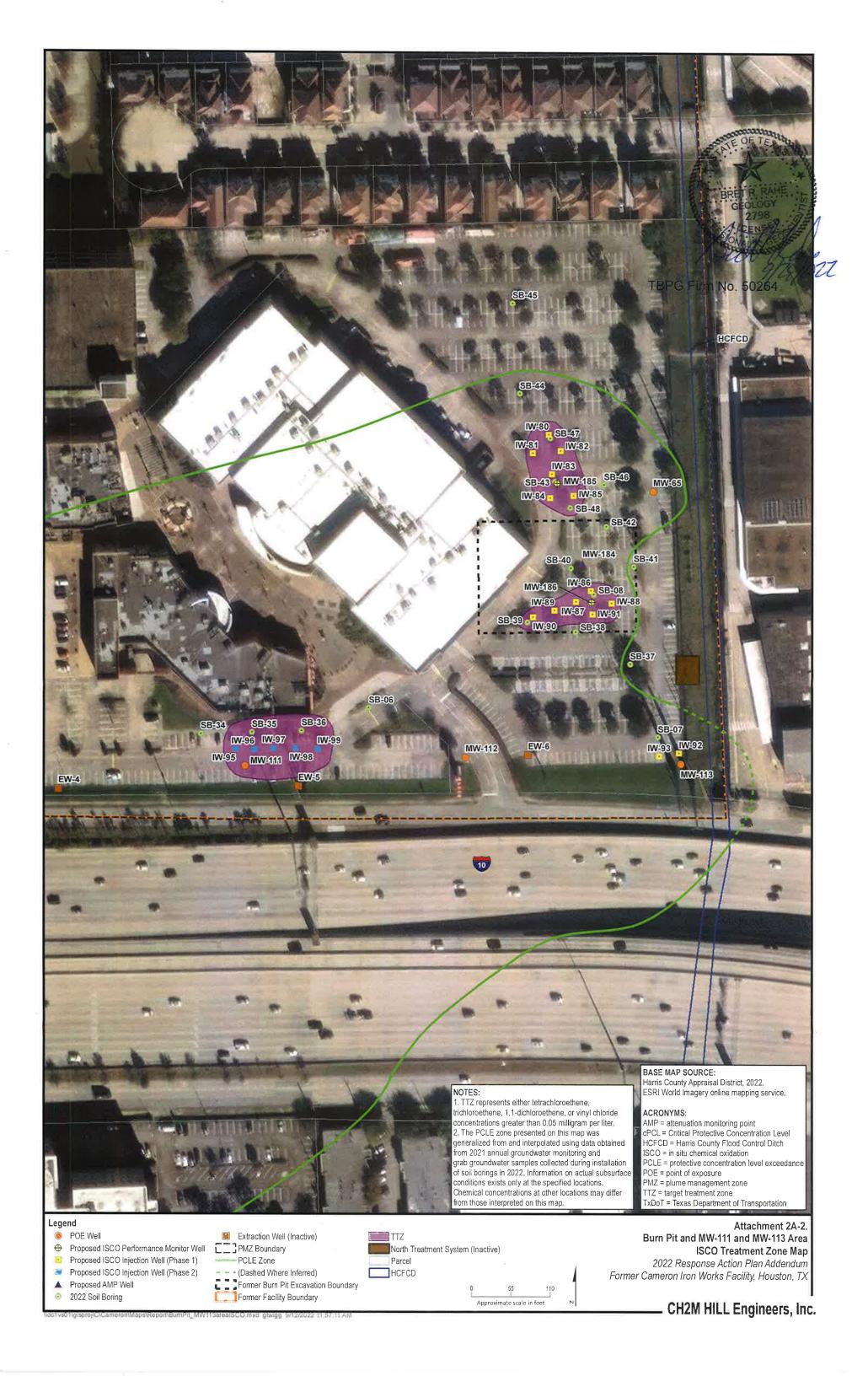
RAP Worksheet 2.0 Page 4 of 4

ID No.: VCP No. 221 Report Date: September

2022

1,1-DCE, and VC. Groundwater flow and solute transport modeling were conducted using MODFLOW-SURFACT in conjunction with Groundwater Vistas Version 6.0 as the primary graphical user interface. The modeling objectives included the following:

- Estimate the remediation time frame for the site under MNA only (that is, decommissioning North Treatment System) or MNA with continued operation of the North Treatment System.
- Evaluate the possible benefit of running the North Treatment System to reduce the remediation time frame.
- Evaluate the possible future COC concentrations that might enter nearby surface water bodies.
- Evaluate potential risk to the surface water bodies that might arise from ceasing the operation of the North Treatment System.


The conclusions of the groundwater model are as follows:

- TCE has the longest remediation time frame, with estimated remediation time frames of 70 years under MNA only and 63 years under MNA with the operation of the North Treatment System.
 This is due to the elevated TCE concentration identified at the former burn pit area during the 2022 predesign investigation.
- 1,1-DCE has the second longest remediation time frame, with estimated remediation time frames of 47 years under MNA only. Operation of the North Treatment System does not reduce the remediation time frame for 1,1-DCE to less than MNA only.
- The estimated remediation time frames for PCE and VC are shorter and would not exceed 30 years with or without the operation of the North Treatment System.
- Continuous operation of the North Treatment System at the 2015 rates might shorten the remediation time frame for TCE from 70 years to 63 years, and for VC from 29 years to 26 years.
 Operation of the North Treatment System would not accelerate the remediation of the PCE and 1,1-DCE plumes.
- HCFCD, Buffalo Bayou and the Silber Tunnel dewatering systems would not be impacted by groundwater with COC concentrations exceeding the PCLs.

The overall conclusion is that operation of the North Treatment System would not significantly speed up remediation compared with natural attenuation. With ISCO as supplemental remediation for the TTZs, continued operation of the North Treatment System is not necessary. In addition, implementation of ISCO at the TTZ, especially the elevated PCE and TCE concentrations at the former burn pit area, will reduce the onsite source COC concentrations and ultimately mass flux, so that the cleanup time can be reduced to meet RAOs in a reasonable time frame. Therefore, Cameron is hereby proposing to decommission the North Treatment System.

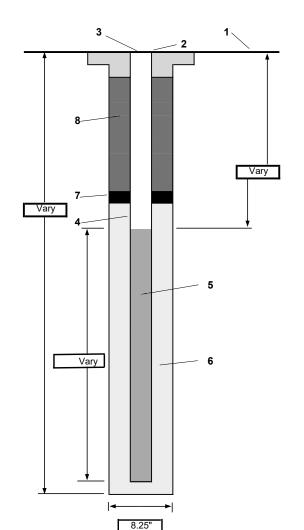
Attachment 2A Response Action Diagrams and Component/Equipment Descriptions

Attachment 2B Proposed Well Design

PROJECT NUMBER
D3542628

WELL NUMBER

SHEET 1 OF 1


PROPOSED INJECTION WELL DIAGRAM

PROJECT: Former Cameron Iron Works Facility,

DRILLING CONTRACTOR: TBD

DRILLING METHOD AND EQUIPMENT USED: CME Hollow Stem Auger

WATER LEVELS : 20 to 30 ft bgs (Varies) START : TBD END : TBD LOGGER : TBD

Drawing Not To Scale

1- Ground elevation at well

LOCATION: Houston, Texas

2- Top of casing elevation a) vent hole?

3- Wellhead protection cover typea) weep hole?b) concrete pad dimensions

4- Dia./type of well riser

5- Type/slot size of screen
a) Slot size (inches)

b) Total screen length (feet)

6- Type screen filter

7- Type of seal

8- Grout

a) Grout mixb) Method of placement

Development method

Comments

Well depths and screen intervals vary at different locations and target treatment zones.

LEGEND:

bgs = below ground surface
Dia. = diameter
ft = feet

N/A = not applicable

TBD

TBD N/A

Traffic rated 6-inch steel manway

N/A

2 ft x 2 ft x 6 inches

2-inch Schedule 40 PVC

2-inch Schedule 40 PVC

V-wire 0.020-inch Machine Slotted 10 to 20 feet long (varies)

10/20 Silica Sand

3/8 inch Bentonite Chips (Minimum 2 ft)

Portland Cement Bentonite Slurry

Tremie Pipe

Pump and Surge

IW = injection well
PVC = polyvinyl chloride
TBD = to be determined

Attachment 2B.
Proposed Well Design - Injection Well Diagram
2022 Response Action Plan Addendum

Former Cameron Iron Works Facility, Houston, Texas

CH2M HILL Engineers, Inc.

PROJECT NUMBER
D3542628

WELL NUMBER MW-XX

SHEET 1 OF 1

PROPOSED MONITOR WELL DIAGRAM

TBD TBD

N/A

10 feet

Traffic rated 6-inch steel manway

2 ft x 2 ft x 6 inches

20/40 Silica Sand

Tremie Pipe

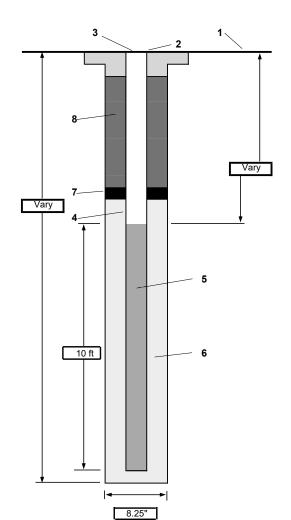
Pump and Surge

2-inch Schedule 40 PVC

2-inch Schedule 40 PVC

0.010-inch Machine Slotted

3/8 inch Bentonite Chips (Minimum 2 ft)


Portland Cement Bentonite Slurry

PROJECT : Former Cameron Iron Works Facility, LOCATION : Houston, Texas

DRILLING CONTRACTOR: TBD

DRILLING METHOD AND EQUIPMENT USED : CME Hollow Stem Auger

WATER LEVELS : 20 to 30 ft bgs (Varies) START : TBD END : TBD LOGGER : TBD

Drawing Not To Scale

1- Ground elevation at well

2- Top of casing elevation a) vent hole?

3- Wellhead protection cover type a) weep hole?

b) concrete pad dimensions

4- Dia./type of well riser5- Type/slot size of screen

a) Slot size (inches)b) Total screen length (feet)

6- Type screen filter

7- Type of seal

8- Grout a) Grout mix

b) Method of placement

Development method

Comments

Well depths and screen intervals vary at different locations.

Well	Screen Interval (ft)	Total Depth
MW-183	25-35	36
MW-184	20-30	31
MW-185	25-35	36
MW-186	20-30	31
MW-187	30-40	41
MW-188	30-40	41
MW-189	30-40	41
MW-190	30-40	41

LEGEND:

bgs = below ground surface Dia. = diameter

ft = feet N/A = not applicable MW = monitor well
PVC = polyvinyl chloride
TBD = to be determined

Attachment 2B.

Proposed Well Design - Monitor Well Diagram

2022 Response Action Plan Addendum Former Cameron Iron Works Facility, Houston, Texas

CH2M HILL Engineers, Inc.

Plume Management Zone

RAP Worksheet 2.1

Page 1 of 2

Associated Information: Attachments 2D, 2E

ID No.: VCP No. 221 Report Date: September 2022

Complete this worksheet when a PMZ is proposed as part of the response action. Include in Attachment 2D a map of the proposed PMZ with alternate POE(s) and attenuation monitoring points identified and the current groundwater PCLE zone. If a PMZ is not proposed, do not submit this worksheet.

Groundwater-bearing unit Uppermost Aquifer
Repeat this worksheet for each groundwater-bearing unit for which a PMZ is proposed.
Groundwater classification X 2 3
Provide justification as to why the PMZ is appropriate in accordance with §350.33(f)(4)(A). Include supporting documentation in Attachment 2E.
The response actions will reduce the extent of the groundwater PCLE zone via ISCO treatment and MNA. The onsite groundwater PCLE zone is generally stable or declining, except in limited areas, as demonstrated by the COC concentration trend graphs provided in Attachment 1B. Groundwater COC concentrations and the AALs proposed for the AMP wells are much less than the Tier 1 groundwater-to-air (AirGWP _{Inh-v}) PCLs. ICs to restrict groundwater use within the fourth 35.7-acre parcel of land within the southern portion of the PMZ will be implemented to prevent potential future exposure from groundwater ingestion. Therefore, the proposed PMZ is the appropriate response action.
Is the alternate POE proposed to be beyond the current limits of the PCLE zone? Yes X No If yes, how far? (§350.37(I) or (m) as applicable) Is it to be off-site? Yes X No
On an off-site property that currently does not contain a residential-based groundwater PCLE zone?
Yes X No
If yes and this is a Class 2 groundwater, provide the basis for concluding that this groundwater does not have a reasonably anticipated future beneficial use (§350.37(I)(3)).
Not applicable; an alternate point of exposure well (APOE) is not proposed. AMP wells MW-108 through MW-112 and APOE well MW-113 were changed to POE wells, per TCEQ comment letter dated January 24, 2022. APOE wells MW-65 and MW-01 were changed to POE wells per TCEQ comment letter dated June 7, 2022.
Is NAPL present? YesX No
If so, describe how the response action will achieve the performance criteria in §350.33(f)(4)(E).
Not applicable
If this is a Class 2 groundwater, explain how the response action will ensure that leachate from the surface soil and subsurface soil PCLE zones will not increase concentration of COCs greater than the current measured concentrations (at time of RAP submittal). (§350.33(a)(2))
Not applicable because affected soil was removed to meet residential PCLs. The proposed response action will not result in additional exposure conditions.

Plume Management Zone

RAP Worksheet 2.1
ID No.: VCP No. 221

Associated Information: Attachments 2D, 2E

Report Date: September 2022

Page 2 of 2

Provide the basis that the COCs will not migrate beyond the downgradient boundary of the PMZ at concentrations above the critical PCL. Include supporting documentation in Attachment 2E.

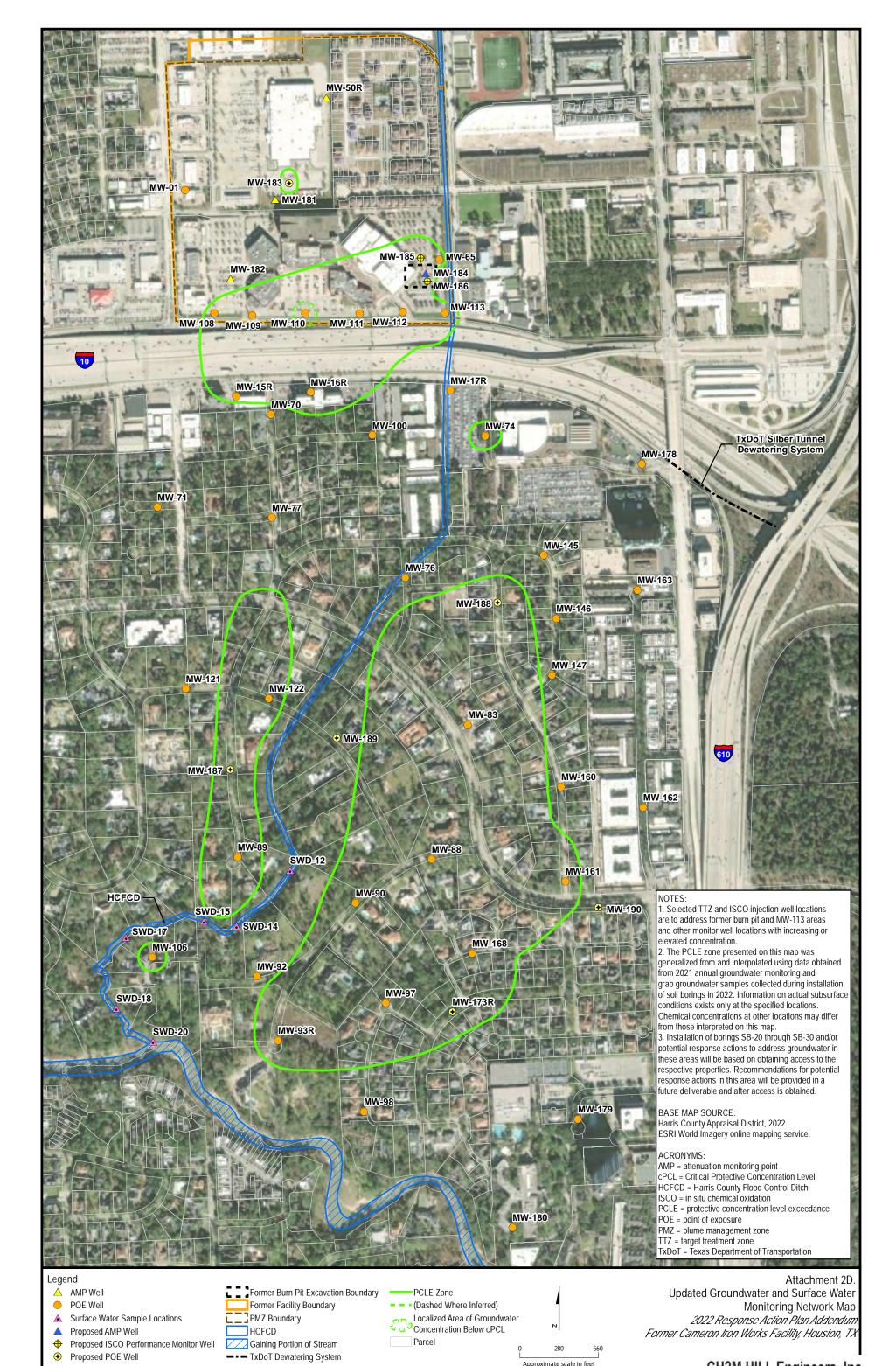
Although the plume has migrated offsite, COC concentrations in groundwater in the majority of wells are stable or declining (Attachment 1B). ISCO treatment will further stabilize conditions at the onsite TTZs with higher COC concentrations or increasing trends. As a result, COCs will ultimately decrease and fall below cPCLs at the downgradient boundary of the PMZ.

Describe the methods used to determine that there are no artificial penetrations which can allow COCs to migrate from the groundwater PCLE zone to currently unaffected groundwater-bearing units. Include supporting documentation in Attachment 2E.

During the affected property assessment and historical document review, there were no known artificial penetrations identified that could allow COCs to migrate to the underlying unaffected groundwater-bearing unit. The use of ICs will prevent future artificial penetrations.

List the attenuation action level determined for each attenuation monitoring point. Illustrate the proposed attenuation monitoring points and the groundwater PCLE zone on the map in Attachment 2D. Include all calculations and other methods of determining the attenuation action levels in Attachment 2E.

COC	Attenuation	Attenuation Action Level	Attenuation Action Level
	Monitoring Point	(milligrams per liter [mg/L])	limited by AirGWInh-V or existing
	(well number)		COC concentration?
			Y/N
1,1-DCA	MW-50R	4.9	cPCL
1,1-DCE	MW-181	0.07	10 times cPCL
1,2-DCA	MW-182	0.05	10 times cPCL
cis-1,2-DCE	MW-184	0.70	10 times cPCL
PCE		0.05	10 times cPCL
TCE		0.05	10 times cPCL
VC		0.02	10 times cPCL


Notes:

Attachment 2E is not included, because the AAL is based on the cPCL for 1,1-DCA or 10 times the cPCLs for other COCs. The AALs may be revised in the future that take into account declining concentrations over time as a result of the proposed response action.

The TTZs with COC concentrations greater than 0.05 mg/L (corresponding to 10 times the cPCLs for PCE and TCE) will be stabilized via ISCO treatment so that the cPCLs can be met at the PMZ boundary within a reasonable time frame via combined ISCO and MNA.

The primary function of the PMZ as shown in Attachment 2D is to prevent exposure to groundwater within the onsite groundwater PCLE zone. The current groundwater COC concentrations within the onsite groundwater PCLE zone are less than the Tier 1 commercial/industrial AirGW_{Inh-V} PCLs, The only potential exposure pathway of concern is GWGW_{Inn}.

Attachment 2D Plume Management Zone Map

Institutional Control Associated Information: Appendices 4, 5 RAP Worksheet 2.4 Page 1 of 1 ID No.: VCP No. 221 Report Date: September 2022

Complete this worksheet if an institutional control will be used as part of the response action. Include a draft of the proposed institutional controls in Appendix 4. Provide a list of landowners from whom landowner concurrence will be requested, as necessary, in Appendix 5.

Specify the property for which this applies. Onsite Affected Soil Area and Groundwater PCLE Zone

Repeat this worksheet for each different property for which an institutional control will be used.

Institutional Control			stitutional Conf		Property Ownership		Anticipated Filing Date ²
Institutional Control	Deed Notice	Restrictive Covenant	VCP Certificate of Completion	Equivalent zoning or governmental ordinance	Check if pertinent tract of land is owned by the person	Check if the pertinent tract of land is owned by an innocent owner or operator	Timing Date
Document use of commercial/industrial land use (§350.31(g))			х			х	Within 120 days of approval of 2022 RAP Addendum
Document use of physical or institutional control under Remedy Standard B §350.31(g))							
Document notice of on-going long term response action (§350.31(h))							
Document use of occupational inhalation criteria as RBELs (§350.74(b)(1))							
Document variance from the default exposure factors (§350.74(j)(2)(L))							
Document the use of a non-default soil exposure area (§350.51(I)(3)&(4))							
Document WCU exclusion area (§350.33(f)(2))							
Document establishing a PMZ (§350.33(f)(4)(C)(I))			Х			Х	Within 120 days of approval of 2022 RAP Addendum
Document the demonstration of technical impracticability (§350.33(f)(3)(F))							
Relocation of soils containing COCs for reuse (§350.36(b)(4) and (c)(4))							

¹ Check the appropriate box(es) to indicate the type of institutional control required for the proposed response action.

² Specify date or amount of time after RAP approval.

Performance Measures and Potential Problems

RAP Worksheet 3.0

ID No.: VCP No. 221

Page 1 of 2

Report Date: September 2022

Performance Measures

List and describe the performance measures for each environmental medium containing a PCLE zone that will be used to determine if reasonable progress is being made by the response action in a timely manner. Use these measures to document effectiveness of the response action in the RAER.

The monitoring network used to evaluate the effectiveness of ISCO and MNA is included in Attachment 2D.

The performance measures for the Remedy Standard B response actions for the PCLE zone include the following:

- Collect baseline groundwater samples from the sampling network identified in Attachment 2A-1.
 Groundwater samples will be analyzed for site-specific VOCs and field parameters (ORP, DO, specific conductance, temperature, turbidity, and pH).
- Conduct ISCO performance monitoring on a semiannual basis following ISCO injections. Future ISCO injection events will be based on the results of the performance monitoring after the initial round of injections at each location.
- Measure groundwater levels annually to evaluate groundwater flow across the site.
- Submit an annual RAER to evaluate the effectiveness of ISCO and MNA and propose additional response actions as necessary to meet the Remedy Standard B closure requirements.

Performance Measures and Potential Problems

RAP Worksheet 3.0

ID No.: VCP No. 221

Page 2 of 2

Report Date: September 2022

Potential Problems

Complete the table for the response action. When the response action consists of several components or multiple actions, complete one table for each major component or action.

Response Action Name/Designation: ISCO with MNA

List the potential problems that might be reasonably anticipated for the response action, describe the

impact of each problem, and th	ie response to the probl	em.		
Description of the Potential	f the Potential Impact		this	Corrective Response
Problem		caus	se a	
		respo	onse	
		acti	on	
		failu	re?	
		Yes	No	
Potential insufficient ISCO dosage	COC concentrations in the target treatment areas could not meet 0.05 mg/L, or COC concentration rebound could occur following ISCO injections.		X	Re-evaluate the site conditions and perform additional rounds of ISCO injections as necessary.
Plume expanding and increasing concentration trend at the downgradient MNA wells	There would be a potential risk for COC migration to the downgradient surface water body.		х	Evaluate the necessity of installing additional monitor wells downgradient to monitor COC migration, and evaluate necessary response actions to address the leading edge of the plume if there are potential unacceptable risks.
Insufficient or excessive monitoring network coverage during the response actions	There would be potential impacts on evaluation of response action effectiveness and cost associated with sampling and analysis.		х	Evaluate response action effectiveness and update the PCLE zone and monitoring network to accommodate changed conditions.

Monitoring and Sampling

Associated Information: Attachment 3A

RAP Worksheet 3.1

ID No.: VCP No. 221

Page 1 of 4
Report Date: September 2022

List the monitoring and sampling of COC concentrations or other parameters that will be conducted during the response action. Illustrate the monitoring or sampling locations in Attachment 3A. If statistics or geostatistics will be used, provide details in Appendix 7. If monitoring or observation wells will be constructed for the response action, provide well construction details in Attachment 2B if not previously provided.

Monitored Media	COC¹	Other parameter (specify)	Sampling Method ²	Sampling points or locations ³	Depth/Height ⁴ (ft.)	Analytical or Field Screening Method	Sampling or Monitoring Frequency ⁵
Groundwater ISCO Performance Monitoring	Site-specific VOCs (cPCLs): 1,1-DCA (4.9 mg/L) 1,1-DCE (0.007 mg/L) 1,2-DCA (0.005 mg/L) cis-1,2-DCE (0.070 mg/L) PCE (0.005 mg/L) TCE (0.005 mg/L) VC (0.002 mg/L)	Field parameters (ORP, DO, specific conductance, temperature, turbidity, pH, and permanganate)	HydraSleeve or low-flow sampling method	ISCO Performance Wells: MW-185 (new) MW-186 (new) MW-187 (new) MW-188 (new) Other Wells: MW-65 MW-74 MW-89 MW-93R MW-108 MW-111 MW-113 MW-15R MW-161 MW-16R MW-184 (new AMP)	25–35 20–30 30–40 30–40 19.5–29.5 22–32 32–42 32–42 22–32 21–31 22–32 27–37 26.02–36.02 20–30	SW8260C (site-specific VOCs); field parameters (a YSI multi- parameter instrument, and permanganate color chart or Hach colorimeter)	Semiannual

¹ Specify the COCs to be monitored in this media. List either type of COC (such as VOCs, metals) if all the COCs of that type will be monitored the same way.

² Describe the sampling or monitoring methods and QC procedures in Appendix 1 unless the proposed sampling or monitoring procedure is the same as the sampling or monitoring procedure described in the APAR.

³ Specify the sampling or monitoring point, such as the specific monitor well or general sampling or monitoring location.

⁴ Specify the depth or height of the sampling or monitoring points.

⁵ Specify the frequency at which this monitoring or sampling will occur.

Monitoring and Sampling

Associated Information: Attachment 3A

RAP Worksheet 3.1

ID No.: VCP No. 221 Report Date: September 2022

Page 2 of 4

Monitored Media	COC¹	Other parameter (specify)	Sampling Method ²	Sampling points or locations ³	Depth/Height ⁴ (ft.)	Analytical or Field Screening Method	Sampling or Monitoring Frequency ⁵
Groundwater PMZ Monitoring (POE Wells – Onsite)	Site-specific VOCs (cPCLs): 1,1-DCA (4.9 mg/L) 1,1-DCE (0.007 mg/L) 1,2-DCA (0.005 mg/L) cis-1,2-DCE (0.070 mg/L) PCE (0.005 mg/L) TCE (0.005 mg/L) VC (0.002 mg/L)	Field parameters (ORP, DO, specific conductance, temperature, turbidity, and pH)	HydraSleeve or low-flow sampling method	MW-01 MW-65 MW-108 MW-109 MW-110 MW-111 MW-112 MW-113 MW-183 (new)	18.58–28.58 19.5–29.5 22–32 22–32 21–31 21–31 22–32 25–35	SW8260C (site-specific VOCs); field parameters (a YSI multi- parameter instrument)	Annual

Monitoring and Sampling	RAP Worksheet 3.1	Page 3 of 4	
Associated Information: Attachment 3A	ID No.: VCP No. 221	Report Date: September 2022	

Groundwater MNA	Site-specific VOCs (cPCLs):	Field parameters	HydraSleeve or low-flow	MW-15R MW-16R	27–37 20–30	SW8260C (site-specific	Annual
Monitoring	1,1-DCA (4.9 mg/L)	(ORP, DO,	sampling	MW-17R	20–30	VOCs);	
(POE Wells – Offsite)	1,1-DCE (0.007 mg/L)	specific conductance,	method	MW-70	20–30	field	
- Offsite)	1,2-DCA <i>(0.005 mg/L)</i>	temperature,		MW-71	20-30	parameters (a YSI multi-	
	cis-1,2-DCE	turbidity, and		MW-74	22-32	parameter	
	(0.070 mg/L)	pH)		MW-76	20-30	instrument)	
	PCE (0.005 mg/L)			MW-77	25-35	·	
	TCE (0.005 mg/L)			MW-83	25–35		
	VC (0.002 mg/L)			MW-88	33–43		
				MW-89	32-42		
				MW-90	30–40		
				MW-92	38–48		
				MW-93R	32–42		
				MW-97	33–43		
				MW-98	31–41		
				MW-100	28–38		
				MW-106	36.5-46.5		
				MW-121	23–33		
				MW-122	23–33		
				MW-145	17.55–27.55		
				MW-146	25–35		
				MW-147	28–38		
				MW-160	22.75–32.75		
				MW-161	26.02-36.02		
				MW-162	27.5–37.5		
				MW-163	23.25–33.25		
				MW-168	30–40		
				MW-173R (replacement)	29.35–39.35		
				MW-178	35–45		
				MW-179	35–45		
				MW-180	29–39		
				MW-189 (new)	30–40		
				MW-190 (new)	30–40		

Monitoring and Sampling

Associated Information: Attachment 3A

RAP Worksheet 3.1

ID No.: VCP No. 221

Page 4 of 4

Report Date: September 2022

Monitored Media	COC¹	Other parameter (specify)	Sampling Method ²	Sampling points or locations ³	Depth/Height ⁴ (ft.)	Analytical or Field Screening Method	Sampling or Monitoring Frequency ⁵
Surface Water (HCFCD)	Site-specific VOCs (cPCLs): 1,1-DCA (4.1 mg/L) 1,1-DCE (0.05 mg/L) 1,2-DCA (0.443 mg/L) cis-1,2-DCE (7.49 mg/L) PCE (0.632 mg/L) TCE (0.888 mg/L) VC (0.0269 mg/L)	N/A	Grab	SWD-12 SWD-14 SWD-15 SWD-17 SWD-18 SWD-20	0-0.5 0-0.5 0-0.5 0-0.5 0-0.5	SW8260C (site-specific VOCs)	Annual

^a A 3-month post ISCO injection performance monitoring event may be added as needed to assess ISCO performance. Notes:

The depths are feet below top of casing (btoc) for groundwater and feet below water surface for surface water.

The cPCLs for surface water are 80% of the cPCLs calculated in the Human Health Ecological Risk Assessment for Surface Water and Sediment (ERM 2003b).

For ISCO performance monitor wells or adjacent monitor wells, if permanganate is present, the samples should be neutralized with ascorbic acid or other reagent prior to shipping to the laboratory for analysis of site-specific VOCs.

Explain the reasons for the above-listed monitoring and sampling plan.

The above-listed monitoring and sampling plan was developed to monitor the parameters required to evaluate effectiveness of the proposed ISCO injections and MNA, and to confirm that COCs concentrations within the PCLE zone meet the cPCLs at the end of the response action. The PMZ and MNA network wells were updated in accordance with the TCEQ comment letter dated August 31, 2021. Future modifications of the ISCO performance monitoring, PMZ, and MNA network will be proposed and documented in RAERs and/or letter reports to TCEQ in lieu of submittal of a RAP addendum, as long as the remedy remains consistent with the proposed approach in this document.

Operation and Maintenance

RAP Worksheet 3.2

ID No.: VCP No. 221 Report Date: September

2022

Page 1 of 1

Use this worksheet to describe the operation and maintenance (O&M) activities for each response action. In situations where the response action consists of more than one major component, for clarity one worksheet can be completed for each major component.

Response Action Name/Designation: ISCO and MNA

List all portions of the response action to which this information applies.

Describe the O&M and inspection activities that will be required to operate and maintain response action components.

ISCO injections will be conducted via injection wells. Routine O&M activities will include semiannual performance monitoring.

List and discuss the key operating parameters for a properly functioning response action. Address how changes in these parameters will result in operating changes, providing sufficient detail to explain how the operator will know the component is functioning properly.

During the injection event, injection rates and pressures, and the start and end times for delivering the designated amount of solution to each injection well, will be monitored and recorded to ensure that the injection is performed as designed. Water level, DO, ORP, conductivity, pH, temperature, and permanganate concentration will be monitored at the nearby monitor wells during the injection process. The groundwater parameters will be measured using a peristaltic pump or in-well pump or bailer, YSI multi-parameter water quality instrument, and permanganate color chart or Hach colorimeter. These field measurements will be used to optimize the radius of influence of the ISCO injection locations and to adjust the injection rates and volumes as needed. Monitoring will also be implemented to inhibit potential impacts to the nearby surface water bodies during the injection process.

List the routine tasks required to operate the response action.

Conduct ISCO performance monitoring semiannually following ISCO injections. Performance monitoring data will be used to evaluate effectiveness of the response action and determine whether additional ISCO injections are necessary to further reduce COC concentrations to less than 0.05 mg/L.

List the routine tasks required to maintain the response action, including scheduled inspections, maintenance, and component replacement.

The injection wells and monitor wells will be inspected annually. Damaged wells or wells with defects will be repaired or replaced promptly after discovering the defect.

Confirmation Sampling Plan

Associated Information: Attachment 4A

RAP Worksheet 4.0 Page 1 of 1

ID No.: VCP No. 221 Report Date: September 2022

List the COCs and other parameters that will be sampled to confirm completion of the response action. Illustrate the monitoring or sampling locations in Attachment 4A. If monitoring or observation wells will be constructed for the response action, provide well construction details in Attachment 2B if not previously provided. If needed, describe the sample collection and handling methods, if not previously provided, in Appendix 6

Media	COC¹	Other parameter (specify)	Sampling Method	Sampling points ²	Depth/height (ft.)	Analytical Method	Sampling Frequency
Groundwater	See Worksheet 3.1	None	HydraSleeve or low-flow method	See Worksheet 3.1	See Worksheet 3.1	See Worksheet 3.1	Once after all POE wells meet cPCLs

Explain the reasons for the above-listed sampling plan. Discuss statistical or geostatistical methodology(ies) which will be applied, if any, in the data collection process. Discuss any assumptions made in the statistical/geostatistical assessment, and how they will be met.

Refer to Worksheet 3.1 and Attachment 3A (confirmation sampling has been covered by ISCO performance monitoring, PMZ, and MNA network well monitoring). Sampling results will be used to verify that the residential PCLs are achieved within the offsite PCLE zones and onsite PCLE zones are within the PMZ. A statistical or geostatistical methodology will not be applied to the data collection process.

¹ Specify either a specific COC or type of COC (such as VOCs, metals).

² Specify the sampling point to the degree it is known, (for example, MW-1, or near former boring #2).

Post-Response Action Care

RAP Worksheet 5.0 Page 1 of 2

Associated Information: Attachments 5A-5C

ID No.: 33585

Report date: September 2022

Complete this worksheet only if Remedy Standard B will be used.

What is the proposed initial post-response action care period? (default 30 yr.)

Not years applicable

If the proposed initial post-response action care period is less than 30 years, provide a technical justification in accordance with §350.33(h).

Post-response action care will not be necessary for the onsite groundwater PCLE zone under Remedy Standard B due to the following reasons:

- The existing onsite groundwater PCLE zone is generally stable or declining based on COC concentration trends.
- ICs established as part of the PMZ will remove potential risk to human health and the environment by COCs in the groundwater. Thus, post-response action care will not be necessary in accordance with the Texas Administrative Code Title 30 §350.33(i).

What is the foreseeable land use during the post-response action care period?

Commercial/Industrial

Describe how the future use of the property will not compromise the integrity of the physical controls, will not interfere with the function of the monitoring systems, will not pose a threat to human health or the environment, and will be in accordance with any institutional controls.

Future use of the properties in both the onsite and offsite groundwater PCLE zones is not expected to change and will not impact the function or intended use of monitor and injection wells. If a well is damaged or destroyed the need to repair or replace it will be evaluated on a case-by-case basis. No physical controls are proposed for these response actions that would be impacted by future changes in property use.

Briefly describe the proposed post-response action care activities. Describe the type of monitoring and/or inspections to be performed. Discuss the rationale for not including COC(s) analyzed during the response action, monitoring or sampling point location, frequency of monitoring and/or inspections, and the duration of the monitoring program.

Not applicable		

Will PRAC sampling procedures be the same as those as previously documented for monitoring and/ or confirmation sampling?

Not applicable Yes No

If no, provide in Appendix 6 a description of the monitoring or sampling collection procedures to be conducted during the post-response action care period.

Post-Response Action Care

RAP Worksheet 5.0 Page 2 of 2

Associated Information: Attachments 5A-5C

Report date: September 2022

Cost Estimate

Complete this portion of the form only if a physical control is proposed (installed hydraulic control system, slurry wall, cap, etc.). Provide in Attachment 5B a detailed cost estimate for a third party to operate and maintain the physical control during the PRAC period, based on current dollar amount.

ID No.: 33585

3 · · · · · · · · · · · · · · · · · · ·	
Specify the physical control to which this information applies	Not applicable
Complete this worksheet for each physical control that	t will be used as part of the response action.
What is the total estimated annual cost of O&M for the	ne PRAC period? Not applicable
What is the total estimated cost for a third party to pe	erform PRAC activities? Not applicable
Identify the type of financial assurance mechanism to responsibility, if known.	be used, and the contact person managing fiduciary
Not applicable	

Does the person meet the criteria and definition of a small business? (see §350.33(n)) ___ Yes _X_No

If yes and the person desires to pursue the reduced amount of financial assurance, provide a legally binding affidavit as Attachment 5C. Include in the affidavit the information requested in 30 TAC §350.33(I), (m), and (n). An example affidavit is attached in the instructions.

Implementation Schedule

RAP Worksheet 6.0

Page 1 of 2

ID No.: VCP No. 221

Report Date: September 2022

Document the proposed schedule for implementing the response action. Include all major response action activities through the life of the project, including all removal, decontamination, and control actions, component installations, O&M, monitoring, and post-response action care activities.

Implementation of Response Action	Start	Finish	Duration
(specify component or action)			
2022 RAP Addendum Submitted to TCEQ	September 30, 2022	September 30, 2022	1 day
UIC Permit Application and TCEQ Approval (Phase 1 ISCO Pilot Study – Burn Pit and MW-113 Area)	September 30, 2022	October 30, 2022	1 month
TCEQ Review and Comments on 2022 RAP Addendum	October 1, 2022	January 1, 2023	3 months
Phase 1 Pilot Study Well Installation, Baseline Sampling, ISCO Injection, and Performance Monitoring	November 1, 2022	February 15, 2023	4 months
Response to TCEQ Comments on 2022 RAP Addendum (if necessary)	January 1, 2023	February 25, 2023	1.5 months
TCEQ Approval of 2022 RAP Addendum	February 26, 2023	April 30, 2023	2 months
UIC Permit Amendment and TCEQ Approval (Phase 2 ISCO Injection for Remaining Areas)	May 1, 2023	May 30, 2023	1 month
Submittal of 1st Half UIC Report (by May 31 each year)	May 31 each year	May 31 each year	1 day
Phase 2 Well Installation, Baseline Sampling, ISCO Injection, and Performance Monitoring (Remaining Areas)*	June 1, 2023	August 30, 2023	3 months
Complete Predesign Investigation for Leading-edge Downgradient Plume (pending access)*	Pending access	By November 30, 2023	1 month
Submittal of 2nd Half UIC Report (by November 30 each year)	November 30 each year	November 30 each year	1 day
Decommission of North Treatment System including Reinjection Wells and Extraction Wells and Piping*	November 1, 2023	By November 30, 2023	1 month
Well Installation and ISCO Injection – Leading-edge Downgradient Plume ^a	Pending access	2024	1 month
Conduct Annual Groundwater Monitoring (December each year)	TCEQ approval of the RAP	15 years of TCEQ approval of the RAP	15 years or until cPCLs are met
Submit RAER Annually (by March 31 each following year)	TCEQ approval of the RAP	15 years of TCEQ approval of the RAP	15 years or until cPCLs are met
Submit Groundwater RACR	3 months prior to the end of the 15 year time frame following TCEQ approval of the 2022 RAP Addendum, or once cPCLs are met in the PCLE zone	15 years following TCEQ approval of the 2022 RAP Addendum, or once cPCLs are met in the PCLE zone	3 months

^a The above schedule is subject to change pending TCEQ approval of the 2022 RAP Addendum and/or obtaining access to properties at the leading edge of the plume.

Implementation Schedule	RAP Worksheet 6.0	Page 2 of 2
	ID No.: VCP No. 221	Report Date: September 2022

List the proposed schedule for report submittals. Add additional lines if more reports than listed will be needed to complete the response action.

Reports	Submittal date
Response Action Effectiveness Report (RAER)	·
RAER Submittal Number 1	Annually until RACR approval
RAER Submittal Number 2	
RAER Submittal Number 3	
Response Action Completion Report (RACR)	15 years after TCEQ approval of the 2022 RAP Addendum, or whenever cPCLs are met in the PCLE zone
Post-Response Action Care Report (PRACR)	Not applicable

Appendix 1 References

Appendix 1 - References

2022 Response Action Plan Addendum ID No.: VCP 221

Report Date: September 2022

CH2M HILL Engineers, Inc. (CH2M). 2017a. 2017 Semiannual Monitoring Data Submittal, Voluntary Cleanup Program No. 221, Former Cameron Iron Works Facility, 1000 Silber Road, Houston, Texas. September 8.

CH2M HILL Engineers, Inc. (CH2M). 2017b. 2016 Annual Progress Report, Former Cameron Iron Works Facility, Houston, Texas. March 31.

CH2M HILL Engineers, Inc. (CH2M). 2017c. Well Optimization Strategy. March.

CH2M HILL Engineers, Inc. (CH2M). 2018a. 2018 Response Action Plan Addendum, Voluntary Cleanup Program No. 221, Former Cameron Iron Works Facility, 1000 Silber Road, Houston, Texas. February 15.

CH2M HILL Engineers, Inc. (CH2M). 2018b. 2018 Semiannual Monitoring Data Submittal, Voluntary Cleanup Program No. 221, Former Cameron Iron Works Facility, 1000 Silber Road, Houston, Texas. August 28.

CH2M HILL Engineers, Inc. (CH2M). 2018c. 2017 Annual Progress Report, Voluntary Cleanup Program No. 221, Former Cameron Iron Works Facility, 1000 Silber Road, Houston, Texas. April 12.

CH2M HILL Engineers, Inc. (CH2M). 2019a. 2019 Semiannual Monitoring Data Submittal, Voluntary Cleanup Program No. 221, Former Cameron Iron Works Facility, 1000 Silber Road, Houston, Texas. September 6.

CH2M HILL Engineers, Inc. (CH2M). 2019b. 2018 Annual Progress Report, Voluntary Cleanup Program No. 221, Former Cameron Iron Works Facility, 1000 Silber Road, Houston, Texas. March 27.

CH2M HILL Engineers, Inc. (CH2M). 2020a. *Response Action Plan Addendum, Former Cameron Iron Works Facility, Houston, Texas*. February.

CH2M HILL Engineers, Inc. (CH2M). 2020b. 2019 Response Action Effectiveness Report, Voluntary Cleanup Program No. 221, Former Cameron Iron Works Facility, 1000 Silber Road, Houston, Texas. March 30.

CH2M HILL Engineers, Inc. (CH2M). 2021a. *Response to TCEQ Comments on 2020 RAER, Former Cameron Iron Works Facility, Houston, Texas.* October 29.

CH2M HILL Engineers, Inc. (CH2M). 2021b. 2020 Response Action Effectiveness Report, Voluntary Cleanup Program No. 221, Former Cameron Iron Works Facility, 1000 Silber Road, Houston, Texas. March 30.

CH2M HILL Engineers, Inc. (CH2M). 2022a. Response to TCEQ Comments on 2021 Response Action Effectiveness Report Dated June 7, 2021. August 22.

CH2M HILL Engineers, Inc. (CH2M). 2022b. 2022 Pre-Design Investigation Data Submittal and Request for Response Action Plan Addendum Extension. June 17.

CH2M HILL Engineers, Inc. (CH2M). 2022c. 2021 Response Action Effectiveness Report, Voluntary Cleanup Program No. 221, Former Cameron Iron Works Facility, 1000 Silber Road, Houston, Texas. March 30.

Environmental Resources Management Group, Inc. (ERM). 2001. Affected Property Assessment Report for Ground Water, Former Cameron Iron Works Facility, Houston, Texas Voluntary Cleanup Program (VCP) No. 221. October 3.

Environmental Resources Management Group, Inc. (ERM). 2002a. *Phase I Assessment Activities Report, Evaluation of Hypothetical Indoor Air Exposure Pathway, Former Cameron Iron Works Facility, Houston, Texas Voluntary Cleanup Program (VCP) No. 221.* September 13.

Environmental Resources Management Group, Inc. (ERM). 2002b. *Phase II Assessment Activities Report, Evaluation of Hypothetical Indoor Air Exposure Pathway, Former Cameron Iron Works Facility, Houston, Texas Voluntary Cleanup Program (VCP) No. 221*. November 11.

Environmental Resources Management Group, Inc. (ERM). 2003a. *Response Action Plan, Former Cameron Iron Works Facility, Houston, Texas*. August.

Environmental Resources Management Group, Inc. (ERM). 2003b. *Human Health and Ecological Risk Assessment for Surface Water and Sediment, Former Cameron Iron Works Facility*. June.

1

Appendix 1 - References

2022 Response Action Plan Addendum ID No.: VCP No. 221 Report Date: September 2022

Environmental Resources Management Group, Inc. (ERM). 2009. *Response Action Plan Addendum, Former Cameron Iron Works Facility, Houston, Texas.* July.

Environmental Resources Management Group, Inc. (ERM). 2014. Second Addendum to Response Action Plan Addendum, Former Cameron Iron Works Facility, Houston, Texas. March.

Texas Commission on Environmental Quality (TCEQ). 2019a. Letter from Rodney Bryant, Texas Commission on Environmental Quality to Virgilio Cocianni, Cameron International regarding acceptance of the report entitled "2019 Semi-Annual Monitoring Data Transmittal." September 24.

Texas Commission on Environmental Quality (TCEQ). 2019b. Letter from Rodney Bryant, Texas Commission on Environmental Quality to Virgilio Cocianni, Cameron International regarding acceptance of the report entitled "2018 Annual Progress Report," Former Cameron Iron Works Facility, 1000 Silber Road, Houston, Harris County, Texas. June 4.

Texas Commission on Environmental Quality (TCEQ). 2019c. *Comments to 2018 Response Action Plan (RAP) Addendum dated February 15, 2018, Former Cameron Iron Works Facility, 1000 Silber Road, Houston, Harris County, Texas.* February 7.

Texas Commission on Environmental Quality (TCEQ). 2020. Letter from Rodney Bryant, Texas Commission on Environmental Quality to Virgilio Cocianni, Cameron International regarding acceptance of the report entitled "2019 Response Action Effectiveness Report," Former Cameron Iron Works Facility, 1000 Silber Road, Houston, Harris County, Texas. April 20.

Texas Commission on Environmental Quality (TCEQ). 2021. Comments to 2020 Response Action Effectiveness Report (RAER), Cameron – Katy Road Facility (Site), located at 1000 Silber Road, Houston, Harris County, TX. August 31.

Texas Commission on Environmental Quality (TCEQ). 2022a. *Comments to 2021 Response Action Effectiveness Report (RAER), Cameron – Katy Road Facility (Site), located at 1000 Silber Road, Houston, Harris County, TX.* June 7.

Texas Commission on Environmental Quality (TCEQ). 2022b. *Comments to 2022 Predesign Investigation Data Submittal and Request for Response Action Plan Addendum Extension, Cameron – Katy Road Facility (Site), located at 1000 Silber Road, Houston, Harris County, TX.* July 5.

2

Appendix 2 Data Tables and Boring Logs

Appendix 2-1. Annual Groundwater Data Summary (2021)

2022 Response Action Plan Addendum

Former Cameron Iron Works Facility, Houston, Texas

			Ana	lyte Group (Method):			Volatil	e Organic Compounds (SW	/8260C)		
				CAS:	75-34-3	75-35-4	107-06-2	156-59-2	127-18-4	79-01-6	75-01-4
				Analyte:	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
				cPCL:	4.9	0.007	0.005	0.07	0.005	0.005	0.002
Well ID	Sample ID	Well Type	Screen Interval (ft btoc)	Date Collected							
MW-100	MW-100-12142021	POE	28-38	12/14/2021	< 0.000244	< 0.000216	< 0.000285	0.000211 J	< 0.0005	< 0.000424	< 0.000234
MW-106	MW-106-12142021	POE	36.5-46.5	12/14/2021	0.00164	< 0.000216	< 0.000285	0.00648	< 0.0005	< 0.000424	0.0118
MW-108	MW-108-121421	POE	22-32	12/14/2021	< 0.000244	0.0552	< 0.000285	0.00711	< 0.0005	0.0172	< 0.000234
MW-109	MW-109-121421	POE	22-32	12/14/2021	0.0815	0.0346	< 0.000285	0.0397	0.019	0.00497 J	0.0163
MW-110	MW-110-121421	POE	22-32	12/14/2021	0.00277	0.00311	< 0.000285	0.00142	< 0.0005	< 0.000424	0.000372 J
MW-111	MW-111-121521	POE	21-31	12/15/2021	0.799	0.547	0.0036	0.00466	0.0196	0.00719	0.0941
MW-112	MW-112-121421	POE	21-31	12/14/2021	0.0225	0.0291	0.00282	0.000379 J	< 0.0005	< 0.000424	0.00511
MW-113	MW-113-121421	POE	22-32	12/14/2021	0.00973	0.0175	< 0.000285	0.00288	0.0121	0.00728	0.000751 J
MW-121	MW-121-12142021	POE	23-33	12/14/2021	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
MW-122	MW-122-12142021	POE	23-33	12/14/2021	0.00227	0.0258	< 0.000285	0.000254 J	0.00122	0.00104 J	< 0.000234
MW-145	MW-145-12142021	POE	17.55-27.55	12/14/2021	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
MW-146	MW-146-12202021	POE	25-35	12/20/2021	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
MW-147	MW-147-12142021	POE	28-38	12/14/2021	0.00075 J	0.00164	< 0.000285	0.00233	0.00304	0.00111 J	< 0.000234
MW-15R	MW-15R-12142021	POE	27-37	12/14/2021	0.00303	0.0403	< 0.000285	< 0.000174	< 0.0005	< 0.000424	0.00205
MW-160	MW-160-12202021	POE	22.75-32.75	12/20/2021	0.00103	0.00235	< 0.000285	0.00287	0.00276	0.00169 J	< 0.000234
MW-161	MW-161-12142021	POE	26.02-36.02	12/14/2021	0.0111	0.0482	< 0.000285	0.00137	0.00147	0.000726 J	< 0.000234
MW-162	MW-162-12202021	POE	27.5-37.5	12/20/2021	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
MW-163	MW-163-12202021	POE	23.25-33.25	12/20/2021	0.0148	0.0168	< 0.000285	0.00148	0.000835 J	0.000683 J	0.0011 J
MW-168	MW-168-12142021	POE	30-40	12/14/2021	0.00282	0.00983	0.000794 J	0.00638	0.0952	0.0138	0.000252 J
MW-178	MW-178-12142021	POE	35-45	12/14/2021	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
MW-179	MW-179-12152021	POE	35-45	12/15/2021	< 0.000244	0.00433	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
MW-17R	MW-17R-12142021	POE	20-30	12/14/2021	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
MW-70	MW-70-12142021	POE	20-30	12/14/2021	0.000919 J	0.00145	< 0.000285	0.00115	< 0.0005	0.000429 J	< 0.000234
MW-71	MW-71-12142021	POE	20-30	12/14/2021	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
MW-74	MW-74-12142021	POE	22-32	12/14/2021	< 0.000244	0.00338	< 0.000285	0.0416	0.00172	0.0088	0.0182
MW-76	MW-76-12142021	POE	20-30	12/14/2021	< 0.000244	< 0.000216	< 0.000285	< 0.000174	0.000577 J	< 0.000424	< 0.000234
MW-77	MW-77-12142021	POE	25-35	12/14/2021	0.00133	0.00518	< 0.000285	0.00163	0.000878 J	0.0015 J	< 0.000234
MW-83	MW-83-12142021	POE	25-35	12/14/2021	0.00815	0.0339	0.00174	0.0115	0.0409	0.00701	0.00222
MW-88	MW-88-12142021	POE	33-43	12/14/2021	0.00391	0.0197	< 0.000285	0.00186	0.0163	0.00331 J	< 0.000234
MW-89	MW-89-12142021	POE	32-42	12/14/2021	0.00335	0.0892	0.00134	0.000901 J	0.000568 J	0.00477 J	0.00746
MW-90	MW-90-12142021	POE	30-40	12/14/2021	0.0191	0.0454	< 0.000285	0.00134	0.0213	0.00293 J	< 0.000234
MW-92	MW-92-12142021	POE	38-48	12/14/2021	< 0.000244	< 0.000216	< 0.000285	< 0.000174	0.000922 J	< 0.000424	< 0.000234
MW-93R	MW-93R-12152021	POE	32-42	12/15/2021	0.00221	0.0098	< 0.000285	0.000885 J	0.11 JH	0.00596	< 0.000234
MW-97	MW-97-12142021	POE	33-43	12/14/2021	0.00352	0.0199	0.00107	0.00523	0.261	0.0218	< 0.000234
MW-98	MW-98-12142021	POE	31-41	12/14/2021	< 0.000244	0.00146	< 0.000285	< 0.000174	0.00162	< 0.000424	< 0.000234
MW-50R	MW-50R-12142021	AMP	20-30	12/14/2021	0.00622 J	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
MW-01	MW-01-121421	POE	18.58-28.58	12/14/2021	0.000584 J	0.00164	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
MW-65	MW-65-121421	POE	19.5-29.5	12/14/2021	0.00592	0.00906	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234

FES0307220019PNS Page 1 of 2

Appendix 2-1. Annual Groundwater Data Summary (2021)

2022 Response Action Plan Addendum

Former Cameron Iron Works Facility, Houston, Texas

			Ana	lyte Group (Method):			Volatile Organic Compounds (SW8260C)				
		CAS: 75-34-3					107-06-2	156-59-2	127-18-4	79-01-6	75-01-4
				Analyte:	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
				cPCL:	4.9	0.007	0.005	0.07	0.005	0.005	0.002
Well ID	Sample ID	Well Type	Screen Interval (ft	Date Collected							
			btoc)								

Notes:

The concentrations are presented in milligrams per liter (mg/L).

The cPCLs are the lower of the $^{GW}GW_{lng}$ and $^{Air}GW_{lnh-V}$ Tier I PCLs for residential land use based on the latest PCL tables (January 2021).

Bold values indicate a detected concentration.

Bold and shaded values exceed the cPCL at the same number of significant figures as the associated criterion.

POE well MW-16R could not be sampled due to permanganate in well.

< = nondetected result less than the sample detection limit

Air GW_{Inh-V} = inhalation of volatiles from groundwater

btoc = below top of casing

CAS = Chemical Abstracts Service

cPCL = critical protective concentration level

ID = identification

J = estimated concentration

JH = estimated concentration biased high

MW = monitor well

PCL = protective concentration levels

POE = point of exposure

R = replacement well

FES0307220019PNS Page 2 of 2

Appendix 2-2. Annual Groundwater Indicator Parameter Summary (2021)

2022 Response Action Plan Addendum

Former Cameron Iron Works Facility, Houston, Texas

Well ID	Date Measured	pH (SU)	Temperature (°C)	Specific Conductance (mS/cm)	Oxidation-Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
Annual Event							
MW-01	12/14/2021	6.55	24.6	0.689	107.0	3.48	7.60
MW-15R	12/14/2021	6.93	23.1	0.526	180.0	2.85	9.11
MW-16R	12/14/2021	NS	NS	NS	NS	NS	NS
MW-17R	12/14/2021	6.98	23.8	0.867	181.2	2.82	6.68
MW-50R	12/14/2021	6.62	23.3	0.747	42.1	3.24	1.20
MW-65	12/14/2021	7.00	23.3	0.796	175.0	2.62	3.87
MW-70	12/14/2021	6.87	23.9	0.797	145.8	2.98	20.60
MW-71	12/14/2021	6.92	23.3	0.762	163.2	3.21	6.54
MW-74	12/14/2021	6.98	24.8	0.795	98.0	2.65	10.20
MW-76	12/14/2021	6.61	22.4	1.029	176.0	2.68	13.50
MW-77	12/15/2021	6.89	22.9	1.268	184.0	2.61	8.32
MW-83	12/14/2021	6.83	23.8	1.243	178.4	2.97	14.00
MW-88	12/14/2021	6.97	23.4	1.498	179.2	2.98	12.80
MW-89	12/14/2021	6.72	23.6	1.345	206.0	3.21	450
MW-90	12/14/2021	6.85	23.7	1.930	176.9	3.82	1.75
MW-92	12/14/2021	7.00	23.7	0.939	200.1	3.28	3.23
MW-93R	12/15/2021	6.78	22.3	1.721	197.4	2.35	12.50
MW-97	12/14/2021	6.80	23.4	1.371	142.8	3.28	7.69
MW-98	12/14/2021	6.60	24.0	1.844	152.1	3.28	5.60
MW-100	12/14/2021	6.64	24.0	0.802	164.2	3.08	22.50
MW-106	12/14/2021	6.87	23.2	0.795	42.8	2.12	7.69
MW-108	12/14/2021	6.35	21.3	0.538	139.0	3.06	12.70
MW-109	12/14/2021	6.60	21.4	1.062	165.0	2.70	6.10
MW-110	12/14/2021	6.64	21.6	0.654	151.0	2.83	4.10
MW-111	12/15/2021	6.98	22.8	0.865	175.0	2.62	28.70
MW-112	12/14/2021	6.79	22.3	0.877	163.0	2.86	14.00
MW-113	12/14/2021	6.79	23.2	0.890	175.0	3.11	14.00
MW-121	12/14/2021	6.58	23.6	0.968	205.0	2.98	9.17
MW-122	12/14/2021	6.84	24.2	1.537	205.2	3.02	13.60
MW-145	12/14/2021	NM	NM	NM	NM	NM	NM
MW-146	12/20/2021	6.72	17.1	0.734	101.6	2.89	650
MW-147	12/14/2021	6.71	24.8	1.130	186.3	3.20	99.00
MW-160	12/20/2021	6.80	17.3	1.016	23.6	3.01	230
MW-161	12/14/2021	6.75	25.2	1.630	164.2	3.12	91.00
MW-162	12/20/2021	6.90	16.6	0.856	203.8	2.38	12.20
MW-163	12/20/2021	6.93	17.9	1.092	178.2	2.32	720
MW-168	12/14/2021	NM	NM	NM	NM	NM	NM
MW-178	12/14/2021	6.87	24.0	0.956	130.5	2.98	10.40
MW-179	12/15/2021	6.95	23.1	1.394	199.4	2.85	11.60

Notes:

Values represent the field parameter from residual water remaining after sample collection with HydraSleeve.

°C = degrees Celsius

ID = identification

mg/L = milligram per liter

mS/cm = millisiemens per centimeter

mV = millivolt

MW = monitor well

NM = parameter not measured due to insufficient sample volume

NS = Not Sampled

NTU = nephelometric turbidity unit

R = replacement well

SU = standard unit

FES0307220019PNS 1 OF 1

Well ID	Date Installed	Casing Diameter (inches)	Constructed Total Depth (feet btoc)	Top of Screen Depth (feet btoc)	Top of Casing Elevation ^a (feet amsl)	Date Measured	Measured Depth to Water (feet btoc)	Groundwater Elevation (feet amsl)
MW-01	08/09/1991	2	28.58	18.58	65.78	12/13/2021	17.05	48.73
MW-15R	09/02/2003	2	39.00	27.00	65.23	12/13/2021	19.09	46.14
MW-16R	09/02/2003	2	32.00	20.00	64.23	12/13/2021	18.43	45.80
MW-17R	09/03/2003	2	32.00	20.00	65.44	12/13/2021	21.00	44.44
MW-50R	02/07/2010	2	32.00		66.93	12/13/2021	17.71	49.22
MW-65		2	32.00		65.17	12/13/2021	18.45	46.72
MW-70	02/02/2001	2	32.00		65.08	12/13/2021	19.29	45.79
MW-71	02/02/2001	2	32.00		63.45	12/13/2021	19.18	44.27
MW-74	06/04/2001	2	34.00	22.00	63.50	12/13/2021	20.36	43.14
MW-76	02/05/2001	2	32.00		62.64	12/13/2021	21.81	40.83
MW-77	05/30/2001	2	37.00	25.00	63.50	12/13/2021	19.75	43.75
MW-83	05/29/2001	2	37.00	25.00	61.52	12/13/2021	24.25	37.27
MW-88	05/22/2001	2	45.00	33.00	62.48	12/13/2021	28.20	34.28
MW-89	05/31/2001	2	44.00	32.00	62.18	12/13/2021	30.71	31.47
MW-90	05/23/2001	2	42.00	30.00	62.50	12/13/2021	29.52	32.98
MW-92	05/24/2001	2	50.00	38.00	63.32	12/13/2021	34.91	28.41
MW-93R	04/12/2017	2	42.00	32.00	59.99	12/13/2021	31.11	28.88
MW-97	02/04/2002	2	45.00	33.00	60.71	12/13/2021	30.00	30.71
MW-98	02/06/2002	2	43.00	31.00	60.43	12/13/2021	33.01	27.42
MW-100	06/13/2002	2	37.60		65.07	12/13/2021	20.64	44.43
MW-106	11/11/2001	2	50.00		59.42	12/13/2021	34.97	24.45
MW-108		2	33.50		64.47	12/13/2021	17.17	47.30
MW-109		2	33.50		65.47	12/13/2021	17.39	48.08
MW-110		2	33.50		64.92	12/13/2021	18.10	46.82
MW-111		2	32.50		64.40	12/14/2021	17.97	46.43
MW-112		2	33.00		65.94	12/13/2021	19.89	46.05
MW-113		2	33.50		64.20	12/13/2021	18.38	45.82
MW-121	06/11/2003	2	34.50		63.29	12/13/2021	22.90	40.39
MW-122	06/10/2003	2	34.00		62.78	12/13/2021	23.50	39.28
MW-145	05/18/2007	1	27.55	17.55	62.04	12/13/2021	22.35	39.69
MW-146	05/18/2007	1	35.00	25.00	61.74	12/13/2021	22.95	38.79
MW-147	05/16/2007	1	38.00	28.00	61.22	12/13/2021	23.35	37.87
MW-160	08/22/2007	1	32.75	22.75	60.85	12/13/2021	25.25	35.60
MW-161	08/22/2007	1	36.02	26.02	59.03	12/13/2021	25.25	33.78
MW-162	08/22/2007	1	37.50	27.50	59.13	12/13/2021	27.50	31.63
MW-163	08/22/2007	1	33.25	23.25	61.74	12/13/2021	24.01	37.73
MW-168	12/27/2007	1	40.00	30.00	60.44	12/13/2021	28.12	32.32
MW-178	04/12/2017	2	45.00	35.00	64.34	12/13/2021	24.98	39.36
MW-179	11/27/2017	2	44.39	34.00	60.95	12/13/2021	33.50	27.45

Notes:

 $^{\rm a}$ - Monitor well top-of-casing elevations were resurveyed between March 27 and April 16, 2018.

-- = Information not available

amsl = above mean sea level

btoc = below top of casing

ID = identification

MW = monitor well

NM = not measured

R = replacement well

FES0307220019PNS Page 1 of 1

Appendix 2-4. Surface Water Data Summary (2021 - 2022)

2022 Response Action Plan Addendum

Former Cameron Iron Works Facility, Houston, Texas

	Anal	yte Group (Method):			Volatile Orga	nic Compounds (SW8260	OC)		
		CAS:	75-34-3	75-35-4	107-06-2	156-59-2	127-18-4	79-01-6	75-01-4
		Analyte:	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
	С	PCL (Surface Water):	4.1	0.05	0.443	7.49	0.632	0.888	0.0269
Well ID	Well Type	Date Collected							
SWD-12	HCFCD	06/29/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
SWD-14	HCFCD	06/29/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
SWD-15	HCFCD	12/15/2021	< 0.000244	0.0125	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
SWD-17	HCFCD	12/15/2021	< 0.000244 J	0.00591 JL	< 0.000285 J	< 0.000174 J	< 0.0005 J	< 0.000424 J	< 0.000234 J
SWD-18	HCFCD	12/15/2021	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
SWD-20	HCFCD	12/15/2021	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234

Notes:

The concentrations are presented in milligrams per liter (mg/L).

The cPCLs for surface water are 80% of the cPCLs calculated in the Human Health Ecological Risk Assessment for Surface Water and Sediment (June 2003).

Bold values indicate a detected concentration.

< = nondetected result less than the sample detection limit

CAS = Chemical Abstracts Service

cPCL = critical protective concentration level

HCFCD = Harris County Flood Control Ditch

ID = identification

J = estimated concentration

JL = estimated concentration biased low

SWD = surface water sampling locations

FES0307220019PNS Page 1 of 1

Appendix 2-5. Predesign Investigation Groundwater Data Summary (2022)

2022 Response Action Plan Addendum

Former Cameron Iron Works Facility, Houston, Texas

		Analyte Group (Method): Volatile Organic Compounds (SW8260C) CAS: 75-34-3 75-35-4 107-06-2 156-59-2 1						127-18-4	79-01-6	75-01-4	
				Analyte:	75-34-3 1,1-Dichloroethane	75-35-4 1,1-Dichloroethene	107-06-2 1,2-Dichloroethane	cis-1,2-Dichloroethene	127-18-4 Tetrachloroethene	79-01-6 Trichloroethene	75-01-4 Vinyl Chloride
				cPCL:	4.9	0.007	0.005	0.07	0.005	0.005	0.002
Vell ID	Sample ID	Well or Sample	Screen Interval (ft btoc) or	Date Collected	-						
		Туре	Sample Interval (ft bgs)								
W-163	MW-163-051922	POE	23.25-33.25	05/19/2022	0.0189	< 0.000216	< 0.000285	0.00453	0.0039	0.00234 J	0.00227
W-181	MW-181-051922	AMP	25-35	05/19/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
W-182	MW-182-051922	AMP	25-35	05/19/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-01	SB-01-02-051322	Grab	25-30	05/13/2022	0.00971	0.00146 J	0.00334 J	< 0.00087	< 0.0025	< 0.00212	< 0.00117
-01	SB-01-03-051322	Grab	30-35	05/13/2022	< 0.00122	< 0.00108	0.00879	< 0.00087	< 0.0025	< 0.00212	< 0.00117
I-02	SB-02-03-051222	Grab	38-43	05/12/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
3-03	SB-03-01-051322	Grab	25-30	05/13/2022	0.0024	0.00606	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
3-03	SB-03-02-051322	Grab	30-35	05/13/2022	0.00269	0.00579	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-03	SB-03-03-051322	Grab	36-41	05/13/2022	0.00233	0.00407	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-04	SB-04-01-051122	Grab	18-23	05/11/2022	0.00694	0.00449	< 0.000285	0.00221	< 0.0005	< 0.000424	0.00357
-04	SB-04-02-051122	Grab	25-30	05/11/2022	0.00748	0.00636	< 0.000285	0.00145	< 0.0005	< 0.000424	0.000604 J
-04	SB-04-03-051122	Grab	31-36	05/11/2022	0.0168	0.0284	< 0.000285	0.00224	< 0.0005	< 0.000424	0.0014 J
-05	SB-05-01-051622	Grab	20-25	05/16/2022	< 0.000244	0.00106	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-05	SB-05-02-051622	Grab	27-32	05/16/2022	< 0.000244	0.000505 J	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-05	SB-05-03-051622	Grab	35-40	05/16/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-06	SB-06-01-051122	Grab	18-23	05/11/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-06	SB-06-02-051122	Grab	23-27	05/11/2022	< 0.000244	0.000805 J	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-06	SB-06-03-051122	Grab	27-32	05/11/2022	0.0258	0.013	< 0.000285	0.000355 J	< 0.0005	< 0.000424	0.00298
-07	SB-07-01-051022	Grab	18-23	05/10/2022	0.00471	0.00462	< 0.000285	0.0156	0.0222 J	0.0133	0.00141 J
-08	SB-08-01-051022	Grab	18-23	05/10/2022	0.11	0.122	0.00273	0.179	0.0862	0.057	0.0452
-08	SB-08-02-051022	Grab	24-29	05/10/2022	0.0461	0.0765	< 0.00273	0.904	0.293	0.226	0.218
-08	SB-08-03-051022	Grab	30-35	05/10/2022	0.0461	0.0765	< 0.00143	0.904	0.293	0.00231 J	0.218
-10	SB-10-02-051622	Grab	27-32		< 0.000244	< 0.0018	< 0.000285	< 0.000174		< 0.002313	< 0.000234
-10				05/16/2022					< 0.0005		
	SB-10-03-051622	Grab	33-38	05/16/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-11	SB-11-01-050522	Grab	23-28	05/05/2022	< 0.000244	0.000468 J	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-11	SB-11-02-050522	Grab	28-33	05/05/2022	< 0.000244	0.000785 J	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
3-11	SB-11-03-050522	Grab	33-38	05/05/2022	0.0052	0.0253	0.000417 J	0.00121	0.00401	0.00172 J	< 0.000234
3-12	SB-12-03-050622	Grab	38-43	05/06/2022	0.00339	0.0386	0.000911 J	0.00043 J	< 0.0005	0.002 J	< 0.000234
-13	SB-13-02-050422	Grab	30-35	05/04/2022	0.00957	0.0459	< 0.000285	0.00651	0.00262	0.00329 J	< 0.000234
-13	SB-13-03-050422	Grab	40-45	05/04/2022	0.0179	0.0777	< 0.000285	0.0132	0.00519 J	0.00561	0.00195 J
-14	SB-14-01-050322	Grab	25-30	05/03/2022	< 0.000244	0.000532 J	< 0.000285	0.000952 J	0.00548	0.00124 J	< 0.000234
-14	SB-14-02-050322	Grab	30-35	05/03/2022	0.000657 J	0.00221	0.000585 J	0.00377	0.0111	0.00368 J	< 0.000234
-14	SB-14-03-050322	Grab	40-45	05/03/2022	0.00941	0.0244	0.000901 J	0.0097	0.0385	0.00761	0.00203
-15	SB-15-03-050422	Grab	40-45	05/04/2022	0.0111	0.0197	0.00274	0.0196	0.0259 JH	0.00884	0.00136 J
-16	SB-16-01-050222	Grab	25-30	05/02/2022	< 0.000244	0.00179	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-16	SB-16-02-050222	Grab	30-35	05/02/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-16	SB-16-03-050222	Grab	40-45	05/02/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-17	SB-17-02-051822	Grab	30-35	05/18/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-17	SB-17-03-051822	Grab	40-45	05/18/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
-18	SB-18-02-050922	Grab	25-30	05/09/2022	0.00119	0.00663	< 0.000285	0.000951 J	0.000953 J	0.000626 J	< 0.000234
-18	SB-18-03-050922	Grab	30-34	05/09/2022	0.0106	0.067	0.0004 J	0.00796	0.00185	0.00268 J	0.000892 J
-19	SB-19-03-050522	Grab	35-40	05/05/2022	0.00284	0.00913	< 0.000285	0.00118	0.0405 J	0.0038 J	< 0.000234
3-31	SB-31-02-050922	Grab	22-27	05/09/2022	< 0.000244	0.00313	< 0.000285	< 0.000174	0.000504 JH	< 0.000424	< 0.000234
3-31	SB-31-03-050922	Grab	27-32	05/09/2022	< 0.000244	0.000574 J	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
3-32	SB-32-03-050922	Grab	37-42	05/09/2022	0.324	0.648	0.00335	0.0056	0.0347	0.00574	0.0431
	0000222		·	,,							3.0.01

FES0606220950PNS Page 1 of 3

Appendix 2-5. Predesign Investigation Groundwater Data Summary (2022)

2022 Response Action Plan Addendum

Former Cameron Iron Works Facility, Houston, Texas

			Analy	te Group (Method):			Volati	ile Organic Compounds (SW	3260C)		
				CAS:	75-34-3	75-35-4	107-06-2	156-59-2	127-18-4	79-01-6	75-01-4
				Analyte:	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
	Sample ID	Well or Sample	Screen Interval (ft btoc) or	cPCL:	4.9	0.007	0.005	0.07	0.005	0.005	0.002
	Sample 15	Type	Sample Interval (ft bgs)	Date Collected							
SB-	3-33-02-050622	Grab	30-35	05/06/2022	0.00136	0.0221	< 0.000285	0.000225 J	< 0.0005	0.00131 J	< 0.000234
SB-	3-33-03-050622	Grab	35-40	05/06/2022	0.0104	0.185	0.00201	0.00174	0.000679 J	0.0105	< 0.000234
SB-	3-34-01-062822	Grab	23-28	06/28/2022	0.00638	0.00764	< 0.000285	0.000344 J	0.000914 J	< 0.000424	0.000554 J
SB-	3-34-02-062822	Grab	28-32	06/28/2022	0.00781	0.0142	< 0.000285	0.00191	0.00423	0.00189 J	0.00113 J
SB-	3-34-03-062822	Grab	33-38	06/28/2022	0.0315	0.0377	< 0.000285	0.00129	0.00116	0.000781 J	0.00553
SB-	3-35-01-062422	Grab	22-27	06/24/2022	0.00926	0.00714	< 0.000285	0.00937	0.0333	0.0384	0.002
SB-	3-35-02-062422	Grab	28-33	06/24/2022	0.00726	0.00615	< 0.000285	0.0132	0.0413	0.06	0.00223
SB-	3-35-03-062422	Grab	35-40	06/24/2022	0.0212	0.016	0.000308 J	0.00489	0.0249	0.0102	0.00379
SB-	3-36-02-062722	Grab	28-33	06/27/2022	0.117	0.0691	0.00146	0.00201	0.00322	0.000979 J	0.00863
SB-	3-36-03-062722	Grab	34-39	06/27/2022	0.193	0.131	0.00218 J	0.00345 J	0.00803	0.00259 J	0.0139
SB-	3-37-01-062222	Grab	18-23	06/22/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
SB-	3-37-02-062222	Grab	23-28	06/22/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
SB-	3-38-02-062222	Grab	27-32	06/23/2022	0.0083	0.00759	< 0.000285	0.0116	0.000907 J	0.00196 J	0.00871
SB-	3-38-03-062222	Grab	34-39	06/23/2022	0.00335	0.00103	< 0.000285	0.00397	< 0.0005	< 0.000424	0.00248
SB-	3-39-02-062322	Grab	25-30	06/23/2022	0.0365	0.00879	< 0.000285	0.217	< 0.0005	0.00072 J	0.132
SB-	3-39-03-062322	Grab	35-40	06/23/2022	0.0235	0.00445	< 0.000285	0.148	< 0.0005	< 0.000424	0.0881
SB-	3-40-01-062222	Grab	19-24	06/22/2022	0.0155	0.00405	< 0.000285	0.11	0.0347	0.0133	0.0195
SB-	3-40-02-062222	Grab	25-30	06/22/2022	0.0855	0.0256	0.000559 J	0.0208	0.0065	0.00273 J	0.0349
	3-40-03-062222	Grab	35-40	06/22/2022	0.0324 JH	0.0108	< 0.000285	0.00346	< 0.0005	0.000533 J	0.0155
SB-	3-41-01-062222	Grab	23-28	06/22/2022	0.0122	0.0142	< 0.000285	0.0147	< 0.0005	0.00168 J	0.00528
	3-41-02-062222	Grab	31-36	06/22/2022	0.00431	0.00217 J	< 0.000285	0.00259 J	0.00056 J	0.00133 J	0.000714 J
SB-	3-41-03-062222	Grab	36-41	06/22/2022	0.00382	0.00177	< 0.000285	0.00146	< 0.0005	0.000426 J	< 0.000234
SB-	3-42-01-062022	Grab	18-23	06/21/2022	0.0195	0.0125	< 0.000285	0.00421	< 0.0005	0.00129 J	0.00425
SB-	3-42-02-062022	Grab	26-31	06/21/2022	0.0129	0.00922	< 0.000285	0.01	0.002	0.00585	0.00204
SB-	3-42-03-062022	Grab	35-40	06/21/2022	0.0111	0.00487	< 0.000285	0.00111	< 0.0005	0.000611 J	0.00465
SB-	3-43-02-062022	Grab	28-33	06/21/2022	0.00873	0.00628	< 0.000285	1.2	5.6	2.85	0.142
SB-	3-43-03-062022	Grab	36-41	06/21/2022	0.0136	0.00351	< 0.000285	0.0205	0.0143	0.0339	0.00857
SB-	3-44-02-062022	Grab	30-35	06/20/2022	0.0308	0.00188	< 0.000285	0.00333	< 0.0005	< 0.000424	0.00563
SB-	3-44-03-062022	Grab	36-41	06/20/2022	0.0245	0.000898 J	< 0.000285	0.0077	< 0.0005	< 0.000424	0.00352
SB-	3-45-02-062422	Grab	28-33	06/24/2022	0.000547 J	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
SB-	3-45-03-062422	Grab	35-40	06/24/2022	< 0.000244	< 0.000216	< 0.000285	< 0.000174	< 0.0005	< 0.000424	< 0.000234
SB-	3-46-01-062822	Grab	20-25	06/28/2022	0.000945 J	< 0.000216	< 0.000285	0.000876 J	0.00562	0.00416 J	< 0.000234
SB-	3-46-02-062822	Grab	26-31	06/28/2022	0.00165	0.000417 J	< 0.000285	0.00126	0.00933	0.00731	< 0.000234
SB-	3-46-03-062822	Grab	32-37	06/28/2022	0.00163	0.000395 J	< 0.000285	0.00128	0.00909	0.01	< 0.000234
SB-	3-47-02-062822	Grab	26-31	06/28/2022	0.00457	0.00162	< 0.000285	0.248	0.715	0.858	0.0242
	3-47-03-062822	Grab	33-38	06/28/2022	0.00276	0.000436 J	< 0.000285	0.0121	0.00711	0.0196	0.00393
	3-48-01-062922	Grab	20-25	06/29/2022	0.03	0.0203	0.00176	0.272	0.261	0.266	0.0353
	3-48-02-062922	Grab	26-31	06/29/2022	0.00528	0.00142	< 0.000285	0.0612	0.0863	0.162	0.0117
									0.0315		0.00635
	3-48-03-062922	Grab	32-37	06/29/2022	0.00476	0.00106	< 0.000285	0.0365			

FES0606220950PNS Page 2 of 3

Appendix 2-5. Predesign Investigation Groundwater Data Summary (2022)

2022 Response Action Plan Addendum

Former Cameron Iron Works Facility, Houston, Texas

			Analyte Group (Method): Volatile Organic Compounds (SW8260C)								
				CAS:	75-34-3	75-35-4	107-06-2	156-59-2	127-18-4	79-01-6	75-01-4
				Analyte:	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl Chloride
				cPCL:	4.9	0.007	0.005	0.07	0.005	0.005	0.002
Well ID	Sample ID	Well or Sample	Screen Interval (ft btoc) or	Date Collected							
		Type	Sample Interval (ft bgs)								

Notes:

The concentrations are presented in milligrams per liter. The cPCLs are the lower of the $^{\rm GW}GW_{\rm ing}$ and $^{\rm Ar}GW_{\rm inh-V}$ Tier I PCLs for residential land use based on the latest PCL tables (March 2022).

Bold values indicate a detected concentration.

Bold and shaded values exceed the cPCL at the same number of significant figures as the associated

 $\,$ < = nondetected result less than the sample detection limit

Air GW_{Inh-V} = inhalation of volatiles from groundwater

AMP = attenuation monitoring point

CAS = Chemical Abstracts Service

cPCL = critical protective concentration level

ft bgs = foot (feet) below ground surface

ft btoc = foot (feet) below top of casing

 $^{\rm GW}\!{\rm GW}_{\rm Ing}$ = groundwater ingestion pathway

ID = identification

J = estimated concentration

JH = estimated concentration biased high

PCL = protective concentration level

POE = point of exposure

FES0606220950PNS Page 3 of 3

Data Usability Summary

2022 Pre-Design Investigation Groundwater Sampling Voluntary Cleanup Program No. 221 Former Cameron Iron Works Facility 1000 Silber Road, Houston, Texas

A CH2M HILL Engineers, Inc. (CH2M) project chemist reviewed twenty data packages from Eurofins Xenco Stafford of Stafford, Texas for the analysis of groundwater samples collected between May 2 and June 29, 2022, at the Former Cameron Iron Works Facility in Houston, Texas (site).

Data were reviewed for conformance to the requirements of the Texas Commission on Environmental Quality (TCEQ) guidance document, *Review and Reporting of COC Concentration Data Under TRRP* (RG-366/Texas Risk Reduction Program [TRRP]-13) and adherence to project objectives.

CH2M asserts that, at the time the laboratory data were generated for the project, the laboratory was accredited by the National Environmental Laboratory Accreditation Conference under the Texas Laboratory Accreditation Program for the matrixes, analytes, and methods of analysis requested on the chain-of-custody documentation. A copy of the laboratory's National Environmental Laboratory Accreditation Program certificates (applicable to the period during which the laboratory generated the data in this report) is included with this data usability summary (DUS).

Intended Use of Data: The laboratory data included in this report provide information on concentrations of the chemicals of concern (COCs) in the groundwater at the site during the 2022 pre-design investigation.

The following analysis was performed:

 SW-846 5030/8260C and 5030/8260D — Volatile Organic Compounds (VOCs) by Gas Chromatography/Mass Spectrometry (GC/MS)

Data were reviewed and validated as described in *Review and Reporting of COC Concentration Data* (RG-366/TRRP-13). The results of the review and validation are discussed in this DUS. The following laboratory submittals were examined:

- Reportable data
- Laboratory review checklists (LRCs) and associated exception reports (ERs)
- Field notes with respect to field instrument calibrations, filtering procedures, sampling procedures, and preservation procedures before shipping the samples to the laboratory

The results of supporting quality control (QC) analyses were summarized in the LRCs, ERs, and case narratives.

The LRCs, associated ERs, and reportable data that were reviewed are included with this DUS.

DATA USABILITY SUMMARY 2022 PRE-DESIGN INVESTIGATION VOLUNTARY CLEANUP PROGRAM NO. 221 FORMER CAMERON IRON WORKS FACILITY 1000 SILBER ROAD, HOUSTON, TEXAS

Introduction

Eighty-seven groundwater samples were analyzed for VOCs. Field QC samples analyzed included ten field duplicates, twenty trip blanks, and two equipment rinsate blanks. Table 1 lists the sample identifications cross-referenced to laboratory identifications.

Table 1. Cross-referenced Field Sample Identifications and Laboratory Identifications

Data Usability Summary

Former Cameron Iron Works Facility, Houston, Texas

Field Identification	Laboratory Identification	Matrix	Date Collected
SB16-01-050222	860-25480-1	WATER	5/2/2022
SB16-02-050222	860-25480-2	WATER	5/2/2022
SB16-03-050222	860-25480-3	WATER	5/2/2022
FD-01-050222	860-25480-4	WATER	5/2/2022
TB-01-050222	860-25480-5	WATER	5/2/2022
SB14-03-050322	860-25535-1	WATER	5/3/2022
SB14-02-050322	860-25535-2	WATER	5/3/2022
SB14-01-050322	860-25535-3	WATER	5/3/2022
TB-01-050322	860-25535-4	WATER	5/3/2022
SB15-03-050422	860-25663-1	WATER	5/4/2022
SB13-03-050422	860-25663-2	WATER	5/4/2022
SB13-02-050422	860-25663-3	WATER	5/4/2022
FD-01-050422	860-25663-4	WATER	5/4/2022
TB-01-050422	860-25663-5	WATER	5/4/2022
SB19-03-050522	860-25762-1	WATER	5/5/2022
SB11-03-050522	860-25762-2	WATER	5/5/2022
SB11-02-050522	860-25762-3	WATER	5/5/2022
SB11-01-050522	860-25762-4	WATER	5/5/2022
TB-01-050522	860-25762-5	WATER	5/5/2022
SB33-03-050622	860-25832-1	WATER	5/6/2022
SB33-02-050622	860-25832-2	WATER	5/6/2022
SB33-01-050622	860-25832-3	WATER	5/6/2022
SB12-03-050622	860-25832-4	WATER	5/6/2022
FD-01-020622	860-25832-5	WATER	5/6/2022
TB-01-020622	860-25832-6	WATER	5/6/2022
SB31-03-050922	860-25901-1	WATER	5/9/2022
SB31-02-050922	860-25901-2	WATER	5/9/2022
SB32-03-050922	860-25901-3	WATER	5/9/2022
SB18-03-050922	860-25901-4	WATER	5/9/2022
SB18-02-050922	860-25901-5	WATER	5/9/2022
TB-01-050922	860-25901-6	WATER	5/9/2022
SB07-01-051022	860-25965-1	WATER	5/10/2022
SB08-03-051022	860-25965-2	WATER	5/10/2022

Table 1. Cross-referenced Field Sample Identifications and Laboratory Identifications

Data Usability Summary

Former Cameron Iron Works Facility, Houston, Texas

Field Identification	Laboratory Identification	Matrix	Date Collected
SB08-02-051022	860-25965-3	WATER	5/10/2022
SB08-01-051022	860-25965-4	WATER	5/10/2022
FD-01-051022	860-25965-5	WATER	5/10/2022
TB-01-051022	860-25965-6	WATER	5/10/2022
SB04-03-051122	860-26040-1	WATER	5/11/2022
SB04-02-051122	860-26040-2	WATER	5/11/2022
SB04-01-051122	860-26040-3	WATER	5/11/2022
SB06-03-051122	860-26040-4	WATER	5/11/2022
SB06-02-051122	860-26040-5	WATER	5/11/2022
SB06-01-051122	860-26040-6	WATER	5/11/2022
EB-01-051122	860-26040-7	WATER	5/11/2022
TB-01-051122	860-26040-8	WATER	5/11/2022
SB02-03-051222	860-26137-1	WATER	5/12/2022
FD-01-051222	860-26137-2	WATER	5/12/2022
TB-01-051222	860-26137-3	WATER	5/12/2022
SB03-03-051322	860-26203-1	WATER	5/13/2022
SB03-02-051322	860-26203-2	WATER	5/13/2022
SB03-01-051322	860-26203-3	WATER	5/13/2022
SB01-03-051322	860-26203-4	WATER	5/13/2022
SB01-02-051322	860-26203-5	WATER	5/13/2022
TB-01-051322	860-26203-6	WATER	5/13/2022
SB10-03-051622	860-26253-1	WATER	5/16/2022
SB10-02-051622	860-26253-2	WATER	5/16/2022
SB05-03-051622	860-26253-3	WATER	5/16/2022
SB05-02-051622	860-26253-4	WATER	5/16/2022
SB05-01-051622	860-26253-5	WATER	5/16/2022
TB-01-051622	860-26253-6	WATER	5/16/2022
SB17-03-051822	860-26450-1	WATER	5/18/2022
SB17-02-051822	860-26450-2	WATER	5/18/2022
MW-181-051922	860-26450-3	WATER	5/19/2022
MW-182-051922	860-26450-4	WATER	5/19/2022
MW-163-051922	860-26450-5	WATER	5/19/2022
FD-01-051922	860-26450-6	WATER	5/19/2022
TB-01-051822	860-26450-7	WATER	5/18/2022
SB44-03-062022	860-28301-1	WATER	6/20/2022
SB44-02-062022	860-28301-2	WATER	6/20/2022
FD-01-062022	860-28301-3	WATER	6/20/2022
TB-01-062022	860-28301-4	WATER	6/20/2022

DATA USABILITY SUMMARY 2022 PRE-DESIGN INVESTIGATION VOLUNTARY CLEANUP PROGRAM NO. 221 FORMER CAMERON IRON WORKS FACILITY 1000 SILBER ROAD, HOUSTON, TEXAS

Table 1. Cross-referenced Field Sample Identifications and Laboratory Identifications

Data Usability Summary

Former Cameron Iron Works Facility, Houston, Texas

Field Identification	Laboratory Identification	Matrix	Date Collected
SB43-03-062022	860-28301-5	WATER	6/20/2022
SB43-02-062022	860-28301-6	WATER	6/20/2022
SB42-03-062022	860-28301-7	WATER	6/20/2022
SB42-02-062022	860-28301-8	WATER	6/20/2022
SB42-01-062022	860-28301-9	WATER	6/20/2022
SB41-03-062222	860-28374-1	WATER	6/22/2022
SB41-02-062222	860-28374-2	WATER	6/22/2022
SB41-01-062222	860-28374-3	WATER	6/22/2022
FD-01-062222	860-28374-4	WATER	6/22/2022
SB40-03-062222	860-28374-5	WATER	6/22/2022
SB40-02-062222	860-28374-6	WATER	6/22/2022
SB40-01-062222	860-28374-7	WATER	6/22/2022
TB-01-062222	860-28374-8	WATER	6/22/2022
SB37-02-062222	860-28484-1	WATER	6/22/2022
SB37-01-062222	860-28484-2	WATER	6/22/2022
TB-02-062222	860-28484-3	WATER	6/22/2022
SB38-03-062222	860-28484-4	WATER	6/22/2022
SB38-02-062222	860-28484-5	WATER	6/22/2022
TB-01-062322	860-28537-1	WATER	6/23/2022
SB39-03-062322	860-28537-2	WATER	6/23/2022
SB39-02-062322	860-28537-3	WATER	6/23/2022
SB35-03-062422	860-28537-4	WATER	6/24/2022
SB35-02-062422	860-28537-5	WATER	6/24/2022
SB35-01-062422	860-28537-6	WATER	6/24/2022
FD-01-062422	860-28537-7	WATER	6/24/2022
TB-01-062422	860-28568-1	WATER	6/24/2022
SB45-03-062422	860-28568-2	WATER	6/24/2022
SB45-02-062422	860-28568-3	WATER	6/24/2022
TB-01-062722	860-28628-1	WATER	6/27/2022
SB36-03-062722	860-28628-2	WATER	6/27/2022
SB36-02-062722	860-28628-3	WATER	6/27/2022
TB-01-062922	860-28799-1	WATER	6/29/2022
SWD-14-062922	860-28799-2	WATER	6/29/2022
SWD-12-062922	860-28799-3	WATER	6/29/2022
TB-01-062822	860-28800-1	WATER	6/28/2022
SB34-03-062822	860-28800-2	WATER	6/28/2022
SB34-02-062822	860-28800-3	WATER	6/28/2022
SB34-01-062822	860-28800-4	WATER	6/28/2022

Table 1. Cross-referenced Field Sample Identifications and Laboratory Identifications

Data Usability Summary

Former Cameron Iron Works Facility, Houston, Texas

Field Identification	Laboratory Identification	Matrix	Date Collected
SB47-03-062822	860-28800-5	WATER	6/28/2022
SB47-02-062822	860-28800-6	WATER	6/28/2022
FD-01-062822	860-28800-7	WATER	6/28/2022
SB46-03-062822	860-28800-8	WATER	6/28/2022
SB46-02-062822	860-28800-9	WATER	6/28/2022
SB46-01-062822	860-28800-10	WATER	6/28/2022
EB-01-062922	860-28800-11	WATER	6/29/2022
SB48-03-062922	860-28800-12	WATER	6/29/2022
SB48-02-062922	860-28800-13	WATER	6/29/2022
SB48-01-062922	860-28800-14	WATER	6/29/2022

Project Measurement Quality Objectives

Organic Analytes:

- Laboratory control sample (LCS)/laboratory control sample duplicate (LCSD) recoveries and matrix spike (MS)/matrix spike duplicate (MSD) recoveries within 60 to 140 percent or laboratory control limits if more restrictive.
- LCS/LCSD relative percent differences (RPDs) and MS/MSD RPDs less than or equal to 20 percent or laboratory control limits if more restrictive.
- Sample and field duplicate RPD less than or equal to 30 percent or plus or minus 2 times the method quantitation limit (MQL) if concentrations are less than 5 times MQL
- Completeness greater than or equal to 95 percent

Data Review and Validation Results

Analytical Results

Nondetected results are reported as less than the sample detection limit (SDL) as defined by the TRRP rule. Table 2 lists data qualified during the data validation process.

Table 2. Qualified Analytical Data

Data Usability Summary

Former Cameron Iron Works Facility, Houston, Texas

Field Identification	Analytical Method	Analyte	Result	Units	Qualification	Reason for Qualification
SB15-03-050422	SW8260C	Tetrachloroethene	0.0259	mg/l	JH	Analyte recovered > UCL in MS/MSD.
SB31-03-050922	SW8260C	Tetrachloroethene	0.000504	mg/l	JH	Analyte recovered > UCL in MS/MSD.
SB40-03-062222	SW8260D	1,1-Dichloroethane	0.0324	mg/l	JH	Analyte recovered > UCL in MS/MSD.
SB15-03-050422	SW8260C	Tetrachloroethene	0.0259	mg/l	JH	Analyte recovered > UCL in MS/MSD.
SB31-03-050922	SW8260C	Tetrachloroethene	0.000504 J	mg/l	JH	Analyte recovered > UCL in MS/MSD.
SB40-03-062222	SW8260D	1,1-Dichloroethane	0.0324	mg/l	JH	Analyte recovered > UCL in MS/MSD.
SB19-03-050522	SW8260C	Tetrachloroethene	0.0405	mg/l	J	MS/MSD RPD outside criteria.
FD-01-050422	SW8260C	Tetrachloroethene	0.00257	mg/l	J	Field duplicate RPD > 30%.
SB13-03-050422	SW8260C	Tetrachloroethene	0.00519	mg/l	J	Field duplicate RPD > 30%.
FD-01-051022	SW8260C	Tetrachloroethene	0.0341	mg/l	J	Field duplicate RPD > 30%.
SB07-01-051022	SW8260C	Tetrachloroethene	0.0222	mg/l	J	Field duplicate RPD > 30%.
FD-01-062222	SW8260D	Vinyl Chloride	0.00523	mg/l	J	Field duplicate RPD > 30%.
FD-01-062222	SW8260D	1,1-Dichloroethene	0.0143	mg/l	J	Field duplicate RPD > 30%.
FD-01-062222	SW8260D	cis-1,2-Dichloroethene	0.0152	mg/l	J	Field duplicate RPD > 30%.
SB41-02-062222	SW8260D	Vinyl Chloride	0.000714 J	mg/l	J	Field duplicate RPD > 30%.
SB41-02-062222	SW8260D	1,1-Dichloroethene	0.00217	mg/l	J	Field duplicate RPD > 30%.
SB41-02-062222	SW8260D	cis-1,2-Dichloroethene	0.00259	mg/l	J	Field duplicate RPD > 30%.

mg/L = milligram per liter

JH = Estimated data; the reported sample concentration is approximated due to exceedance of one or more QC requirements; bias in result likely to be high.

J = Estimated data; the reported sample concentration is approximated due to exceedance of one or more QC requirements. UCL = Upper Control Limit

Preservation and Holding Times

Samples were evaluated for agreement with the chain-of-custody documentation. All samples were received in the appropriate containers and in good condition with proper completion of the chain-of-custody documentation. Sample receipt temperatures were within the acceptance criteria of 4 ± 2 degrees Celsius (°C) except for some coolers that reported receipt temperatures below 2 °C but did not exhibit any impact to samples and thus did not require data qualification.

Samples were preserved as specified in SW-846 Tables 2-40(A) and 2-40(B). Samples were prepared and analyzed within holding times specified in SW-846 Tables 2-40(A) and 2-40(B).

Calibrations and Tunes

According to the LRCs and case narratives, initial calibrations and continuing calibration verifications met SW-846 method requirements. The LRCs also document satisfactory instrument performance calibrations (GC/MS tunes) for the GC/MS analysis (VOCs).

Blanks

No target analytes were detected in any laboratory blanks, trip blanks or equipment blanks.

Internal Standard Recoveries and Surrogate Recoveries

Surrogate recoveries were within acceptance criteria. According to the LRCs and case narratives, internal standard areas were within SW-846 method acceptance criteria.

Laboratory Control Samples

LCSs and LCSDs were spiked with all target analytes of interest for the analytical methods. LCS and LCSD recoveries and RPDs were within acceptance criteria.

Matrix Spike and Matrix Spike Duplicates

MS/MSDs were spiked with target analytes of interest for the analytical methods.

Tetrachloroethene was recovered at greater than the upper control limit in the MS/MSDs performed on SB15-03-050422 and SB31-03-050922; and 1,1-dichloroethane was recovered at greater than the upper control limit in the MS/MSD performed on SB40-03-062222; therefore, the detections of these analytes in these samples were qualified as estimated and potentially biased high (JH). The MS/MSD performed on SB19-03-050522 exhibited an RPD outside acceptance criteria for tetrachloroethene; therefore, the tetrachloroethene detection in the sample was qualified as estimated (J). Other MS/MSD recoveries and RPDs were within acceptance criteria.

Field Precision

Table 3 summarizes field duplicate precision calculations. Field duplicate precision was not calculated for results where both the normal and field duplicate results were reported as not detected (U). Based on the RPDs between the concentrations detected and the proximity of the concentrations to the MQL, overall field duplicate precision was within project acceptance criteria except for five VOCs results and

their associated field duplicate values which were qualified as estimated (J) due to field duplicate imprecision.

Field Procedures

Samples were collected following standard operating procedures detailed in the project sampling instructions.

Table 3. Field PrecisionData Usability Summary
Former Cameron Iron Works Facility, Houston, Texas

Field Identification	Analyte	Sample Result	Duplicate Result	MQL	RPD ^a	Qualified
SB16-01-050222 / FD-01-050222	1,1-Dichloroethene	0.00179	0.00173	0.001	3.4%	А
SB13-03-050422 / FD-01-050422	1,1-Dichloroethane	0.0179	0.016	0.001	11.2%	Α
SB13-03-050422 / FD-01-050422	1,1-Dichloroethene	0.0777	0.0608	0.001	24.4%	Α
SB13-03-050422 / FD-01-050422	cis-1,2-Dichloroethene	0.0132	0.0118	0.001	11.2%	Α
SB13-03-050422 / FD-01-050422	Tetrachloroethene	0.00519	0.00257	0.001	67.5%	J
SB13-03-050422 / FD-01-050422	Trichloroethene	0.00561	0.00414 J	0.005	30.2%	A*
SB13-03-050422 / FD-01-050422	Vinyl Chloride	0.00195 J	0.00169 J	0.002	14.3%	Α
SB33-03-050622 / FD-01-020622	1,1-Dichloroethane	0.0104	0.00972	0.001	6.8%	Α
SB33-03-050622 / FD-01-020622	1,1-Dichloroethene	0.185	0.247	0.005	28.7%	Α
SB33-03-050622 / FD-01-020622	1,2-Dichloroethane	0.00201	0.00194	0.001	3.5%	Α
SB33-03-050622 / FD-01-020622	cis-1,2-Dichloroethene	0.00174	0.0016	0.001	8.4%	Α
SB33-03-050622 / FD-01-020622	Tetrachloroethene	0.000679 J	0.000608 J	0.001	11.0%	Α
SB33-03-050622 / FD-01-020622	Trichloroethene	0.0105	0.00961	0.005	8.9%	Α
SB07-01-051022 / FD-01-051022	1,1-Dichloroethane	0.00471	0.00492	0.001	4.4%	Α
SB07-01-051022 / FD-01-051022	1,1-Dichloroethene	0.00462	0.00544	0.001	16.3%	Α
SB07-01-051022 / FD-01-051022	cis-1,2-Dichloroethene	0.0156	0.0173	0.001	10.3%	Α
SB07-01-051022 / FD-01-051022	Tetrachloroethene	0.0222	0.0341	0.001	42.3%	J
SB07-01-051022 / FD-01-051022	Trichloroethene	0.0133	0.0166	0.005	22.1%	А

Table 3. Field PrecisionData Usability Summary
Former Cameron Iron Works Facility, Houston, Texas

Field Identification	Analyte	Sample Result	Duplicate Result	MQL	RPD ^a	Qualified
SB07-01-051022 / FD-01-051022	Vinyl Chloride	0.00141 J	0.00183 J	0.002	25.9%	А
SB44-03-062022 / FD-01-062022	1,1-Dichloroethane	0.0245	0.0219	0.001	11.2%	Α
SB44-03-062022 / FD-01-062022	1,1-Dichloroethene	0.000898 J	0.000832 J	0.001	7.6%	Α
SB44-03-062022 / FD-01-062022	cis-1,2-Dichloroethene	0.0077	0.00776	0.001	0.8%	Α
SB44-03-062022 / FD-01-062022	Vinyl Chloride	0.00352	0.00349	0.002	0.9%	Α
SB41-02-062222 / FD-01-062222	1,1-Dichloroethane	0.00431	0.0123	0.001	96.2%	A*
SB41-02-062222 / FD-01-062222	1,1-Dichloroethene	0.00217	0.0143	0.001	147.3%	J
SB41-02-062222 / FD-01-062222	cis-1,2-Dichloroethene	0.00259	0.0152	0.001	141.8%	J
SB41-02-062222 / FD-01-062222	Tetrachloroethene	0.00056 J	0.0005 U	0.001	11.3%	Α
SB41-02-062222 / FD-01-062222	Trichloroethene	0.00133 J	0.00181 J	0.005	30.6%	A*
SB41-02-062222 / FD-01-062222	Vinyl Chloride	0.000714 J	0.00523	0.002	152.0%	J
SB35-03-062422 / FD-01-062422	1,1-Dichloroethane	0.0212	0.0221	0.001	4.2%	Α
SB35-03-062422 / FD-01-062422	1,1-Dichloroethene	0.016	0.016	0.001	0.0%	Α
SB35-03-062422 / FD-01-062422	1,2-Dichloroethane	0.000308 J	0.000315 J	0.001	2.2%	Α
SB35-03-062422 / FD-01-062422	cis-1,2-Dichloroethene	0.00489	0.00537	0.001	9.4%	Α
SB35-03-062422 / FD-01-062422	Tetrachloroethene	0.0249	0.0288	0.001	14.5%	Α
SB35-03-062422 / FD-01-062422	Trichloroethene	0.0102	0.0128	0.005	22.6%	Α
SB35-03-062422 / FD-01-062422	Vinyl Chloride	0.00379	0.00387	0.002	2.1%	Α
SB47-03-062822 / FD-01-062822	1,1-Dichloroethane	0.00276	0.00271	0.001	1.8%	Α
SB47-03-062822 / FD-01-062822	1,1-Dichloroethene	0.000436 J	0.000439 J	0.001	0.7%	Α
SB47-03-062822 / FD-01-062822	cis-1,2-Dichloroethene	0.0121	0.014	0.001	14.6%	Α

Table 3. Field Precision

Data Usability Summary

Former Cameron Iron Works Facility, Houston, Texas

Field Identification	Analyte	Sample Result	Duplicate Result	MQL	RPD ^a	Qualified
SB47-03-062822 / FD-01-062822	Tetrachloroethene	0.00711	0.00775	0.001	8.6%	А
SB47-03-062822 / FD-01-062822	Trichloroethene	0.0196	0.0212	0.005	7.8%	А
SB47-03-062822 / FD-01-062822	Vinyl Chloride	0.00393	0.00236	0.002	49.9%	A*

Notes:

 a RPD = ((SR - DR)*200)/(SR + DR)

A = Acceptable Data. RPD is < 30%.

 A^* = Acceptable Data. RPD is > 30%, but results are < 5 x MQL and within +/- 2 x MQL

J (in Sample Result or Duplicate Result column) = Result > SDL < MQL

J (in Qualified column) = Results qualified as estimated due to field duplicate imprecision. RPD > 30%

SR = Sample result

DR = Duplicate result

MQL = method quantitation limit

RPD = relative percent difference

SDL = sample detection limit

Summary

Overall, the quality of the analytical data was found to be within the QC limits established by the project data quality objectives, analytical methods, and the review criteria presented in *Review and Reporting of COC Concentration Data* (RG-366/TRRP-13).

The following components were found to be within project acceptance criteria:

- Sample receipt conditions
- Sample preservation
- Holding time
- Initial calibrations
- Continuing calibration verification
- Instrument performance calibrations
- Laboratory blanks, trip blanks and equipment blanks
- Internal standard recoveries
- Surrogate recoveries
- LCS/LCSD recoveries and RPDs

QC issues encountered included three instances of high MS/MSD recoveries, one instance of MS/MSD RPD outside acceptance criteria and five instances of field duplicate RPDs outside of acceptance criteria as described above and listed in Table 2.

No results were rejected, giving the data set a completeness value of 100 percent. All analytical results may be used to support project decisions.

Attachment National Environmental Laboratory Accreditation Program Certificates

Texas Commission on Environmental Quality

NELAP-Recognized Laboratory Accreditation is hereby awarded to

Eurofins Xenco, LLC - Houston 4147 Greenbriar Drive Stafford, TX 77477-3907

in accordance with Texas Water Code Chapter 5, Subchapter R, Title 30 Texas Administrative Code Chapter 25, and the National Environmental Laboratory Accreditation Program.

The laboratory's scope of accreditation includes the fields of accreditation that accompany this certificate. Continued accreditation depends upon successful ongoing participation in the program. The Texas Commission on Environmental Quality urges customers to verify the laboratory's current location(s) and accreditation status for particular methods and analyses (www.tceq.texas.gov/goto/lab). Accreditation does not imply that a product, process, system or person is approved by the Texas Commission on Environmental Quality.

Certificate Number: T104704215-21-43

Effective Date: 7/7/2021 Expiration Date: 6/30/2022

Executive Director Texas Commission on Environmental Quality Grab Sample Lab Reports

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-25480-1

Client Project/Site: STC Silber Rd Pre-Design Investigation

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 5/3/2022 4:54:47 PM

Bethany McDaniel, Senior Project Manager (713)358-2005
Bethany.McDaniel@et.eurofinsus.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

5

7

8

10

12

13

15

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	8
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
State Forms	17
TRRP Checklist	17
DCS Report	21
Chain of Custody	22
Receipt Checklists	23

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-25480-1

Project/Site: STC Silber Rd Pre-Design Investigation

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Houston

Page 3 of 23 5/3/2022

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25480-1

Job ID: 860-25480-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-25480-1

Receipt

The samples were received on 5/2/2022 4:25 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.5°C

Detection Summary

Client: Jacobs Engineering Group, Inc.

Client Sample ID: SB16-01-050222

Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID: 860-25480-1

Job ID: 860-25480-1

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethene	0.00179	0.00100	0.000216 mg/L		8260C	Total/NA

Client Sample ID: SB16-02-050222 Lab Sample ID: 860-25480-2

No Detections.

Client Sample ID: SB16-03-050222 Lab Sample ID: 860-25480-3

No Detections.

Client Sample ID: FD-01-050222 Lab Sample ID: 860-25480-4

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac [Method	Prep Type
1,1-Dichloroethene	0.00173	0.00100	0.000216 mg/L	1	8260C	Total/NA

Client Sample ID: TB-01-050222 Lab Sample ID: 860-25480-5

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins Houston

5/3/2022

Page 5 of 23

2

3

4

5

0

10

4.0

13

15

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB16-01-050222

Date Collected: 05/02/22 13:50 Date Received: 05/02/22 16:25 Lab Sample ID: 860-25480-1

Matrix: Water

Job ID: 860-25480-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/03/22 12:37	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/03/22 12:37	1
1,1-Dichloroethene	0.00179		0.00100	0.000216	mg/L			05/03/22 12:37	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/03/22 12:37	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/03/22 12:37	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/03/22 12:37	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/03/22 12:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	97		75 - 131			-		05/03/22 12:37	1
Toluene-d8 (Surr)	100		80 - 117					05/03/22 12:37	1
4-Bromofluorobenzene (Surr)	95		74 - 124					05/03/22 12:37	1
1,2-Dichloroethane-d4 (Surr)	90		63 - 144					05/03/22 12:37	1

Client Sample ID: SB16-02-050222

Date Collected: 05/02/22 15:05 Date Received: 05/02/22 16:25 Lab Sample ID: 860-25480-2

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Welliou. 6260C - V	Method. 6260C - Volatile Organic Compounds by GC/MS								
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/03/22 12:57	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/03/22 12:57	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/03/22 12:57	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/03/22 12:57	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/03/22 12:57	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/03/22 12:57	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/03/22 12:57	1

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
	Dibromofluoromethane (Surr)	96		75 - 131		05/03/22 12:57	1	
	Toluene-d8 (Surr)	100		80 - 117		05/03/22 12:57	1	
	4-Bromofluorobenzene (Surr)	97		74 - 124		05/03/22 12:57	1	
L	1,2-Dichloroethane-d4 (Surr)	88		63 - 144		05/03/22 12:57	1	

Client Sample ID: SB16-03-050222

Date Collected: 05/02/22 15:25

Date Received: 05/02/22 16:25

Lab	Sample	ID:	860-25480-3

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/03/22 13:18	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/03/22 13:18	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/03/22 13:18	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/03/22 13:18	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/03/22 13:18	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/03/22 13:18	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/03/22 13:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	97		75 - 131			-		05/03/22 13:18	1
Toluene-d8 (Surr)	101		80 - 117					05/03/22 13:18	1

Eurofins Houston

Page 6 of 23 5/3/2022

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB16-03-050222

Date Collected: 05/02/22 15:25 Date Received: 05/02/22 16:25 Lab Sample ID: 860-25480-3

Matrix: Water

Job ID: 860-25480-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		74 - 124		05/03/22 13:18	1
1,2-Dichloroethane-d4 (Surr)	89		63 - 144		05/03/22 13:18	1

Client Sample ID: FD-01-050222

Date Collected: 05/02/22 00:00 Date Received: 05/02/22 16:25 Lab Sample ID: 860-25480-4

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/03/22 13:38	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/03/22 13:38	1
1,1-Dichloroethene	0.00173		0.00100	0.000216	mg/L			05/03/22 13:38	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/03/22 13:38	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/03/22 13:38	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/03/22 13:38	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/03/22 13:38	1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	97	75 - 131		05/03/22 13:38	1
Toluene-d8 (Surr)	100	80 - 117		05/03/22 13:38	1
4-Bromofluorobenzene (Surr)	99	74 - 124		05/03/22 13:38	1
1,2-Dichloroethane-d4 (Surr)	89	63 - 144		05/03/22 13:38	1

Client Sample ID: TB-01-050222

Date Collected: 05/02/22 07:45

Date Received: 05/02/22 16:25

Lab Sample ID: 860-25480-5

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/03/22 11:35	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/03/22 11:35	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/03/22 11:35	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/03/22 11:35	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/03/22 11:35	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/03/22 11:35	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/03/22 11:35	1

Surrogate	%Recovery	Qualifier Li	mits	Prepared	Analyzed	Dil Fac	
Dibromofluoromethane (Surr)	96	75	5 - 131		05/03/22 11:35	1	
Toluene-d8 (Surr)	102	80) - 117		05/03/22 11:35	1	
4-Bromofluorobenzene (Surr)	97	74	1 - 124		05/03/22 11:35	1	
1,2-Dichloroethane-d4 (Surr)	90	63	3 - 144		05/03/22 11:35	1	

Eurofins Houston

Page 7 of 23

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-25480-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

G

4

5

7

Ö

10

11

13

14

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DBFM	TOL	BFB	DCA
Lab Sample ID	Client Sample ID	(75-131)	(80-117)	(74-124)	(63-144)
860-25229-F-2 MS	Matrix Spike	98	99	97	88
860-25480-1	SB16-01-050222	97	100	95	90
860-25480-2	SB16-02-050222	96	100	97	88
860-25480-3	SB16-03-050222	97	101	98	89
860-25480-4	FD-01-050222	97	100	99	89
860-25480-5	TB-01-050222	96	102	97	90
LCS 860-51109/3	Lab Control Sample	98	98	97	90
LCSD 860-51109/4	Lab Control Sample Dup	100	99	96	89
MB 860-51109/9	Method Blank	96	100	97	90

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Houston

Job ID: 860-25480-1

Page 9 of 23 5/3/2022

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-51109/9

Matrix: Water

Analysis Batch: 51109

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 860-25480-1

MB MB Result Qualifier SDL Unit Dil Fac Analyte MQL (Adj) D Prepared Analyzed 1,1-Dichloroethane 0.000244 U 0.00100 0.000244 mg/L 05/03/22 09:51 1,2-Dichloroethane 0.000285 U 0.00100 0.000285 mg/L 05/03/22 09:51 1,1-Dichloroethene 0.000216 U 0.00100 0.000216 mg/L 05/03/22 09:51 0.000174 U 0.00100 0.000174 mg/L cis-1,2-Dichloroethene 05/03/22 09:51 Tetrachloroethene 0.000500 U 0.00100 0.000500 mg/L 05/03/22 09:51 Trichloroethene 0.000424 U 0.00500 0.000424 mg/L 05/03/22 09:51 Vinyl chloride 0.000234 U 0.00200 0.000234 mg/L 05/03/22 09:51

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 96 05/03/22 09:51 Dibromofluoromethane (Surr) 75 - 131 Toluene-d8 (Surr) 100 80 - 117 05/03/22 09:51 4-Bromofluorobenzene (Surr) 97 74 - 124 05/03/22 09:51 1,2-Dichloroethane-d4 (Surr) 90 63 - 144 05/03/22 09:51

Lab Sample ID: LCS 860-51109/3

Matrix: Water

Analysis Batch: 51109

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS %Rec Spike Added Result Qualifier Unit D %Rec Limits Analyte 1,1-Dichloroethane 0.0500 0.04479 90 72 - 125 mg/L 1,2-Dichloroethane 0.0500 83 0.04125 mg/L 68 - 1271.1-Dichloroethene 0.0500 0.04628 mg/L 93 59 - 172 cis-1,2-Dichloroethene 0.0500 0.04128 83 75 - 125 mg/L Tetrachloroethene 0.0500 0.04355 mg/L 87 71 - 125Trichloroethene 0.0500 0.04361 87 62 - 137 mg/L Vinyl chloride 0.0500 0.04603 92 60 - 140 mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	98		75 - 131
Toluene-d8 (Surr)	98		80 - 117
4-Bromofluorobenzene (Surr)	97		74 - 124
1,2-Dichloroethane-d4 (Surr)	90		63 - 144

Lab Sample ID: LCSD 860-51109/4

Matrix: Water

Analysis Batch: 51109

Client Sample ID: Lab	Control Samp	le Dup
	Prep Type: To	otal/NA

	Spike	LCSD LCSD			%Rec		RPD
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.04583	mg/L	92	72 - 125	2	25
1,2-Dichloroethane	0.0500	0.04123	mg/L	82	68 - 127	0	25
1,1-Dichloroethene	0.0500	0.04690	mg/L	94	59 - 172	1	25
cis-1,2-Dichloroethene	0.0500	0.04261	mg/L	85	75 - 125	3	25
Tetrachloroethene	0.0500	0.04706	mg/L	94	71 - 125	8	25
Trichloroethene	0.0500	0.04629	mg/L	93	62 - 137	6	25
Vinyl chloride	0.0500	0.04078	mg/L	82	60 - 140	12	25

Eurofins Houston

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25480-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-51109/4

Matrix: Water

Analysis Batch: 51109

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Recovery Qualifier Surrogate Limits Dibromofluoromethane (Surr) 100 75 - 131 Toluene-d8 (Surr) 99 80 - 117 4-Bromofluorobenzene (Surr) 96 74 - 124 1,2-Dichloroethane-d4 (Surr) 89 63 - 144

Lab Sample ID: 860-25229-F-2 MS Client Sample ID: Matrix Spike **Matrix: Water**

Analysis Batch: 51109

Sample	Sample	Spike	MS	MS				%Rec	
Analyte Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane 0.000244	U	0.0500	0.04758		mg/L		95	72 - 125	_
1,2-Dichloroethane 0.000285	U	0.0500	0.04139		mg/L		83	68 - 127	
1,1-Dichloroethene 0.000216	U	0.0500	0.04975		mg/L		99	59 - 172	
cis-1,2-Dichloroethene 0.000174	U	0.0500	0.04402		mg/L		88	75 - 125	
Tetrachloroethene 0.000500	U	0.0500	0.04799		mg/L		96	71 - 125	
Trichloroethene 0.000424	U	0.0500	0.04714		mg/L		94	62 - 137	
Vinyl chloride 0.000234	U	0.0500	0.04809		mg/L		96	60 - 140	

MS MS Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 75 - 131 98 Toluene-d8 (Surr) 99 80 - 117 97 4-Bromofluorobenzene (Surr) 74 - 124 1,2-Dichloroethane-d4 (Surr) 88 63 - 144 Prep Type: Total/NA

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25480-1

GC/MS VOA

Analysis Batch: 51109

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-25480-1	SB16-01-050222	Total/NA	Water	8260C	
860-25480-2	SB16-02-050222	Total/NA	Water	8260C	
860-25480-3	SB16-03-050222	Total/NA	Water	8260C	
860-25480-4	FD-01-050222	Total/NA	Water	8260C	
860-25480-5	TB-01-050222	Total/NA	Water	8260C	
MB 860-51109/9	Method Blank	Total/NA	Water	8260C	
LCS 860-51109/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-51109/4	Lab Control Sample Dup	Total/NA	Water	8260C	
860-25229-F-2 MS	Matrix Spike	Total/NA	Water	8260C	

-0

4

6

0

10

11

12

14

16

11/

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB16-01-050222

Lab Sample ID: 860-25480-1 Date Collected: 05/02/22 13:50

Matrix: Water

Date Received: 05/02/22 16:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	51109	05/03/22 12:37	TTD	XEN STF

Client Sample ID: SB16-02-050222

Lab Sample ID: 860-25480-2 Date Collected: 05/02/22 15:05 **Matrix: Water**

Date Received: 05/02/22 16:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	51109	05/03/22 12:57	TTD	XEN STF

Client Sample ID: SB16-03-050222

Lab Sample ID: 860-25480-3 Date Collected: 05/02/22 15:25 **Matrix: Water**

Date Received: 05/02/22 16:25

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	51109	05/03/22 13:18	TTD	XEN STF

Client Sample ID: FD-01-050222

Lab Sample ID: 860-25480-4 Date Collected: 05/02/22 00:00 **Matrix: Water**

Date Received: 05/02/22 16:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	51109	05/03/22 13:38	TTD	XEN STF

Client Sample ID: TB-01-050222

Lab Sample ID: 860-25480-5 Date Collected: 05/02/22 07:45 **Matrix: Water**

Date Received: 05/02/22 16:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	51109	05/03/22 11:35	TTD	XEN STF

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

Page 13 of 23

Job ID: 860-25480-1

5/3/2022

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

Job ID: 860-25480-1

3

4

5

9

11

12

14

16

11/

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation Job ID: 860-25480-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	XEN STF
5030C	Purge and Trap	SW846	XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

4

5

7

0

10

12

13

15

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-25480-1	SB16-01-050222	Water	05/02/22 13:50	05/02/22 16:25
860-25480-2	SB16-02-050222	Water	05/02/22 15:05	05/02/22 16:25
860-25480-3	SB16-03-050222	Water	05/02/22 15:25	05/02/22 16:25
860-25480-4	FD-01-050222	Water	05/02/22 00:00	05/02/22 16:25
860-25480-5	TB-01-050222	Water	05/02/22 07:45	05/02/22 16:25

Job ID: 860-25480-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-25480-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ ____ on __/__/... Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	05/03/2022

9

3

4

5

7

9

11

12

14

16

17

1 (

Laboratory Data Package Cover Page - Page 2 of 4

		Name: Eurofins Houston	LRC Date: 05/03/202					
		e: STC Silber Rd Pre-Design Investigation	Laboratory Job Numb	er: 860-	25480-1			
		ame: Bethany McDaniel						
# ¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵
R1	OI	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of	sample acceptability upon	√				
		receipt?						
		Were all departures from standard conditions described in		✓				
R2	OI	Sample and quality control (QC) identificat	ion					
		Are all field sample ID numbers cross-referenced to the la		✓				
		Are all laboratory ID numbers cross-referenced to the cor	responding QC data?	✓				
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding ti	mes?	✓				
		Other than those results < MQL, were all other raw values	s bracketed by calibration	✓				
		standards?						
		Were calculations checked by a peer or supervisor?		✓				
		Were all analyte identifications checked by a peer or supe		✓				
		Were sample detection limits reported for all analytes not		✓				
		Were all results for soil and sediment samples reported o				√		
		Were % moisture (or solids) reported for all soil and sedir	· · · · · · · · · · · · · · · · · · ·			√		
		Were bulk soils/solids samples for volatile analysis extract	ted with methanol per			✓		
		SW846 Method 5035?				+ ,		
		If required for the project, are TICs reported?				✓		
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?		√				
		Were surrogate percent recoveries in all samples within the	-	✓				_
R5	OI	Test reports/summary forms for blank sam	ples					
		Were appropriate type(s) of blanks analyzed?		✓				
		Were blanks analyzed at the appropriate frequency?		√				
		Were method blanks taken through the entire analytical p	rocess, including preparation	✓				
		and, if applicable, cleanup procedures?						
		Were blank concentrations < MQL?		✓				
R6	OI	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		√				
		Was each LCS taken through the entire analytical proced	ure, including prep and	✓				
		cleanup steps?		✓				
		Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the labor	enton, OC limito?	✓				-
		, , ,	<u> </u>	✓				
		Does the detectability check sample data document the la		•				
		detect the COCs at the MDL used to calculate the SDLs? Was the LCSD RPD within QC limits?		✓				
R7		· ·	to (MCD) data	•				
K/	OI	Matrix spike (MS) and matrix spike duplica Were the project/method specified analytes included in the		✓				
		Were MS/MSD analyzed at the appropriate frequency?	e MS and MSD?	V ✓				+
		Were MS (and MSD, if applicable) %Rs within the laborate	ory OC limits?	✓				
		Were MS/MSD RPDs within laboratory QC limits?	ory QO minus:	+		/		_
R8	OI	Analytical duplicate data				-		
1.0	UI	Were appropriate analytical duplicates analyzed for each	matriv?			/		
		Were analytical duplicates analyzed at the appropriate fre				\ \ \ \		
		Were RPDs or relative standard deviations within the laborations				▼		1
R9	OI	Method quantitation limits (MQLs):	ratery we mind:					
13	U	Are the MQLs for each method analyte included in the lat	poratory data nackage?	✓				
		Do the MQLs correspond to the concentration of the lower		✓		+		
		standard?	St HOH-ZEIU CAIIDIAUUH					
		Are unadjusted MQLs and DCSs included in the laborator	ry data package?	✓		+		
R10	OI	Other problems/anomalies	, adia paonago:	-				
N I U	U	Are all known problems/anomalies/special conditions note	ad in this LRC and ED2	✓				
		·		V ✓		+		
		Was applicable and available technology used to lower the	e טעב נופ matrix	Y				
		interference effects on the sample results?	protony Approditation Program	✓		+		
		Is the laboratory NELAC-accredited under the Texas Laboratory netrices and methods associated with the						
		for the analytes, matrices and methods associated with the	iis iaboratory data package?					

Page 18 of 23 5/3/2022

Ė

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 05/03/2022
Project Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-25480-1
Reviewer Name: Bethany McDaniel	

			Job Number: 860	-25480-1			
Revie	wer Na	ame: Bethany McDaniel					
# ¹	A ²	Description	Yes	No	NA ³	NR⁴	ER#
S1	OI	Initial calibration (ICAL)					
	_	Were response factors and/or relative response factors for each analyte within	n QC ✓				_
		limits?					
		Were percent RSDs or correlation coefficient criteria met?	✓				
		Was the number of standards recommended in the method used for all analy	tes? ✓				
		Were all points generated between the lowest and highest standard used to	calculate 🗸				
		the curve?					
		Are ICAL data available for all instruments used?	✓				
		Has the initial calibration curve been verified using an appropriate second so	urce ✓				
		standard?					
S2	OI	Initial and continuing calibration verification (ICCV and C	CV) and				
		continuing calibration blank (CCB):	•				
		Was the CCV analyzed at the method-required frequency?	✓				$\overline{}$
		Were percent differences for each analyte within the method-required QC lim	its? ✓				
		Was the ICAL curve verified for each analyte?	✓			1	1
		Was the absolute value of the analyte concentration in the inorganic CCB < N	IDL?		✓		
S3	0	Mass spectral tuning					
		Was the appropriate compound for the method used for tuning?	✓				
		Were ion abundance data within the method-required QC limits?	✓		+	+	+
S4	0	Internal standards (IS)					
•		Were IS area counts and retention times within the method-required QC limits	5? ✓				_
S5	OI	Raw data (NELAC Section 5.5.10)					
	01	Were the raw data (for example, chromatograms, spectral data) reviewed by	an √				-
		analyst?	all				
		Were data associated with manual integrations flagged on the raw data?	✓				+
S6	0	Dual column confirmation					
30		Did dual column confirmation results meet the method-required QC?			✓		
S 7	0	Tentatively identified compounds (TICs)			-		
31		If TICs were requested, were the mass spectra and TIC data subject to appro	prioto		✓		
		checks?	priate				
S8	1	Interference Check Sample (ICS) results					
30	1	Were percent recoveries within method QC limits?			✓		
S9	l ı	·	ndord		•		
39	'	Serial dilutions, post digestion spikes, and method of sta	liuaru				
		additions			✓		
		Were percent differences, recoveries, and the linearity within the QC limits sp	ecified		'		
040		in the method?					
S10	OI	Method detection limit (MDL) studies					
		Was a MDL study performed for each reported analyte?	✓ ✓				
044		Is the MDL either adjusted or supported by the analysis of DCSs?	V				_
S11	OI	Proficiency test reports					
		Was the laboratory's performance acceptable on the applicable proficiency te	sts or				
040		evaluation studies?					_
S12	OI	Standards documentation					
		Are all standards used in the analyses NIST-traceable or obtained from other	·				
040		appropriate sources?					_
S13	OI	Compound/analyte identification procedures					
		Are the procedures for compound/analyte identification documented?	✓				\perp
S14	OI	Demonstration of analyst competency (DOC)					
		Was DOC conducted consistent with NELAC Chapter 5?	✓				
		Is documentation of the analyst's competency up-to-date and on file?	✓				
S15	OI	Verification/validation documentation for methods (NELA	С				
		Chapter 5)					
	1	Are all the methods used to generate the data documented, verified, and valid	dated, ✓				
		where applicable?	,				
			1	1			-
S16	OI	Laboratory standard operating procedures (SOPs)					

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

__

3

5

7

9

10

12

14

15

17

IC

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

^{3.} NA = Not applicable;

^{4.} NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Labora	aboratory Name: Eurofins Houston LRC Date: 05/03/2022										
Project Name: STC Silber Rd Pre-Design Investigation Laboratory Job Number: 860-25480-1											
Review	Reviewer Name: Bethany McDaniel										
ER#1	Description										
	No Exceptions										
1. ER	ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).										

-

Detection Check Summary

Client: Jacobs Engineering Group, Inc. Job ID: 860-25480-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Detector: MSD/0 Column: DB-624

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1-Dichloroethane	0.00100	0.00483		mg/L	0.00100	0.000244	03/03/2022	860-43530
1,2-Dichloroethane	0.00100	0.00498		mg/L	0.00100	0.000285	03/03/2022	860-43530
1,1-Dichloroethene	0.00100	0.00411		mg/L	0.00100	0.000216	03/03/2022	860-43530
cis-1,2-Dichloroethene	0.00100	0.00499		mg/L	0.00100	0.000174	03/03/2022	860-43530
Tetrachloroethene	0.00100	0.00463		mg/L	0.00100	0.000500	03/03/2022	860-43530
Trichloroethene	0.00100	0.00503		mg/L	0.00500	0.000424	03/03/2022	860-43530
Vinyl chloride	0.00100	0.00381		mg/L	0.00200	0.000234	03/03/2022	860-43530

3

4

5

7

10

12

A A

15

17

10

5/3/2022

A Yes A No	de latent Crested: Cool No	Relinquished by: Date/Time:	Inquished by:	Empty Kit Relinquished by:	ested I, II III, IV Other (specify) TRRP	Ш							713-01-050222 5/2/22	F12-01-050222 \$/2/2)	5/3/22 S/3/22	5/3/12 Social Social Social States	21/2/2 SBH-01-c50299 SH2/21		Sample Identification Sample Date	Ste: SSOW#	ct Name: Silber Road Pre-Design Investigation	te@jacobs.com		Size, ∠p: TX, 77079 Compliance Project: ∆ Yes	City TAT Requested (days):	o1 St. Mary's Lane Suite 300	Engineering Group, Inc.	John Ynfante	Corrected Temp: F: -	Tello Committee
		Company	72 1625 Company	Date: Company		Unknown Radiological	Water	Water	Water	Water	Water	Water	1775		1535 6 Water	1505 G Water	1350 G water	Preserva	Sample Matrix Type (N-water, Fig. Sample (C=Comp., O-wasted) Time G=grab) BT-TISHUR. AFAIr) III.	l Samp	e (Ye	N 10 e	(a)	ect: ∆ Yes ∆ No	days): 1 day RUSH	sted:	PWSID			
Copial reliberations? Card Other Nethalvs.		Received by:	Lilaille	I'me: Received by: Date/Time Date/T	Requireme	Sample Disposal (A fee may be assessed if samples Return To Client Disposal By Lab							X	X	X	X	X	XA	626/02/01/4/5/1 8260B (MOD)	al thuir	Sidescon	ત્રલ છે				-	Analysis Requested	Bethany.McDaniel@Eurofinset.com	McDaniel, Bethany A 860-25480 Chain of Custody	
V ₂ = 01/16/0010		Date/Time: Company	13/22 1625	Date/Time: Company Company		ples are retained longer than 1 month) Archive For Months							٧	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	W	3	W	X	Number Special Instructions/Note:	or of oc	L EDA Z	I Ice U	Amchlor S Ascorbic Acid T	NaHSO4 C	B NaOH None C Zn Acetate O ASNACO D NETS AND D NASNACO	HCL V	300 #	Page of	107-2299.1	

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-25480-1

Login Number: 25480 List Source: Eurofins Houston

List Number: 1

Creator: Torres, Sandra

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.5
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

True

Eurofins Houston

Residual Chlorine Checked.

5/3/2022

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-25535-1

Client Project/Site: STC Silber Rd Pre-Design Investigation

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 5/4/2022 5:07:45 PM

Bethany McDaniel, Senior Project Manager (713)358-2005
Bethany.McDaniel@et.eurofinsus.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	8
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
State Forms	17
TRRP Checklist	17
DCS Report	21
Chain of Custody	22
Receipt Checklists	23

3

4

6

8

10

12

14

15

Definitions/Glossary

Client: Jacobs Engineering Group, Inc. Job ID: 860-25535-1

Project/Site: STC Silber Rd Pre-Design Investigation

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation	These commonly	y used abbreviations may	or may	not be	present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Houston

Page 3 of 23 5/4/2022

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25535-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-25535-1

Receipt

The samples were received on 5/3/2022 5:14 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.6° C

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

ľ

Job ID: 860-25535-1

- 0

4

5

6

_

10

11

13

14

16

17

Eurofins Houston 5/4/2022

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB14-03-050322 Lab Sample ID: 860-25535-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00941		0.00100	0.000244	mg/L	1	_	8260C	Total/NA
1,2-Dichloroethane	0.000901	J	0.00100	0.000285	mg/L	1		8260C	Total/NA
1,1-Dichloroethene	0.0244		0.00100	0.000216	mg/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	0.00970		0.00100	0.000174	mg/L	1		8260C	Total/NA
Tetrachloroethene	0.0385		0.00100	0.000500	mg/L	1		8260C	Total/NA
Trichloroethene	0.00761		0.00500	0.000424	mg/L	1		8260C	Total/NA
Vinyl chloride	0.00203		0.00200	0.000234	mg/L	1		8260C	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D Method	Prep Type
1,1-Dichloroethane	0.000657 J	0.00100	0.000244	mg/L		8260C	Total/NA
1,2-Dichloroethane	0.000585 J	0.00100	0.000285	mg/L	1	8260C	Total/NA
1,1-Dichloroethene	0.00221	0.00100	0.000216	mg/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	0.00377	0.00100	0.000174	mg/L	1	8260C	Total/NA
Tetrachloroethene	0.0111	0.00100	0.000500	mg/L	1	8260C	Total/NA
Trichloroethene	0.00368 J	0.00500	0.000424	mg/L	1	8260C	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethene	0.000532 J	0.00100	0.000216 mg/L		8260C	Total/NA
cis-1,2-Dichloroethene	0.000952 J	0.00100	0.000174 mg/L	1	8260C	Total/NA
Tetrachloroethene	0.00548	0.00100	0.000500 mg/L	1	8260C	Total/NA
Trichloroethene	0.00124 J	0.00500	0.000424 mg/L	1	8260C	Total/NA

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins Houston

Job ID: 860-25535-1

Page 5 of 23 5/4/2022

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB14-03-050322

Date Collected: 05/03/22 12:45 Date Received: 05/03/22 17:14 Lab Sample ID: 860-25535-1

Matrix: Water

Job ID: 860-25535-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00941		0.00100	0.000244	mg/L			05/04/22 12:26	1
1,2-Dichloroethane	0.000901	J	0.00100	0.000285	mg/L			05/04/22 12:26	1
1,1-Dichloroethene	0.0244		0.00100	0.000216	mg/L			05/04/22 12:26	1
cis-1,2-Dichloroethene	0.00970		0.00100	0.000174	mg/L			05/04/22 12:26	1
Tetrachloroethene	0.0385		0.00100	0.000500	mg/L			05/04/22 12:26	1
Trichloroethene	0.00761		0.00500	0.000424	mg/L			05/04/22 12:26	1
Vinyl chloride	0.00203		0.00200	0.000234	mg/L			05/04/22 12:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	97		75 - 131			-		05/04/22 12:26	1
Toluene-d8 (Surr)	100		80 - 117					05/04/22 12:26	1
4-Bromofluorobenzene (Surr)	97		74 - 124					05/04/22 12:26	1
1,2-Dichloroethane-d4 (Surr)	88		63 - 144					05/04/22 12:26	1

Client Sample ID: SB14-02-050322

Date Collected: 05/03/22 13:35

Date Received: 05/03/22 17:14

Lab Sample ID: 860-25535-2

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Wethou. 02000 - Volatile C	rigariic Compounds i	by Gorivio						
Analyte	Result Qualif	ier MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000657 J	0.00100	0.000244	mg/L			05/04/22 12:46	1
1,2-Dichloroethane	0.000585 J	0.00100	0.000285	mg/L			05/04/22 12:46	1
1,1-Dichloroethene	0.00221	0.00100	0.000216	mg/L			05/04/22 12:46	1
cis-1,2-Dichloroethene	0.00377	0.00100	0.000174	mg/L			05/04/22 12:46	1
Tetrachloroethene	0.0111	0.00100	0.000500	mg/L			05/04/22 12:46	1
Trichloroethene	0.00368 J	0.00500	0.000424	mg/L			05/04/22 12:46	1
Vinyl chloride	0.000234 U	0.00200	0.000234	mg/L			05/04/22 12:46	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	95		75 - 131		05/04/22 12:46	1
Toluene-d8 (Surr)	99		80 - 117		05/04/22 12:46	1
4-Bromofluorobenzene (Surr)	99		74 - 124		05/04/22 12:46	1
1,2-Dichloroethane-d4 (Surr)	90		63 - 144		05/04/22 12:46	1

Client Sample ID: SB14-01-050322

Date Collected: 05/03/22 14:10

Date Received: 05/03/22 17:14

Lab Sample	e ID:	860-25535-3

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/04/22 13:06	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/04/22 13:06	1
1,1-Dichloroethene	0.000532	J	0.00100	0.000216	mg/L			05/04/22 13:06	1
cis-1,2-Dichloroethene	0.000952	J	0.00100	0.000174	mg/L			05/04/22 13:06	1
Tetrachloroethene	0.00548		0.00100	0.000500	mg/L			05/04/22 13:06	1
Trichloroethene	0.00124	J	0.00500	0.000424	mg/L			05/04/22 13:06	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/04/22 13:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	96		75 - 131			•		05/04/22 13:06	1
Toluene-d8 (Surr)	99		80 - 117					05/04/22 13:06	1

Eurofins Houston

Page 6 of 23 5/4/2022

3

5

7

9

11 10

13

15

<u> 17</u>

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB14-01-050322

Date Collected: 05/03/22 14:10

Date Received: 05/03/22 17:14

Lab Sample ID: 860-25535-3

Matrix: Water

Job ID: 860-25535-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		74 - 124		05/04/22 13:06	1
1,2-Dichloroethane-d4 (Surr)	90		63 - 144		05/04/22 13:06	1

Client Sample ID: TB-01-050322

Date Collected: 05/03/22 07:45

Date Received: 05/03/22 17:14

Lab Sample ID: 860-25535-4

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
0.000244 U	0.00100	0.000244	mg/L			05/04/22 11:24	1
0.000285 U	0.00100	0.000285	mg/L			05/04/22 11:24	1
0.000216 U	0.00100	0.000216	mg/L			05/04/22 11:24	1
0.000174 U	0.00100	0.000174	mg/L			05/04/22 11:24	1
0.000500 U	0.00100	0.000500	mg/L			05/04/22 11:24	1
0.000424 U	0.00500	0.000424	mg/L			05/04/22 11:24	1
0.000234 U	0.00200	0.000234	mg/L			05/04/22 11:24	1
	Result Qualifier 0.000244 U 0.000285 U 0.000216 U 0.000174 U 0.000500 U 0.000424 U	Result 0.000244 Qualifier U MQL (Adj) 0.00100 0.000285 U 0.00100 0.000216 U 0.00100 0.000174 U 0.00100 0.000500 U 0.00100 0.000424 U 0.00500	Result Qualifier MQL (Adj) SDL 0.000244 U 0.00100 0.000244 0.000285 U 0.00100 0.000285 0.000216 U 0.00100 0.000216 0.000174 U 0.00100 0.000174 0.000500 U 0.00100 0.000500 0.000424 U 0.00500 0.000424	Result Qualifier MQL (Adj) SDL Unit 0.000244 U 0.00100 0.000244 mg/L 0.000285 U 0.00100 0.000285 mg/L 0.000216 U 0.00100 0.000216 mg/L 0.000174 U 0.00100 0.000174 mg/L 0.000500 U 0.00100 0.000500 mg/L 0.000424 U 0.00500 0.000424 mg/L	Result Qualifier MQL (Adj) SDL unit mg/L D 0.000244 U 0.00100 0.000244 mg/L mg/L 0.000285 U 0.00100 0.000285 mg/L 0.000216 U 0.00100 0.000216 mg/L 0.000174 U 0.00100 0.000174 mg/L 0.000500 U 0.00100 0.000500 mg/L 0.000424 U 0.00500 0.000424 mg/L	Result Qualifier MQL (Adj) SDL Unit D Prepared 0.000244 U 0.00100 0.000244 mg/L 0.000285 U 0.00100 0.000285 mg/L 0.000216 U 0.00100 0.000216 mg/L 0.000174 U 0.00100 0.000174 mg/L 0.000500 U 0.00100 0.000500 mg/L 0.000424 U 0.00500 0.000424 mg/L	Result 0.000244 U MQL (Adj) SDL Unit D Prepared Analyzed 0.000244 U 0.000100 0.000244 mg/L 05/04/22 11:24 0.000285 U 0.00100 0.000285 mg/L 05/04/22 11:24 0.000216 U 0.00100 0.000216 mg/L 05/04/22 11:24 0.000174 U 0.00100 0.000174 mg/L 05/04/22 11:24 0.000500 U 0.00100 0.000500 mg/L 05/04/22 11:24 0.000424 U 0.00500 0.000424 mg/L 05/04/22 11:24

Surrogate	%Recovery Qualifier	Limits	Prepared Analyze	ed Dil Fac
Dibromofluoromethane (Surr)	95	75 - 131	05/04/22 1	1:24 1
Toluene-d8 (Surr)	100	80 - 117	05/04/22 1	1:24 1
4-Bromofluorobenzene (Surr)	97	74 - 124	05/04/22 1	1:24 1
1,2-Dichloroethane-d4 (Surr)	89	63 - 144	05/04/22 1	1:24 1

Eurofins Houston

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-25535-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

4

5

7

8

10

11

13

15

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco
		DBFM	TOL	BFB	DCA
Lab Sample ID	Client Sample ID	(75-131)	(80-117)	(74-124)	(63-144)
860-25486-Q-21 MS	Matrix Spike	99	99	95	90
860-25486-R-21 MSD	Matrix Spike Duplicate	98	99	95	89
860-25535-1	SB14-03-050322	97	100	97	88
860-25535-2	SB14-02-050322	95	99	99	90
860-25535-3	SB14-01-050322	96	99	97	90
860-25535-4	TB-01-050322	95	100	97	89
LCS 860-51279/3	Lab Control Sample	98	100	96	89
LCSD 860-51279/4	Lab Control Sample Dup	99	99	95	88
MB 860-51279/11	Method Blank	96	100	95	89

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Houston

Page 9 of 23 5/4/2022

Job ID: 860-25535-1

4

6

8

9

. .

12

13

15

4-

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-51279/11

Matrix: Water

Analysis Batch: 51279

Client Samp	le ID:	Meth	od Blank	
	Prep	Type:	Total/NA	

Job ID: 860-25535-1

MB MB Result Qualifier SDL Unit Dil Fac Analyte MQL (Adj) D Prepared Analyzed 1,1-Dichloroethane 0.000244 U 0.00100 0.000244 mg/L 05/04/22 11:04 0.000285 mg/L 1,2-Dichloroethane 0.000285 U 0.00100 05/04/22 11:04 1 1,1-Dichloroethene 0.000216 U 0.00100 0.000216 mg/L 05/04/22 11:04 1 0.000174 U 0.00100 0.000174 mg/L cis-1,2-Dichloroethene 05/04/22 11:04 Tetrachloroethene 0.000500 U 0.00100 0.000500 mg/L 05/04/22 11:04 Trichloroethene 0.000424 U 0.00500 0.000424 mg/L 05/04/22 11:04 Vinyl chloride 0.000234 U 0.00200 0.000234 mg/L 05/04/22 11:04

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Dibromofluoromethane (Surr) 96 75 - 131 05/04/22 11:04 Toluene-d8 (Surr) 100 80 - 117 05/04/22 11:04 4-Bromofluorobenzene (Surr) 95 74 - 124 05/04/22 11:04 1,2-Dichloroethane-d4 (Surr) 89 63 - 144 05/04/22 11:04

Lab Sample ID: LCS 860-51279/3

Matrix: Water

Analysis Batch: 51279

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits Analyte 1,1-Dichloroethane 0.0500 0.04797 96 72 - 125 mg/L 1,2-Dichloroethane 0.0500 84 0.04213 mg/L 68 - 127105 1.1-Dichloroethene 0.0500 0.05261 mg/L 59 - 172 cis-1,2-Dichloroethene 0.0500 0.04469 89 75 - 125 mg/L Tetrachloroethene 0.0500 0.05061 mg/L 101 71 - 125Trichloroethene 0.0500 0.04945 99 62 - 137 mg/L Vinyl chloride 0.0500 0.05019 100 60 - 140 mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	98		75 - 131
Toluene-d8 (Surr)	100		80 - 117
4-Bromofluorobenzene (Surr)	96		74 - 124
1,2-Dichloroethane-d4 (Surr)	89		63 - 144

Lab Sample ID: LCSD 860-51279/4

Matrix: Water

Analysis Batch: 51279

Client Sample	ID: Lab	Contr	ol Sam	ple Dup
		Prep	Type:	Total/NA

	Spike	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualifier	Unit	D %	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.04557	mg/L		91	72 - 125	5	25
1,2-Dichloroethane	0.0500	0.04100	mg/L		82	68 - 127	3	25
1,1-Dichloroethene	0.0500	0.04975	mg/L		100	59 - 172	6	25
cis-1,2-Dichloroethene	0.0500	0.04261	mg/L		85	75 - 125	5	25
Tetrachloroethene	0.0500	0.04667	mg/L		93	71 - 125	8	25
Trichloroethene	0.0500	0.04626	mg/L		93	62 - 137	7	25
Vinyl chloride	0.0500	0.04585	mg/L		92	60 - 140	9	25

Page 10 of 23

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25535-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-51279/4

Matrix: Water

Analysis Batch: 51279

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	99		75 - 131
Toluene-d8 (Surr)	99		80 - 117
4-Bromofluorobenzene (Surr)	95		74 - 124
1,2-Dichloroethane-d4 (Surr)	88		63 - 144

Lab Sample ID: 860-25486-Q-21 MS

Matrix: Water

Analysis Batch: 51279

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 1.1-Dichloroethane 0.000244 U 0.0500 0.04609 72 - 125 mg/L 92 1,2-Dichloroethane 0.000285 U 0.0500 0.04089 mg/L 82 68 - 127 1,1-Dichloroethene 0.000216 U 0.0500 0.04936 mg/L 99 59 - 172 cis-1,2-Dichloroethene 0.0500 85 0.000174 U 0.04243 mg/L 75 - 125 Tetrachloroethene 0.0500 93 71 - 125 0.000500 U 0.04660 mg/L Trichloroethene 0.000424 U 0.0500 0.04667 mg/L 93 62 - 137 Vinyl chloride 0.000234 U 0.0500 0.03968 79 60 - 140 mg/L

MS MS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	99		75 - 131
Toluene-d8 (Surr)	99		80 - 117
4-Bromofluorobenzene (Surr)	95		74 - 124
1,2-Dichloroethane-d4 (Surr)	90		63 - 144

Lab Sample ID: 860-25486-R-21 MSD

Matrix: Water

Analysis Batch: 51279

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.000244	U	0.0500	0.04504		mg/L		90	72 - 125	2	25
1,2-Dichloroethane	0.000285	U	0.0500	0.04080		mg/L		82	68 - 127	0	25
1,1-Dichloroethene	0.000216	U	0.0500	0.04907		mg/L		98	59 - 172	1	25
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.04157		mg/L		83	75 - 125	2	25
Tetrachloroethene	0.000500	U	0.0500	0.04689		mg/L		94	71 - 125	1	25
Trichloroethene	0.000424	U	0.0500	0.04564		mg/L		91	62 - 137	2	25
Vinyl chloride	0.000234	U	0.0500	0.03810		mg/L		76	60 - 140	4	25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	98		75 - 131
Toluene-d8 (Surr)	99		80 - 117
4-Bromofluorobenzene (Surr)	95		74 - 124
1.2-Dichloroethane-d4 (Surr)	89		63 - 144

Eurofins Houston

Page 11 of 23

5/4/2022

QC Association Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25535-1

GC/MS VOA

Analysis Batch: 51279

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-25535-1	SB14-03-050322	Total/NA	Water	8260C	
860-25535-2	SB14-02-050322	Total/NA	Water	8260C	
860-25535-3	SB14-01-050322	Total/NA	Water	8260C	
860-25535-4	TB-01-050322	Total/NA	Water	8260C	
MB 860-51279/11	Method Blank	Total/NA	Water	8260C	
LCS 860-51279/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-51279/4	Lab Control Sample Dup	Total/NA	Water	8260C	
860-25486-Q-21 MS	Matrix Spike	Total/NA	Water	8260C	
860-25486-R-21 MSD	Matrix Spike Duplicate	Total/NA	Water	8260C	

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB14-03-050322

Pate Collected: 05/03/22 12:45	Matrix: Water
Pate Received: 05/03/22 17:14	

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	8260C		1	5 mL	5 mL	51279	05/04/22 12:26	NA	XEN STF

Client Sample ID: SB14-02-050322

Lab Sample ID: 860-25535-2 Date Collected: 05/03/22 13:35 **Matrix: Water** Date Received: 05/03/22 17:14

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	51279	05/04/22 12:46	NA	XEN STF

Client Sample ID: SB14-01-050322

Date Collected: 05/03/22 14:10 Date Received: 05/03/22 17:14

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	51279	05/04/22 13:06	NA	XEN STF

Client Sample ID: TB-01-050322

Date Collected: 05/03/22 07:45

Date Received: 05/03/22 17:14

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	51279	05/04/22 11:24	NA	XEN STF

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-25535-1

Lab Sample ID: 860-25535-1

Lab Sample ID: 860-25535-3

Lab Sample ID: 860-25535-4

Matrix: Water

Matrix: Water

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

Job ID: 860-25535-1

3

4

7

9

4 4

12

14

4.0

11/

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation Job ID: 860-25535-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	XEN STF
5030C	Purge and Trap	SW846	XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-25535-1	SB14-03-050322	Water	05/03/22 12:45	05/03/22 17:14
860-25535-2	SB14-02-050322	Water	05/03/22 13:35	05/03/22 17:14
860-25535-3	SB14-01-050322	Water	05/03/22 14:10	05/03/22 17:14
860-25535-4	TB-01-050322	Water	05/03/22 07:45	05/03/22 17:14

Job ID: 860-25535-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-25535-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	05/04/2022

2

3

4

6

e S

11

13

15

Laboratory Data Package Cover Page - Page 2 of 4

		lame: Eurofins Houston	LRC Date: 05/04/202					
		e: STC Silber Rd Pre-Design Investigation	Laboratory Job Numb	er: 860-	25535-1			
		ame: Bethany McDaniel						
#¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵
R1	OI	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of	sample acceptability upon	✓				
		receipt?						
		Were all departures from standard conditions described in	n an exception report?	✓				
R2	OI	Sample and quality control (QC) identificat	ion					
		Are all field sample ID numbers cross-referenced to the la	aboratory ID numbers?	✓				
		Are all laboratory ID numbers cross-referenced to the cor	responding QC data?	✓				
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding ti	mes?	✓				
		Other than those results < MQL, were all other raw values	s bracketed by calibration	✓				
		standards?						
		Were calculations checked by a peer or supervisor?		✓				
		Were all analyte identifications checked by a peer or supe		✓				
		Were sample detection limits reported for all analytes not		✓				
		Were all results for soil and sediment samples reported o			1	√		
		Were % moisture (or solids) reported for all soil and sedin	· · · · · · · · · · · · · · · · · · ·		1	✓		
		Were bulk soils/solids samples for volatile analysis extrac	ted with methanol per			✓		
		SW846 Method 5035?						
		If required for the project, are TICs reported?				✓		
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?		√				
		Were surrogate percent recoveries in all samples within the	-	√				
R5 OI		Test reports/summary forms for blank sam	ples					
		Were appropriate type(s) of blanks analyzed?		✓				
		Were blanks analyzed at the appropriate frequency?		√				
		Were method blanks taken through the entire analytical p	rocess, including preparation	✓				
		and, if applicable, cleanup procedures?						
D		Were blank concentrations < MQL?		✓				
R6	OI	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		√				
		Was each LCS taken through the entire analytical proced	ure, including prep and	✓				
		cleanup steps?		✓				
		Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the labor	catory OC limits?	V /				
				✓				
		Does the detectability check sample data document the la						
		detect the COCs at the MDL used to calculate the SDLs? Was the LCSD RPD within QC limits?		✓				
R7	OI	Matrix spike (MS) and matrix spike duplica	to (MCD) data	•				
X/	Oi	Were the project/method specified analytes included in the		✓				
		Were MS/MSD analyzed at the appropriate frequency?	C IVIO AIIU IVIOD!	V ✓				
		Were MS (and MSD, if applicable) %Rs within the laborat	ory OC limits?	V ✓				
		Were MS/MSD RPDs within laboratory QC limits?	ory wo minus:	✓				
R8	OI	Analytical duplicate data		-				
10		Were appropriate analytical duplicates analyzed for each	matrix?			 		
		Were analytical duplicates analyzed at the appropriate fre				·		
		Were RPDs or relative standard deviations within the laboration				· ·		
R9	OI	Method quantitation limits (MQLs):						
10		Are the MQLs for each method analyte included in the lab	poratory data package?	✓				
		Do the MQLs correspond to the concentration of the lower		· ·				
		standard?	Strion 2010 GailbradOff					
		Are unadjusted MQLs and DCSs included in the laborator	ry data package?	✓				
R10	OI	Other problems/anomalies	, , , , ,					
		Are all known problems/anomalies/special conditions note	ed in this LRC and FR?	✓				
		Was applicable and available technology used to lower th		✓				
		interference effects on the sample results?	o obe to minimize the matrix					
		Is the laboratory NELAC-accredited under the Texas Laboratory	oratory Accreditation Program	✓				
		for the analytes, matrices and methods associated with the					1	

Page 18 of 23 5/4/2022

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 05/04/2022
Project Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-25535-1
Reviewer Name: Bethany McDaniel	•

			ory Job Numbe	r: 860-2	25535-1			
Revie	wer Na	nme: Bethany McDaniel						
# ¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#
S1	OI	Initial calibration (ICAL)						
	1	Were response factors and/or relative response factors for each analyte	within QC	✓				
		limits?						
		Were percent RSDs or correlation coefficient criteria met?		✓				
		Was the number of standards recommended in the method used for all a	analytes?	✓				
		Were all points generated between the lowest and highest standard used	d to calculate	✓				
		the curve?						
		Are ICAL data available for all instruments used?		√				
		Has the initial calibration curve been verified using an appropriate secon	d source	✓				
		standard?						
S2	OI	Initial and continuing calibration verification (ICCV an	d CCV) and					
		continuing calibration blank (CCB):						
		Was the CCV analyzed at the method-required frequency?		√				
		Were percent differences for each analyte within the method-required Q	C limits?	√				
		Was the ICAL curve verified for each analyte?	D - MDI O	✓		 		
		Was the absolute value of the analyte concentration in the inorganic CCI	B < MDL?			V		
S3 0		Mass spectral tuning						
		Was the appropriate compound for the method used for tuning?		√				
		Were ion abundance data within the method-required QC limits?		✓				
S4	0	Internal standards (IS)						
		Were IS area counts and retention times within the method-required QC	limits?	√				
S5 OI		Raw data (NELAC Section 5.5.10)						
		Were the raw data (for example, chromatograms, spectral data) reviewe	d by an	✓				
		analyst?						
		Were data associated with manual integrations flagged on the raw data?		✓				
S6	0	Dual column confirmation						
		Did dual column confirmation results meet the method-required QC?				✓		
S7	0	Tentatively identified compounds (TICs)						
		If TICs were requested, were the mass spectra and TIC data subject to a	appropriate			✓		
		checks?						
S8	I	Interference Check Sample (ICS) results						
		Were percent recoveries within method QC limits?				✓		
S9	I	Serial dilutions, post digestion spikes, and method of	standard					
		additions						
		Were percent differences, recoveries, and the linearity within the QC limit	its specified			✓		
		in the method?						
S10	OI	Method detection limit (MDL) studies						
		Was a MDL study performed for each reported analyte?		√				
		Is the MDL either adjusted or supported by the analysis of DCSs?		✓				
S11	OI	Proficiency test reports						
		Was the laboratory's performance acceptable on the applicable proficien	cy tests or	✓				
		evaluation studies?						
S12	OI	Standards documentation						
		Are all standards used in the analyses NIST-traceable or obtained from	other	✓				
040		appropriate sources?						
S13	OI	Compound/analyte identification procedures						
		Are the procedures for compound/analyte identification documented?		✓				
S14	OI	Demonstration of analyst competency (DOC)						
		Was DOC conducted consistent with NELAC Chapter 5?		√				
		Is documentation of the analyst's competency up-to-date and on file?		✓				
S15	OI	Verification/validation documentation for methods (NE	ELAC					
		Chapter 5)						
		Are all the methods used to generate the data documented, verified, and	l validated,	✓				
		where applicable?						
S16	OI	Laboratory standard operating procedures (SOPs)						
		Are laboratory SOPs current and on file for each method performed?		√				

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s).
 Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

3

4

7

9

11

13

15

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

^{3.} NA = Not applicable;

^{4.} NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Labora	tory Name: Eurofins Houston	LRC Date: 05/04/2022			
Project	Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-25535-1			
Review	ver Name: Bethany McDaniel				
ER#1	Description				
	No Exceptions				
1. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).					

-

Detection Check Summary

Client: Jacobs Engineering Group, Inc. Job ID: 860-25535-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Detector: MSD/0 Column: DB-624

Spike							
Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
0.00100	0.00483		mg/L	0.00100	0.000244	03/03/2022	860-43530
0.00100	0.00498		mg/L	0.00100	0.000285	03/03/2022	860-43530
0.00100	0.00411		mg/L	0.00100	0.000216	03/03/2022	860-43530
0.00100	0.00499		mg/L	0.00100	0.000174	03/03/2022	860-43530
0.00100	0.00463		mg/L	0.00100	0.000500	03/03/2022	860-43530
0.00100	0.00503		mg/L	0.00500	0.000424	03/03/2022	860-43530
0.00100	0.00381		mg/L	0.00200	0.000234	03/03/2022	860-43530
	Added 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	Added Result 0.00100 0.00483 0.00100 0.00498 0.00100 0.00411 0.00100 0.00499 0.00100 0.00463 0.00100 0.00503	Added Result 0.00100 Qualifier 0.00100 0.00483 Qualifier 0.00100 0.00498 Qualifier 0.00100 0.00491 Qualifier 0.00100 0.00499 Qualifier 0.00100 0.00463 Qualifier	Added Result 0.00100 Qualifier 0.00160 Unit mg/L mg/L mg/L 0.00100 0.00498 mg/L mg/L 0.00100 0.00411 mg/L 0.00100 0.00499 mg/L 0.00100 0.00463 mg/L 0.00100 0.00503 mg/L	Added Result Qualifier Unit RL 0.00100 0.00483 mg/L 0.00100 0.00100 0.00498 mg/L 0.00100 0.00100 0.00411 mg/L 0.00100 0.00100 0.00499 mg/L 0.00100 0.00100 0.00463 mg/L 0.00100 0.00100 0.00503 mg/L 0.00500	Added Result Qualifier Unit RL MDL 0.00100 0.00483 mg/L 0.00100 0.000244 0.00100 0.00498 mg/L 0.00100 0.000285 0.00100 0.00411 mg/L 0.00100 0.000216 0.00100 0.00499 mg/L 0.00100 0.000500 0.00100 0.00463 mg/L 0.00100 0.000500 0.00100 0.00503 mg/L 0.00500 0.000424	Added Result Qualifier Unit RL MDL Analysis Date 0.00100 0.00483 mg/L 0.00100 0.000244 03/03/2022 0.00100 0.00498 mg/L 0.00100 0.000285 03/03/2022 0.00100 0.00411 mg/L 0.00100 0.000216 03/03/2022 0.00100 0.00499 mg/L 0.00100 0.000174 03/03/2022 0.00100 0.00463 mg/L 0.00100 0.000500 03/03/2022 0.00100 0.00503 mg/L 0.00500 0.000424 03/03/2022

5/4/2022

Euronns Aenco, Starrord 4145 Greenbriar Dr Stafford, TX 77477 Phone (281) 240-4200		Chain of Custody Record		್ಕಿ eurofins Ervironment Testing America
Client Information	Sampler	Lab PM: McDaniel, Bethany A	Carrier Tracking No(s):	COC No: 860-6507-2299.1
Client Contact: John Ynfante	Phone:	E-Mail: Bethany.McDaniel@Eurofinset.com	State of Origin:	Page: 1
Company. Jacobs Engineering Group, Inc.	PWSID:	Analysis Requested	equested	# qor
Address: 14701 St. Mary's Lane Suite 300	Due Date Requested:			sservation Codes:
Gir. Houston	TAT Requested (days): 1 day RUSH			A HCL M Hexane B NaOH N None C Zn Acetate O AsNaO2
State, Zip: TX, 77079	Compliance Project: A Yes A No			Nitric Acid P
Phone:	PO#			F MeOH R Ne2S203 G Anchlor S H2S04 H Ascentis Acid T TSP Dode-shudrate
Emait: John. Ynfante@jacobs.com	₩0#:			i ice U
Project Name: STC Silber Road Pre-Design Investigation	Project #:	(NO)		K EDTA W
Site:	SSOW#:	ο . ()(ο		r cont
	Sample	Matrix iversely OV (GOM)		o Jaquin
Samule (dentification	Sample Date Time Gentab)	S=solid, O=solid, O=s		
	X	tion Code:		Special nisa acadismote.
226050-ED-41ELS	69 SHC1 72/E/S			~
SB14-02-05032	3/22 1335	Water		~
2814-01-05032C	01/1 22/5/	Water		3
113-01-050322	S/3/22 OHS	Water X	2	7
		Water		
		Water		
		Water		- 1000 ci - 1
		Water		Ñ
860-25535 Chain of Custody		Water		Corrected Temp 0.6
		Water		
		Water		
Possible Hazard Identification		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	e assessed if samples are retai	ined longer than 1 month)
ested: 1, Other (specify)	TRRP	Speci	losai by Lab	Schief Tot
Empty Kit Relinquished by	Date:	Time:	Method of Shipment	
Relinquished by:	Date/Time: 5/3/22 1714	Company Received by:	S / S / 22.	TTIGOMPANY Company
Refinoushed by:	Date/Tine:	Rendive	Dale/Time:	Company
1		1		
Custody Seal No.		Cooler Temperature(s) °C and Other Remarks:	Remarks:	
				Ver 01/16/2019

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-25535-1

Login Number: 25535 List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-25663-1

Client Project/Site: STC Silber Rd Pre-Design Investigation

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 5/5/2022 5:13:17 PM

Bethany McDaniel, Senior Project Manager (713)358-2005
Bethany.McDaniel@et.eurofinsus.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

6

7

9

11

13

4 =

16

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	8
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
State Forms	17
TRRP Checklist	17
DCS Report	21
Chain of Custody	22
Receipt Checklists	23

-6

4

6

8

10

12

14

. .

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-25663-1

Project/Site: STC Silber Rd Pre-Design Investigation

Qualifiers

GC/MS VOA

 Qualifier
 Qualifier Description

 J
 Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

N1 MS, MSD: Spike recovery exceeds upper or lower control limits.

These commonly used abbreviations may be may not be present in this report

U Analyte was not detected at or above the SDL.

Glossary

Appreviation	These commonly used appreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Houston

Page 3 of 23 5/5/2022

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25663-1

Job ID: 860-25663-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-25663-1

Comments

No additional comments.

Receipt

The samples were received on 5/5/2022~8:03 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.8° C.

4

6

10

10

13

15

17

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID: 860-25663-1

Lab Sample ID: 860-25663-2

Lab Sample ID: 860-25663-3

Lab Sample ID: 860-25663-4

Lab Sample ID: 860-25663-5

Job ID: 860-25663-1

Clien	t Sample	ID: 3	SB15-0	03-050422	2
_					

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.0111	0.00100	0.000244	mg/L	1	_	8260C	Total/NA
1,2-Dichloroethane	0.00274	0.00100	0.000285	mg/L	1		8260C	Total/NA
1,1-Dichloroethene	0.0197	0.00100	0.000216	mg/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	0.0196	0.00100	0.000174	mg/L	1		8260C	Total/NA
Tetrachloroethene	0.0259	0.00100	0.000500	mg/L	1		8260C	Total/NA
Trichloroethene	0.00884	0.00500	0.000424	mg/L	1		8260C	Total/NA
Vinyl chloride	0.00136 J	0.00200	0.000234	mg/L	1		8260C	Total/NA

Client Sample ID: SB13-03-050422

Analyte	Result Qualifie	r MQL (Adj)	SDL	Unit	Dil Fac	D Method	Prep Type
1,1-Dichloroethane	0.0179	0.00100	0.000244	mg/L	1	8260C	Total/NA
1,1-Dichloroethene	0.0777	0.00100	0.000216	mg/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	0.0132	0.00100	0.000174	mg/L	1	8260C	Total/NA
Tetrachloroethene	0.00519	0.00100	0.000500	mg/L	1	8260C	Total/NA
Trichloroethene	0.00561	0.00500	0.000424	mg/L	1	8260C	Total/NA
Vinyl chloride	0.00195 J	0.00200	0.000234	mg/L	1	8260C	Total/NA

Client Sample ID: SB13-02-050422

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00957	0.00100	0.000244	mg/L	1	_	8260C	Total/NA
1,1-Dichloroethene	0.0459	0.00100	0.000216	mg/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	0.00651	0.00100	0.000174	mg/L	1		8260C	Total/NA
Tetrachloroethene	0.00262	0.00100	0.000500	mg/L	1		8260C	Total/NA
Trichloroethene	0.00329 J	0.00500	0.000424	mg/L	1		8260C	Total/NA

Client Sample ID: FD-01-050422

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac [Method	Prep Type
1,1-Dichloroethane	0.0160	0.00100	0.000244	mg/L		8260C	Total/NA
1,1-Dichloroethene	0.0608	0.00100	0.000216	mg/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	0.0118	0.00100	0.000174	mg/L	1	8260C	Total/NA
Tetrachloroethene	0.00257	0.00100	0.000500	mg/L	1	8260C	Total/NA
Trichloroethene	0.00414 J	0.00500	0.000424	mg/L	1	8260C	Total/NA
Vinyl chloride	0.00169 J	0.00200	0.000234	mg/L	1	8260C	Total/NA

Client Sample ID: TB-01-050422

_		
NIa	Detections	

This Detection Summary does not include radiochemical test results.

Eurofins Houston

Page 5 of 23 5/5/2022

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB15-03-050422

Date Collected: 05/04/22 11:40 Date Received: 05/05/22 08:03 Lab Sample ID: 860-25663-1

Matrix: Water

Job ID: 860-25663-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0111		0.00100	0.000244	mg/L			05/05/22 13:36	1
1,2-Dichloroethane	0.00274		0.00100	0.000285	mg/L			05/05/22 13:36	1
1,1-Dichloroethene	0.0197		0.00100	0.000216	mg/L			05/05/22 13:36	1
cis-1,2-Dichloroethene	0.0196		0.00100	0.000174	mg/L			05/05/22 13:36	1
Tetrachloroethene	0.0259		0.00100	0.000500	mg/L			05/05/22 13:36	1
Trichloroethene	0.00884		0.00500	0.000424	mg/L			05/05/22 13:36	1
Vinyl chloride	0.00136	J	0.00200	0.000234	mg/L			05/05/22 13:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	92		75 - 131					05/05/22 13:36	1
Toluene-d8 (Surr)	98		80 - 117					05/05/22 13:36	1
4-Bromofluorobenzene (Surr)	98		74 - 124					05/05/22 13:36	1
1,2-Dichloroethane-d4 (Surr)	104		63 - 144					05/05/22 13:36	1

Client Sample ID: SB13-03-050422

Date Collected: 05/04/22 16:15

Lab Sample ID: 860-25663-2 **Matrix: Water**

Date Received: 05/05/22 08:03

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0179		0.00100	0.000244	mg/L			05/05/22 13:55	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/05/22 13:55	1
1,1-Dichloroethene	0.0777		0.00100	0.000216	mg/L			05/05/22 13:55	1
cis-1,2-Dichloroethene	0.0132		0.00100	0.000174	mg/L			05/05/22 13:55	1
Tetrachloroethene	0.00519		0.00100	0.000500	mg/L			05/05/22 13:55	1
Trichloroethene	0.00561		0.00500	0.000424	mg/L			05/05/22 13:55	1
Vinyl chloride	0.00195	J	0.00200	0.000234	mg/L			05/05/22 13:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	91		75 - 131					05/05/22 13:55	1
Toluene-d8 (Surr)	103		80 - 117					05/05/22 13:55	1
4-Bromofluorobenzene (Surr)	106		74 - 124					05/05/22 13:55	1

63 - 144

Client Sample ID: SB13-02-050422

100

Date Collected: 05/04/22 16:30

1,2-Dichloroethane-d4 (Surr)

Date Received: 05/05/22 08:03

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00957		0.00100	0.000244	mg/L			05/05/22 14:14	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/05/22 14:14	1
1,1-Dichloroethene	0.0459		0.00100	0.000216	mg/L			05/05/22 14:14	1
cis-1,2-Dichloroethene	0.00651		0.00100	0.000174	mg/L			05/05/22 14:14	1
Tetrachloroethene	0.00262		0.00100	0.000500	mg/L			05/05/22 14:14	1
Trichloroethene	0.00329	J	0.00500	0.000424	mg/L			05/05/22 14:14	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/05/22 14:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	98		75 - 131					05/05/22 14:14	1
Toluene-d8 (Surr)	101		80 - 117					05/05/22 14:14	1

Eurofins Houston

05/05/22 13:55

Matrix: Water

Lab Sample ID: 860-25663-3

Page 6 of 23 5/5/2022

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB13-02-050422

Date Collected: 05/04/22 16:30 Date Received: 05/05/22 08:03 Lab Sample ID: 860-25663-3

Matrix: Water

Job ID: 860-25663-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		74 - 124		05/05/22 14:14	1
1,2-Dichloroethane-d4 (Surr)	101		63 - 144		05/05/22 14:14	1

Client Sample ID: FD-01-050422

Date Collected: 05/04/22 00:00 Date Received: 05/05/22 08:03 Lab Sample ID: 860-25663-4

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
0.0160	0.00100	0.000244	mg/L		-	05/05/22 14:33	1
0.000285 U	0.00100	0.000285	mg/L			05/05/22 14:33	1
0.0608	0.00100	0.000216	mg/L			05/05/22 14:33	1
0.0118	0.00100	0.000174	mg/L			05/05/22 14:33	1
0.00257	0.00100	0.000500	mg/L			05/05/22 14:33	1
0.00414 J	0.00500	0.000424	mg/L			05/05/22 14:33	1
0.00169 J	0.00200	0.000234	mg/L			05/05/22 14:33	1
	0.0160 0.000285 U 0.0608 0.0118 0.00257 0.00414 J	0.0160 0.00100 0.000285 U 0.00100 0.0608 0.00100 0.0118 0.00100 0.00257 0.00100 0.00414 J 0.00500	0.0160 0.00100 0.000244 0.000285 U 0.00100 0.000285 0.0608 0.00100 0.000216 0.0118 0.00100 0.000174 0.00257 0.00100 0.000500 0.00414 J 0.00500 0.000424	0.0160 0.00100 0.000244 mg/L 0.000285 U 0.00100 0.000285 mg/L 0.0608 0.00100 0.000216 mg/L 0.0118 0.00100 0.000174 mg/L 0.00257 0.00100 0.000500 mg/L 0.00414 J 0.00500 0.000424 mg/L	0.0160 0.00100 0.000244 mg/L 0.000285 U 0.00100 0.000285 mg/L 0.0608 0.00100 0.000216 mg/L 0.0118 0.00100 0.000174 mg/L 0.00257 0.00100 0.000500 mg/L 0.00414 J 0.00500 0.000424 mg/L	0.0160 0.00100 0.000244 mg/L 0.000285 U 0.00100 0.000285 mg/L 0.0608 0.00100 0.000216 mg/L 0.0118 0.00100 0.000174 mg/L 0.00257 0.00100 0.000500 mg/L 0.00414 J 0.00500 0.000424 mg/L	0.0160 0.00100 0.000244 mg/L 05/05/22 14:33 0.000285 U 0.00100 0.000285 mg/L 05/05/22 14:33 0.0608 0.00100 0.000216 mg/L 05/05/22 14:33 0.0118 0.00100 0.000174 mg/L 05/05/22 14:33 0.00257 0.00100 0.000500 mg/L 05/05/22 14:33 0.00414 J 0.00500 0.000424 mg/L 05/05/22 14:33

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	97	75 - 131		05/05/22 14:33	1
Toluene-d8 (Surr)	99	80 - 117		05/05/22 14:33	1
4-Bromofluorobenzene (Surr)	99	74 - 124		05/05/22 14:33	1
1,2-Dichloroethane-d4 (Surr)	102	63 - 144		05/05/22 14:33	1

Client Sample ID: TB-01-050422

Date Collected: 05/04/22 07:45

Date Received: 05/05/22 08:03

Lab Sample ID: 860-25663-5

Matrix: Water

Mathad: 8260C - Valatile Organic Compounds by GC/MS

Method: 8260C - Volatile	Organic Compour	nas by G	IC/IVIS						
Analyte	Result C	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244 U	J	0.00100	0.000244	mg/L			05/05/22 13:17	1
1,2-Dichloroethane	0.000285 L	J	0.00100	0.000285	mg/L			05/05/22 13:17	1
1,1-Dichloroethene	0.000216 L	J	0.00100	0.000216	mg/L			05/05/22 13:17	1
cis-1,2-Dichloroethene	0.000174 L	j	0.00100	0.000174	mg/L			05/05/22 13:17	1
Tetrachloroethene	0.000500 L	J	0.00100	0.000500	mg/L			05/05/22 13:17	1
Trichloroethene	0.000424 L	J	0.00500	0.000424	mg/L			05/05/22 13:17	1
Vinyl chloride	0.000234 L	j	0.00200	0.000234	mg/L			05/05/22 13:17	1

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	95		75 - 131		05/05/22 13:17	1
Toluene-d8 (Surr)	100		80 - 117		05/05/22 13:17	1
4-Bromofluorobenzene (Surr)	99		74 - 124		05/05/22 13:17	1
1,2-Dichloroethane-d4 (Surr)	102		63 - 144		05/05/22 13:17	1

Eurofins Houston

Page 7 of 23

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-25663-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

2

4

5

O

8

9

11

12

14

16

11/

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25663-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DBFM	TOL	BFB	DCA
Lab Sample ID	Client Sample ID	(75-131)	(80-117)	(74-124)	(63-144)
860-25663-1	SB15-03-050422	92	98	98	104
860-25663-1 MS	SB15-03-050422	98	103	101	101
860-25663-2	SB13-03-050422	91	103	106	100
860-25663-3	SB13-02-050422	98	101	97	101
860-25663-4	FD-01-050422	97	99	99	102
860-25663-5	TB-01-050422	95	100	99	102
LCS 860-51704/3	Lab Control Sample	102	100	100	99
LCSD 860-51704/4	Lab Control Sample Dup	101	99	100	101
MB 860-51704/8	Method Blank	92	101	98	101

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Houston

Page 9 of 23 5/5/2022

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-51704/8

Matrix: Water

Analysis Batch: 51704

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 860-25663-1

Prep Type: Total/NA

Analyte	Result Qu	ualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244 U		0.00100	0.000244	mg/L			05/05/22 12:21	1
1,2-Dichloroethane	0.000285 U		0.00100	0.000285	mg/L			05/05/22 12:21	1
1,1-Dichloroethene	0.000216 U		0.00100	0.000216	mg/L			05/05/22 12:21	1
cis-1,2-Dichloroethene	0.000174 U		0.00100	0.000174	mg/L			05/05/22 12:21	1
Tetrachloroethene	0.000500 U		0.00100	0.000500	mg/L			05/05/22 12:21	1
Trichloroethene	0.000424 U		0.00500	0.000424	mg/L			05/05/22 12:21	1
Vinyl chloride	0.000234 U		0.00200	0.000234	mg/L			05/05/22 12:21	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	92		75 - 131		05/05/22 12:21	1
Toluene-d8 (Surr)	101		80 - 117		05/05/22 12:21	1
4-Bromofluorobenzene (Surr)	98		74 - 124		05/05/22 12:21	1
1,2-Dichloroethane-d4 (Surr)	101		63 - 144		05/05/22 12:21	1

Lab Sample ID: LCS 860-51704/3

Matrix: Water

Analysis Batch: 51704

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS %Rec Spike Added Result Qualifier Unit D %Rec Limits Analyte 0.0500 110 72 - 125 1,1-Dichloroethane 0.05501 mg/L 0.0500 115 1,2-Dichloroethane 0.05764 mg/L 68 - 1271.1-Dichloroethene 0.0500 0.05340 mg/L 107 59 - 172 cis-1,2-Dichloroethene 0.0500 0.05703 114 75 - 125 mg/L Tetrachloroethene 0.0500 0.05172 mg/L 103 71 - 125Trichloroethene 0.0500 0.05280 106 62 - 137 mg/L 0.0500 0.05288 106 60 - 140 Vinyl chloride mg/L

LCS LCS ate %Recovery Qualifier

 Surrogate
 %Recovery
 Qualifier
 Limits

 Dibromofluoromethane (Surr)
 102
 75 - 131

 Toluene-d8 (Surr)
 100
 80 - 117

 4-Bromofluorobenzene (Surr)
 100
 74 - 124

 1,2-Dichloroethane-d4 (Surr)
 99
 63 - 144

Lab Sample ID: LCSD 860-51704/4

Matrix: Water

Analysis Batch: 51704

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

RPD LCSD LCSD %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit 1,1-Dichloroethane 0.0500 0.04912 mg/L 98 72 - 125 11 25 1,2-Dichloroethane 0.0500 0.05488 mg/L 110 68 - 127 25 0.0500 0.05162 103 59 - 172 25 1.1-Dichloroethene mg/L 3 cis-1,2-Dichloroethene 0.0500 0.05403 108 75 - 125 25 mg/L 0.0500 97 25 Tetrachloroethene 0.04850 71 - 125 6 mg/L Trichloroethene 0.0500 0.04799 mg/L 96 62 - 13710 25 Vinyl chloride 0.0500 0.05091 102 25 mg/L 60 - 140

Eurofins Houston

12

1 1

15

17

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25663-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-51704/4

Matrix: Water

Analysis Batch: 51704

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Recovery Qualifier Limits Surrogate Dibromofluoromethane (Surr) 101 75 - 131 Toluene-d8 (Surr) 99 80 - 117 100 4-Bromofluorobenzene (Surr) 74 - 124 1,2-Dichloroethane-d4 (Surr) 101 63 - 144

Client Sample ID: SB15-03-050422 Lab Sample ID: 860-25663-1 MS

Matrix: Water Prep Type: Total/NA

Analysis Batch: 51704

%Rec Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 1.1-Dichloroethane 72 - 125 0.0111 0.0500 0.06357 mg/L 105 1,2-Dichloroethane 0.00274 0.0500 0.06590 mg/L 126 68 - 127 1,1-Dichloroethene 0.0197 0.0500 0.08096 mg/L 122 59 - 172 cis-1,2-Dichloroethene 0.07706 0.0196 0.0500 mg/L 115 75 - 125 Tetrachloroethene 0.0500 157 0.0259 0.1042 N1 mg/L 71 - 125 Trichloroethene 0.00884 0.0500 0.06358 mg/L 109 62 - 137Vinyl chloride 0.00136 J 0.0500 0.05884 115 60 - 140 mg/L

MS MS Surrogate Qualifier Limits %Recovery 75 - 131 Dibromofluoromethane (Surr) 98 Toluene-d8 (Surr) 103 80 - 117 4-Bromofluorobenzene (Surr) 101 74 - 124 1,2-Dichloroethane-d4 (Surr) 101 63 - 144

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25663-1

GC/MS VOA

Analysis Batch: 51704

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-25663-1	SB15-03-050422	Total/NA	Water	8260C	
860-25663-2	SB13-03-050422	Total/NA	Water	8260C	
860-25663-3	SB13-02-050422	Total/NA	Water	8260C	
860-25663-4	FD-01-050422	Total/NA	Water	8260C	
860-25663-5	TB-01-050422	Total/NA	Water	8260C	
MB 860-51704/8	Method Blank	Total/NA	Water	8260C	
LCS 860-51704/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-51704/4	Lab Control Sample Dup	Total/NA	Water	8260C	
860-25663-1 MS	SB15-03-050422	Total/NA	Water	8260C	

3

7

9

10

12

13

4 5

10

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB15-03-050422

Date Collected: 05/04/22 11:40

Total/NA

Prep Type

Total/NA

Date Received: 05/05/22 08:03 Dil Initial Batch Batch Final Method **Prep Type** Type Run

Factor Amount 5 mL

Amount 5 mL

Batch Number 51704

or Analyzed 05/05/22 13:36

Prepared

Analyst Lab Lab Sample ID: 860-25663-2

Lab Sample ID: 860-25663-1

Job ID: 860-25663-1

XEN STF

Matrix: Water

Matrix: Water

Lab

Matrix: Water

XEN STF

Matrix: Water

Client Sample ID: SB13-03-050422

Analysis

Date Collected: 05/04/22 16:15 Date Received: 05/05/22 08:03

Batch

Batch Type Method 8260C

8260C

Dil Initial Run **Factor Amount** 5 mL

Dil

Factor

Final Amount 5 mL

Final

Amount

5 mL

Batch Number 51704

Batch

51704

Number

Prepared or Analyzed 05/05/22 13:55

Prepared

or Analyzed

05/05/22 14:14 NA

Analyst Lab NA XEN STF Lab Sample ID: 860-25663-3

Analyst

Lab Sample ID: 860-25663-4

Client Sample ID: SB13-02-050422

Analysis

Date Collected: 05/04/22 16:30 Date Received: 05/05/22 08:03

Batch Batch

Prep Type Method Type Total/NA Analysis 8260C

Client Sample ID: FD-01-050422 Date Collected: 05/04/22 00:00

Type

Client Sample ID: TB-01-050422

Analysis

Date Received: 05/05/22 08:03

Batch

Batch Method

8260C

Dil Factor Run

Run

Amount 5 mL

Initial

Initial

Amount

5 mL

Amount 5 mL

Final

Batch **Prepared** Number or Analyzed 51704 05/05/22 14:33 NA

Analyst Lab XEN STF Lab Sample ID: 860-25663-5

Matrix: Water

Prep Type

Total/NA

Date Collected: 05/04/22 07:45 Date Received: 05/05/22 08:03

Batch Batch Method **Prep Type** Type Total/NA Analysis 8260C

Dil Initial Run **Factor Amount** 5 mL

Final **Amount** 5 mL

Batch Number 51704

or Analyzed 05/05/22 13:17

Prepared

Analyst NA

Lab XEN STF

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

Job ID: 860-25663-1

3

4

7

9

11

13

15

16

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

MethodMethod DescriptionProtocolLaboratory8260CVolatile Organic Compounds by GC/MSSW846XEN STF5030CPurge and TrapSW846XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

3

Job ID: 860-25663-1

6

8

10

40

13

15

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-25663-1	SB15-03-050422	Water	05/04/22 11:40	05/05/22 08:03
860-25663-2	SB13-03-050422	Water	05/04/22 16:15	05/05/22 08:03
860-25663-3	SB13-02-050422	Water	05/04/22 16:30	05/05/22 08:03
860-25663-4	FD-01-050422	Water	05/04/22 00:00	05/05/22 08:03
860-25663-5	TB-01-050422	Water	05/04/22 07:45	05/05/22 08:03

Job ID: 860-25663-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-25663-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	05/05/2022

2

3

4

7

9

11

12

Laboratory Data Package Cover Page - Page 2 of 4

		Name: Eurofins Houston	LRC Date: 05/05/202		25662 4			
		e: STC Silber Rd Pre-Design Investigation	Laboratory Job Numb	er: 860-	25003-1			
		ame: Bethany McDaniel		1 37	T	1		T ==
# 1	A ²	Description		Yes	No	NA ³	NR⁴	ER#
R1	OI	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of s	sample acceptability upon	✓				
		receipt?	an avecation report?	✓				
		Were all departures from standard conditions described in		V				
R2	OI	Sample and quality control (QC) identificati						
		Are all field sample ID numbers cross-referenced to the la		✓			-	
		Are all laboratory ID numbers cross-referenced to the corr	esponding QC data?	V				
R3	Ol	Test reports	0					
		Were all samples prepared and analyzed within holding tir		✓				
		Other than those results < MQL, were all other raw values	bracketed by calibration	V				
		standards?		✓				
	Were calculations checked by a peer or supervisor? Were all analyte identifications checked by a peer or sup Were sample detection limits reported for all analytes not Were all results for soil and sediment samples reported or		n door?	✓				
				✓				
				V		✓	1	
		Were % moisture (or solids) reported for all soil and sedim		-		V	-	1
		, , ,	· · · · · · · · · · · · · · · · · · ·			\ \ \ \ \ \	+	1
		Were bulk soils/solids samples for volatile analysis extract SW846 Method 5035?	eu wiiii medianoi per					
		If required for the project, are TICs reported?				/		
R4	0	Surrogate recovery data						
`		Were surrogates added prior to extraction?		✓				
		Were surrogate percent recoveries in all samples within th	e laboratory QC limits?	✓				
R5	OI	Test reports/summary forms for blank samp						
	_ <u> </u>	Were appropriate type(s) of blanks analyzed?	7103	√				
		Were blanks analyzed at the appropriate frequency?		· ✓				
		Were method blanks taken through the entire analytical pr	ocess including preparation	✓				
		and, if applicable, cleanup procedures?	occss, moldaring proparation					
		Were blank concentrations < MQL?		✓				
R6	OI	Laboratory control samples (LCS):						
	<u> </u>	Were all COCs included in the LCS?		✓				
		Was each LCS taken through the entire analytical procedu	re including prep and	✓				
		cleanup steps?	prop aa					
		Were LCSs analyzed at the required frequency?		✓				
		Were LCS (and LCSD, if applicable) %Rs within the labora	atory QC limits?	✓				
		Does the detectability check sample data document the la	boratory's capability to	✓				
		detect the COCs at the MDL used to calculate the SDLs?						
		Was the LCSD RPD within QC limits?		✓				
R7	OI	Matrix spike (MS) and matrix spike duplicat	e (MSD) data					
	'	Were the project/method specified analytes included in the	MS and MSD?	✓				
		Were MS/MSD analyzed at the appropriate frequency?		✓				
		Were MS (and MSD, if applicable) %Rs within the laborate	ory QC limits?		✓			1
		Were MS/MSD RPDs within laboratory QC limits?				✓		
R8	OI	Analytical duplicate data						
		Were appropriate analytical duplicates analyzed for each r				✓		
		Were analytical duplicates analyzed at the appropriate free				✓		
		Were RPDs or relative standard deviations within the labor	ratory QC limits?			✓		
R9	OI	Method quantitation limits (MQLs):						
		Are the MQLs for each method analyte included in the lab		✓				
		Do the MQLs correspond to the concentration of the lowes	st non-zero calibration	✓				
		standard?						1
		Are unadjusted MQLs and DCSs included in the laboratory	/ data package?	✓				
R10	OI	Other problems/anomalies						
		Are all known problems/anomalies/special conditions note		✓				
		Was applicable and available technology used to lower the	SDL to minimize the matrix	✓				
		interference effects on the sample results?						
		Is the laboratory NELAC-accredited under the Texas Labo	ratory Accreditation Program	√				
		for the analytes, matrices and methods associated with thi	s laboratory data package?					

5/5/2022

Page 18 of 23

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 05/05/2022
Project Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-25663-1
Reviewer Name: Bethany McDaniel	•

Project	ct Nam	e: STC Silber Rd Pre-Design Investigation Laboration	Laboratory Job Number: 860-25663-1						
Revie	wer Na	ame: Bethany McDaniel							
# ¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵	
S 1	Oi	Initial calibration (ICAL)							
<u> </u>	<u> </u>	Were response factors and/or relative response factors for each and	alvte within QC	✓					
		limits?	,						
		Were percent RSDs or correlation coefficient criteria met?	✓						
		Was the number of standards recommended in the method used fo	✓						
		Were all points generated between the lowest and highest standard	used to calculate	✓					
		the curve?							
		Are ICAL data available for all instruments used?		✓					
		Has the initial calibration curve been verified using an appropriate s	✓						
		standard?							
S2	OI	Initial and continuing calibration verification (ICC)	and CCV) and						
		continuing calibration blank (CCB):							
		Was the CCV analyzed at the method-required frequency?	✓						
		Were percent differences for each analyte within the method-require	√						
		Was the ICAL curve verified for each analyte?	✓		✓				
		Was the absolute value of the analyte concentration in the inorganic							
S3	0	Mass spectral tuning							
		Was the appropriate compound for the method used for tuning?	✓						
		Were ion abundance data within the method-required QC limits?		· ·					
S4	0	Internal standards (IS)							
~-		Were IS area counts and retention times within the method-required	d QC limits?	✓					
S5	OI	Raw data (NELAC Section 5.5.10)							
		Were the raw data (for example, chromatograms, spectral data) rev	✓						
		analyst?							
		Were data associated with manual integrations flagged on the raw	iata?	✓					
S6	0	Dual column confirmation							
		Did dual column confirmation results meet the method-required QC	?			✓			
S7	0	Tentatively identified compounds (TICs)							
		If TICs were requested, were the mass spectra and TIC data subject	t to appropriate			✓			
		checks?							
S8	I	Interference Check Sample (ICS) results							
		Were percent recoveries within method QC limits?			✓				
S9	l I	Serial dilutions, post digestion spikes, and method							
		additions							
		Were percent differences, recoveries, and the linearity within the Qu	C limits specified			✓			
0.10		in the method?							
S10	OI	Method detection limit (MDL) studies							
		Was a MDL study performed for each reported analyte?		√					
044		Is the MDL either adjusted or supported by the analysis of DCSs?		√					
S11	OI	Proficiency test reports							
		Was the laboratory's performance acceptable on the applicable pro	liciency tests or	√					
040		evaluation studies?							
S12	OI	Standards documentation		✓					
		Are all standards used in the analyses NIST-traceable or obtained f	rom other	'					
040		appropriate sources?							
S13	OI	Compound/analyte identification procedures Are the procedures for compound/analyte identification documented.	10	✓					
044		·	1 f	· ·					
S14	OI	Demonstration of analyst competency (DOC)							
		Was DOC conducted consistent with NELAC Chapter 5?	.2	✓					
045		Is documentation of the analyst's competency up-to-date and on file		· ·					
S15	OI	Verification/validation documentation for methods	(NELAC						
		Chapter 5)							
		Are all the methods used to generate the data documented, verified	, and validated,	✓					
040		where applicable?							
S16	OI	Laboratory standard operating procedures (SOPs)							
		Are laboratory SOPs current and on file for each method performed	?	✓					

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

Page 19 of 23

2

3

4

6

9

11

13

15

17

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

^{3.} NA = Not applicable;

^{4.} NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Laboratory Name: Eurofins Houston	LRC Date: 05/05/2022
Project Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-25663-1
Reviewer Name: Bethany McDaniel	
ER#1 Description	
1 Method 8260C: The matrix spike(MS) recoveries for analytical batch	
suspected because the associated laboratory control sample (LCS) re	ecovery was within acceptance limits.
1. ER# = Exception Report identification number (an Exception Report shou	ld be completed for an item if "NR" or "No" is checked).

e

Detection Check Summary

Client: Jacobs Engineering Group, Inc. Job ID: 860-25663-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A294 Detector: MSD/0 Column: DB-624

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1-Dichloroethane	0.00500	0.00501		mg/L	0.00100	0.000244	02/23/2022	860-42516
1,2-Dichloroethane	0.00500	0.00495		mg/L	0.00100	0.000285	02/23/2022	860-42516
1,1-Dichloroethene	0.00500	0.00478		mg/L	0.00100	0.000216	02/23/2022	860-42516
cis-1,2-Dichloroethene	0.00500	0.00494		mg/L	0.00100	0.000174	02/23/2022	860-42516
Tetrachloroethene	0.00500	0.00496		mg/L	0.00100	0.000500	02/23/2022	860-42516
Trichloroethene	0.00500	0.00510		mg/L	0.00500	0.000424	02/23/2022	860-42516
Vinvl chloride	0.00500	0.00494		ma/L	0.00200	0.000234	02/23/2022	860-42516

6

7

0

10

12

4 4

15

17

Eurofins Xenco, Stafford 4145 Greenbriar Dr Stafford, TX 77477 Phone (281) 240-4200		Chain of Custody Record	ord	్లి eurofins	Environment Testing America
Client Information	Sampler	Lab PM: McDaniel	Carrier Tracking No(s)	rg Na(s): CDC No: 860-6507-2299.1	
Client Contact: John Ynfante	Phone:	E-Mail; Bethany.	E-Mail: State of Origin: Bethany.McDaniel@Eurofinset.com		
Company. Jacobs Engineering Group, Inc.	PWSID:		Analysis Requested	# 900	
Address: 14701 St. Mary's Lane Suite 300	Due Date Requested:			Preservation Codes:	l
City: Houston	TAT Requested (days): 1 day RUSH			B NaOH C Zh Acetate	N None O AsNaO2
Some, Zip: TX, 77079	Compilance Project: A Yes A No			E NaHSO4	P Na204S Q Na2SO3 P Na2SO3
Phone:	PO#.	(0		G Amchlor H Ascarbic Acid	S H2SO4 T TSP Dodecehydrate
Emait. John. Ynfante@jacobs.com	WO#.	OL NG	18] Tu	<u> > ></u>	U Acetone V MCAA
Project Name: STC Silber Road Pre-Design Investigation	Project #. 86002024	ю <u>(</u>) (озвид	۷ ــا	v pr 4-5 Z other (specify)
Siler:	SSOW#:	dwas	8200	oo to	
	Sample	Matrix (www.rec		- Tedmyl	
Sample Identification	Sample Date Time Gegrab)	Sesolid, it. Oenyastejoli, del	80928		Special Instructions/Note:
	X	ation Code:	Z-09	X	
5B15-13-05UNZ	5 ohil 22/h/s	Water	X	<u> </u>	/
CQ 15 1 03 - 050M2	611122	-intere			100 September 10
1	5/1/2 - K	╫		7	*
CR12-03 -050422	5 1911 22/1/5	7 Water	X	~	
	5 0211 12/1/5	7 Water	X	8	
FD-01-050422	126.	y Water	X	^	
22h250-1~-811	SHO 22/h/S	Water	X	>	
		Water		Temp 7.	1 IR ID-HOU-323
		Water		C/F-09	8
		Water		Corrected Lemp	-
		Water			
Possible Hazard idientification Non-Hazard Flammable Skin Initiant Poi	Poison B Unknown Radiological		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	samples are retained longer than : Archive For	(month) Months
		!	Special Instructions/QC Requirements:		
Empty Kit Relinquished by:	Date:	Time:		Method of Shipment	
Relinquished by May	Date/Time: 5/5/22 080	3	Received by	Date/Time: 6/5/2 0803	Company
5		Company	Aecelved by:	Date/Time: /	Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Custody Seals Intact Custody Seal No.			Cooler Temperature(s) °C and Other Remarks:	0	
					Ver 01/16/2019

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-25663-1

Login Number: 25663 List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

4

6

8

10

4.0

13

15

17

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-25762-1

Client Project/Site: STC Silber Rd Pre-Design Investigation

Jacobs Engineering Group, Inc. 12750 Merit Drive **Suite 1100** Dallas, Texas 75251

Attn: John Knott

Bethany McD

Authorized for release by: 5/9/2022 8:17:04 AM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	8
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
State Forms	17
TRRP Checklist	17
DCS Report	21
Chain of Custody	22
Receipt Checklists	23

6

8

10

12

13

15

17

Definitions/Glossary

Client: Jacobs Engineering Group, Inc. Job ID: 860-25762-1

Project/Site: STC Silber Rd Pre-Design Investigation

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
ī	Result is less than the MOL but greater than or equal to the SDL and the concentration is an estimated value

Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimate

N₁ MS, MSD: Spike recovery exceeds upper or lower control limits.

N2 RPD of the MS and MSD exceeds the control limits U Analyte was not detected at or above the SDL.

Glossary

Abbreviation	These commonly	y used abbreviations may	y or may not b	e present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit Contains No Free Liquid **CNF**

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent Positive / Present POS

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points **RPD**

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TFO

TNTC Too Numerous To Count

Eurofins Houston

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25762-1

Job ID: 860-25762-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-25762-1

Receipt

The samples were received on 5/6/2022 8:17 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.7°C

1

4

Ę

6

10

10

13

. -

16

11/

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB19-03-050522 Lab Sample ID: 860-25762-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00284		0.00100	0.000244	mg/L	1	_	8260C	Total/NA
1,1-Dichloroethene	0.00913		0.00100	0.000216	mg/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	0.00118		0.00100	0.000174	mg/L	1		8260C	Total/NA
Tetrachloroethene	0.0405		0.00100	0.000500	mg/L	1		8260C	Total/NA
Trichloroethene	0.00380	J	0.00500	0.000424	mg/L	1		8260C	Total/NA

Client Sample ID: SB11-03-050522

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00520		0.00100	0.000244	mg/L	1	_	8260C	Total/NA
1,2-Dichloroethane	0.000417	J	0.00100	0.000285	mg/L	1		8260C	Total/NA
1,1-Dichloroethene	0.0253		0.00100	0.000216	mg/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	0.00121		0.00100	0.000174	mg/L	1		8260C	Total/NA
Tetrachloroethene	0.00401		0.00100	0.000500	mg/L	1		8260C	Total/NA
Trichloroethene	0.00172	J	0.00500	0.000424	mg/L	1		8260C	Total/NA

Client Sample ID: SB11-02-050522

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethene	0.000785 J	0.00100	0.000216 mg/L		8260C	Total/NA

Client Sample ID: SB11-01-050522

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	0.000468	J	0.00100	0.000216	mg/L	1	_	8260C	 Total/NA

Client Sample ID: TB-01-050522

No Detections.

Job ID: 860-25762-1

Lab Sample ID: 860-25762-2

Lab Sample ID: 860-25762-3

Lab Sample ID: 860-25762-4

Lab Sample ID: 860-25762-5

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB19-03-050522

Date Collected: 05/05/22 11:05 Date Received: 05/06/22 08:17

Lab Sample ID: 860-25762-1

Matrix: Water

Job ID: 860-25762-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00284		0.00100	0.000244	mg/L			05/06/22 13:10	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/06/22 13:10	1
1,1-Dichloroethene	0.00913		0.00100	0.000216	mg/L			05/06/22 13:10	1
cis-1,2-Dichloroethene	0.00118		0.00100	0.000174	mg/L			05/06/22 13:10	1
Tetrachloroethene	0.0405		0.00100	0.000500	mg/L			05/06/22 13:10	1
Trichloroethene	0.00380	J	0.00500	0.000424	mg/L			05/06/22 13:10	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/06/22 13:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	95		75 - 131			-		05/06/22 13:10	1
Toluene-d8 (Surr)	99		80 - 117					05/06/22 13:10	1
4-Bromofluorobenzene (Surr)	94		74 - 124					05/06/22 13:10	1
1,2-Dichloroethane-d4 (Surr)	84		63 - 144					05/06/22 13:10	1

Client Sample ID: SB11-03-050522

Dat

Dat

lient Sample ID: SB11-03-050522	Lab Sample ID: 860-25762-2
ate Collected: 05/05/22 15:30	Matrix: Water
ate Received: 05/06/22 08:17	

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00520		0.00100	0.000244	mg/L			05/06/22 13:30	1
1,2-Dichloroethane	0.000417	J	0.00100	0.000285	mg/L			05/06/22 13:30	1
1,1-Dichloroethene	0.0253		0.00100	0.000216	mg/L			05/06/22 13:30	1
cis-1,2-Dichloroethene	0.00121		0.00100	0.000174	mg/L			05/06/22 13:30	1
Tetrachloroethene	0.00401		0.00100	0.000500	mg/L			05/06/22 13:30	1
Trichloroethene	0.00172	J	0.00500	0.000424	mg/L			05/06/22 13:30	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/06/22 13:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	95		75 - 131			-		05/06/22 13:30	1
Toluene-d8 (Surr)	99		80 - 117					05/06/22 13:30	1
4-Bromofluorobenzene (Surr)	95		74 - 124					05/06/22 13:30	1
1,2-Dichloroethane-d4 (Surr)	85		63 - 144					05/06/22 13:30	1

Client Sample ID: SB11-02-050522 Lab Sample ID: 860-25762-3 Date Collected: 05/05/22 15:50 **Matrix: Water**

Date Received: 05/06/22 08:17

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/06/22 13:51	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/06/22 13:51	1
1,1-Dichloroethene	0.000785	J	0.00100	0.000216	mg/L			05/06/22 13:51	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/06/22 13:51	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/06/22 13:51	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/06/22 13:51	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/06/22 13:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	96		75 - 131			-		05/06/22 13:51	1
Toluene-d8 (Surr)	99		80 - 117					05/06/22 13:51	1

Eurofins Houston

Page 6 of 23 5/9/2022

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB11-02-050522

Date Collected: 05/05/22 15:50 Date Received: 05/06/22 08:17

Lab Sample ID: 860-25762-3

Matrix: Water

Job ID: 860-25762-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		74 - 124		05/06/22 13:51	1
1,2-Dichloroethane-d4 (Surr)	86		63 - 144		05/06/22 13:51	1

Client Sample ID: SB11-01-050522

Date Collected: 05/05/22 16:00 Date Received: 05/06/22 08:17

Lab Sample ID: 860-25762-4

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/06/22 14:11	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/06/22 14:11	1
1,1-Dichloroethene	0.000468	J	0.00100	0.000216	mg/L			05/06/22 14:11	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/06/22 14:11	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/06/22 14:11	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/06/22 14:11	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/06/22 14:11	1

.	Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
	Dibromofluoromethane (Surr)	94	75 - 131		05/06/22 14:11	1
	Toluene-d8 (Surr)	99	80 - 117		05/06/22 14:11	1
.	4-Bromofluorobenzene (Surr)	96	74 - 124		05/06/22 14:11	1
	1,2-Dichloroethane-d4 (Surr)	87	63 - 144		05/06/22 14:11	1

Client Sample ID: TB-01-050522

Date Collected: 05/05/22 07:45

Date Received: 05/06/22 08:17

Lab Sample ID: 860-25762-5

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Wethou. 0200C - Volatile	Organic Compour	ilus by C	· O/IIIO						
Analyte	Result C	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	J	0.00100	0.000244	mg/L			05/06/22 14:32	1
1,2-Dichloroethane	0.000285 L	J	0.00100	0.000285	mg/L			05/06/22 14:32	1
1,1-Dichloroethene	0.000216 L	J	0.00100	0.000216	mg/L			05/06/22 14:32	1
cis-1,2-Dichloroethene	0.000174 L	J	0.00100	0.000174	mg/L			05/06/22 14:32	1
Tetrachloroethene	0.000500 L	J	0.00100	0.000500	mg/L			05/06/22 14:32	1
Trichloroethene	0.000424 L	J	0.00500	0.000424	mg/L			05/06/22 14:32	1
Vinyl chloride	0.000234 L	j	0.00200	0.000234	mg/L			05/06/22 14:32	1

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	95	75 - 131		05/06/22 14:32	1
Toluene-d8 (Surr)	102	80 - 117		05/06/22 14:32	1
4-Bromofluorobenzene (Surr)	98	74 - 124		05/06/22 14:32	1
1,2-Dichloroethane-d4 (Surr)	85	63 - 144		05/06/22 14:32	1

Eurofins Houston

Page 7 of 23

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-25762-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

5

6

0

9

11

12

14

16

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DBFM	TOL	BFB	DCA
Lab Sample ID	Client Sample ID	(75-131)	(80-117)	(74-124)	(63-144)
860-25762-1	SB19-03-050522	95	99	94	84
860-25762-1 MS	SB19-03-050522	99	97	95	85
860-25762-1 MSD	SB19-03-050522	98	97	94	85
860-25762-2	SB11-03-050522	95	99	95	85
860-25762-3	SB11-02-050522	96	99	94	86
860-25762-4	SB11-01-050522	94	99	96	87
860-25762-5	TB-01-050522	95	102	98	85
LCS 860-51727/3	Lab Control Sample	97	98	96	84
LCSD 860-51727/4	Lab Control Sample Dup	97	99	96	84
MB 860-51727/10	Method Blank	94	99	96	85

Surrogate Legend

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

4

Job ID: 860-25762-1

6

8

46

11

12

.

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-51727/10

Matrix: Water

Analysis Batch: 51727

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 860-25762-1

MB MB

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/06/22 11:47	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/06/22 11:47	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/06/22 11:47	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/06/22 11:47	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/06/22 11:47	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/06/22 11:47	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/06/22 11:47	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	94		75 - 131		05/06/22 11:47	1
Toluene-d8 (Surr)	99		80 - 117		05/06/22 11:47	1
4-Bromofluorobenzene (Surr)	96		74 - 124		05/06/22 11:47	1
1,2-Dichloroethane-d4 (Surr)	85		63 - 144		05/06/22 11:47	1

Lab Sample ID: LCS 860-51727/3

Matrix: Water

Analysis Batch: 51727

Client Sample ID: Lab Control Sample Prep Type: Total/NA

		Бріке	LCS	LCS				%Rec	
Α	nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,	1-Dichloroethane	0.0500	0.04732		mg/L		95	72 - 125	
1,	2-Dichloroethane	0.0500	0.04031		mg/L		81	68 - 127	
1,	1-Dichloroethene	0.0500	0.05406		mg/L		108	59 - 172	
ci	s-1,2-Dichloroethene	0.0500	0.04316		mg/L		86	75 - 125	
Te	etrachloroethene	0.0500	0.05011		mg/L		100	71 - 125	
Tr	richloroethene	0.0500	0.05032		mg/L		101	62 - 137	
Vi	inyl chloride	0.0500	0.05398		mg/L		108	60 - 140	
1									

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	97		75 - 131
Toluene-d8 (Surr)	98		80 - 117
4-Bromofluorobenzene (Surr)	96		74 - 124
1,2-Dichloroethane-d4 (Surr)	84		63 - 144

Lab Sample ID: LCSD 860-51727/4

Matrix: Water

Analysis Batch: 51727

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

7 , 6.0 2	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.04582		mg/L		92	72 - 125	3	25
1,2-Dichloroethane	0.0500	0.03941		mg/L		79	68 - 127	2	25
1,1-Dichloroethene	0.0500	0.05066		mg/L		101	59 - 172	6	25
cis-1,2-Dichloroethene	0.0500	0.04211		mg/L		84	75 - 125	2	25
Tetrachloroethene	0.0500	0.04928		mg/L		99	71 - 125	2	25
Trichloroethene	0.0500	0.04760		mg/L		95	62 - 137	6	25
Vinyl chloride	0.0500	0.05050		mg/L		101	60 - 140	7	25

Eurofins Houston

Page 10 of 23

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-51727/4

Matrix: Water

Analysis Batch: 51727

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Recovery Qualifier Surrogate Limits Dibromofluoromethane (Surr) 97 75 - 131 Toluene-d8 (Surr) 99 80 - 117 4-Bromofluorobenzene (Surr) 96 74 - 124 1,2-Dichloroethane-d4 (Surr) 84 63 - 144

Lab Sample ID: 860-25762-1 MS Client Sample ID: SB19-03-050522 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 51727

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.00284		0.0500	0.05612		mg/L		107	72 - 125	
1,2-Dichloroethane	0.000285	U	0.0500	0.04632		mg/L		93	68 - 127	
1,1-Dichloroethene	0.00913		0.0500	0.06500		mg/L		112	59 - 172	
cis-1,2-Dichloroethene	0.00118		0.0500	0.04954		mg/L		97	75 - 125	
Tetrachloroethene	0.0405		0.0500	0.06266	N1	mg/L		44	71 - 125	
Trichloroethene	0.00380	J	0.0500	0.05640		mg/L		105	62 - 137	
Vinyl chloride	0.000234	U	0.0500	0.05516		mg/L		110	60 - 140	

MS MS Surrogate Qualifier Limits %Recovery Dibromofluoromethane (Surr) 75 - 131 99 Toluene-d8 (Surr) 97 80 - 117 4-Bromofluorobenzene (Surr) 95 74 - 124 1,2-Dichloroethane-d4 (Surr) 85 63 - 144

Lab Sample ID: 860-25762-1 MSD

Matrix: Water

Analysis Batch: 51727

Client Sample	ID: S	B19-03	3-050522	
	Prep '	Type:	Total/NA	

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.00284		0.0500	0.05926		mg/L		113	72 - 125	5	25
1,2-Dichloroethane	0.000285	U	0.0500	0.04893		mg/L		98	68 - 127	5	25
1,1-Dichloroethene	0.00913		0.0500	0.07447		mg/L		131	59 - 172	14	25
cis-1,2-Dichloroethene	0.00118		0.0500	0.05202		mg/L		102	75 - 125	5	25
Tetrachloroethene	0.0405		0.0500	0.1014	N2	mg/L		122	71 - 125	47	25
Trichloroethene	0.00380	J	0.0500	0.06253		mg/L		117	62 - 137	10	25
Vinyl chloride	0.000234	U	0.0500	0.05826		mg/L		117	60 - 140	5	25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	98		75 - 131
Toluene-d8 (Surr)	97		80 - 117
4-Bromofluorobenzene (Surr)	94		74 - 124
1.2-Dichloroethane-d4 (Surr)	85		63 - 144

Job ID: 860-25762-1

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25762-1

GC/MS VOA

Analysis Batch: 51727

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-25762-1	SB19-03-050522	Total/NA	Water	8260C	
860-25762-2	SB11-03-050522	Total/NA	Water	8260C	
860-25762-3	SB11-02-050522	Total/NA	Water	8260C	
860-25762-4	SB11-01-050522	Total/NA	Water	8260C	
860-25762-5	TB-01-050522	Total/NA	Water	8260C	
MB 860-51727/10	Method Blank	Total/NA	Water	8260C	
LCS 860-51727/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-51727/4	Lab Control Sample Dup	Total/NA	Water	8260C	
860-25762-1 MS	SB19-03-050522	Total/NA	Water	8260C	
860-25762-1 MSD	SB19-03-050522	Total/NA	Water	8260C	

3

O

7

10

11

13

-

16

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB19-03-050522

Date Collected: 05/05/22 11:05

Date Collected: 05/05/22 11:05

Date Received: 05/06/22 08:17

Lab Sample ID: 860-25762-1

Matrix: Water

Job ID: 860-25762-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	51727	05/06/22 13:10	TTD	XEN STF

Client Sample ID: SB11-03-050522

Date Collected: 05/05/22 15:30 Date Received: 05/06/22 08:17 Lab Sample ID: 860-25762-2 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	51727	05/06/22 13:30	TTD	XEN STF

Client Sample ID: SB11-02-050522

Date Collected: 05/05/22 15:50 Date Received: 05/06/22 08:17 Lab Sample ID: 860-25762-3

Matrix: Water

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Type Method **Factor Amount** Number or Analyzed Run Amount Analyst Lab 05/06/22 13:51 TTD Total/NA Analysis 8260C 5 mL 5 mL 51727 XEN STF

Client Sample ID: SB11-01-050522

Date Collected: 05/05/22 16:00

Lab Sample ID: 860-25762-4

Matrix: Water

Date Received: 05/06/22 08:17

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	51727	05/06/22 14:11	TTD	XEN STF

Client Sample ID: TB-01-050522

Date Collected: 05/05/22 07:45 Date Received: 05/06/22 08:17 Lab Sample ID: 860-25762-5 Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Method Number Run **Factor** Amount or Analyzed **Prep Type** Type **Amount** Analyst Lab Total/NA XEN STF Analysis 8260C 5 mL 5 mL 51727 05/06/22 14:32 TTD

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25762-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

3

4

5

_

8

4.0

11

13

15

17

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

MethodMethod DescriptionProtocolLaboratory8260CVolatile Organic Compounds by GC/MSSW846XEN STF5030CPurge and TrapSW846XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

5/9/2022

2

Job ID: 860-25762-1

3

4

5

8

10

111

13

15

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-25762-1	SB19-03-050522	Water	05/05/22 11:05	05/06/22 08:17
860-25762-2	SB11-03-050522	Water	05/05/22 15:30	05/06/22 08:17
860-25762-3	SB11-02-050522	Water	05/05/22 15:50	05/06/22 08:17
860-25762-4	SB11-01-050522	Water	05/05/22 16:00	05/06/22 08:17
860-25762-5	TB-01-050522	Water	05/05/22 07:45	05/06/22 08:17

Job ID: 860-25762-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-25762-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	05/09/2022

3

4

5

7

q

10

12

10

15

17

Laboratory Data Package Cover Page - Page 2 of 4

		lame: Eurofins Houston e: STC Silber Rd Pre-Design Investigation	LRC Date: 05/09/202		25762 4			
			Laboratory Job Numb	er: oou-	23702-1			
		me: Bethany McDaniel		1	T	1		
# 1	A ²	Description		Yes	No	NA ³	NR⁴	ER#
R1	OI	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of sa	mple acceptability upon	✓				
		receipt?						
		Were all departures from standard conditions described in a		✓				
R2	OI	Sample and quality control (QC) identification						
		Are all field sample ID numbers cross-referenced to the laborate		√				
		Are all laboratory ID numbers cross-referenced to the corres	sponding QC data?	✓				
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding time		√				
		Other than those results < MQL, were all other raw values b	racketed by calibration	✓				
		standards?						
		Were calculations checked by a peer or supervisor?	0	√				
		Were all analyte identifications checked by a peer or superv						
		Were sample detection limits reported for all analytes not de		✓		✓		
		Were all results for soil and sediment samples reported on a				✓		
		Were % moisture (or solids) reported for all soil and sedimer	•			V /		
		Were bulk soils/solids samples for volatile analysis extracted	d with methanol per			'		
		SW846 Method 5035? If required for the project, are TICs reported?						
D.4	0					,		
R4	U	Surrogate recovery data Were surrogates added prior to extraction?		✓				
		Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the	Jahoratory OC limits?	V /				
D.E.				•				
R5 OI		Test reports/summary forms for blank sampl	es	✓				
		Were appropriate type(s) of blanks analyzed? Were blanks analyzed at the appropriate frequency?		✓				
			to the Property of the Propert	V /				
		Were method blanks taken through the entire analytical produced if applicable allowed was 2	cess, including preparation	•				
		and, if applicable, cleanup procedures? Were blank concentrations < MQL?		✓				
R6	OI	· · · · · · · · · · · · · · · · · · ·		V				
ΚO	Oi	Laboratory control samples (LCS): Were all COCs included in the LCS?		✓				
			in alcoding a second	V /				
		Was each LCS taken through the entire analytical procedure cleanup steps?	e, including prep and	•				
		Were LCSs analyzed at the required frequency?		✓				
		Were LCS (and LCSD, if applicable) %Rs within the laborate	ory OC limits?	✓				
		Does the detectability check sample data document the laborate	-	✓				
		detect the COCs at the MDL used to calculate the SDLs?	ratory 3 capability to					
		Was the LCSD RPD within QC limits?		✓				
R7	OI	Matrix spike (MS) and matrix spike duplicate	(MSD) data					
	Oi	Were the project/method specified analytes included in the N		√				
		Were MS/MSD analyzed at the appropriate frequency?	WO drid WOD :	√				
		Were MS (and MSD, if applicable) %Rs within the laboratory	/ QC limits?		✓			1
		Were MS/MSD RPDs within laboratory QC limits?	, 40	✓				· ·
R8	OI	Analytical duplicate data						
		Were appropriate analytical duplicates analyzed for each ma	atrix?			✓		
		Were analytical duplicates analyzed at the appropriate frequency				· ·		
		Were RPDs or relative standard deviations within the labora				· ·	1	
R9	OI	Method quantitation limits (MQLs):	, " "					
		Are the MQLs for each method analyte included in the labor	atory data package?	✓				
		Do the MQLs correspond to the concentration of the lowest		✓			1	1
		standard?	Loro cambradol1					
		Are unadjusted MQLs and DCSs included in the laboratory	data package?	✓			1	
R10	OI	Other problems/anomalies	, J					
		Are all known problems/anomalies/special conditions noted	in this LRC and FR?	✓				
		Was applicable and available technology used to lower the s		✓			1	
		interference effects on the sample results?	SPE 10 HIIIIIIIIZE UIE HIAUIX					
		Is the laboratory NELAC-accredited under the Texas Labora	tory Accreditation Program	✓			+	
		in the laberatory include accidented under the lexas labera	iory mooreulialion Flograffi	1	1		1	1

Page 18 of 23 5/9/2022

1 /

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston LRC Date: 05/09/2022 Project Name: STC Silber Rd Pre-Design Investigation Laboratory Joh Number: 860 25762 1

Projec	ct Nam	ne: STC Silber Rd Pre-Design Investigation Laboratory Job Num		er: 860-25762-1					
Revie	wer Na	nme: Bethany McDaniel							
# ¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵	
S1	OI	Initial calibration (ICAL)							
<u> </u>	<u> </u>	Were response factors and/or relative response factors for ea	ach analyte within QC	√					
		limits?	,						
		Were percent RSDs or correlation coefficient criteria met?		✓					
		Was the number of standards recommended in the method u	sed for all analytes?	✓					
		Were all points generated between the lowest and highest sta	andard used to calculate	✓					
		the curve?							
		Are ICAL data available for all instruments used?	✓						
		Has the initial calibration curve been verified using an approp	riate second source	✓					
		standard?							
S2	OI	Initial and continuing calibration verification (ICCV and CCV) and						
		continuing calibration blank (CCB):							
		Was the CCV analyzed at the method-required frequency?		√					
		Were percent differences for each analyte within the method-	required QC limits?	√					
		Was the ICAL curve verified for each analyte?	· · · · · · · · · · · · · · · · · · ·	✓					
		·	Was the absolute value of the analyte concentration in the inorganic CCB < MDL? Mass spectral tuning			V			
S3	0	Mass spectral tuning Was the appropriate compound for the method used for tuning?		✓					
				✓ ✓					
0.4		Were ion abundance data within the method-required QC lim	ITS ?	· ·					
S4	0	Internal standards (IS)	1.00 1:00						
0.5		Were IS area counts and retention times within the method-re	equired QC limits?	√					
S5	OI	Raw data (NELAC Section 5.5.10)							
		Were the raw data (for example, chromatograms, spectral da	ta) reviewed by an	√					
		analyst?	n row data?	√					
00		Were data associated with manual integrations flagged on the raw data?		•					
S6	0	Dual column confirmation Did dual column confirmation results meet the method-require	- 1 000			✓			
67			ed QC?						
S7	0	Tentatively identified compounds (TICs)				✓			
		If TICs were requested, were the mass spectra and TIC data checks?	subject to appropriate			'			
S8	1								
30	ı	Interference Check Sample (ICS) results Were percent recoveries within method QC limits?				✓			
S9	1	•	othed of standard			·			
39	'	Serial dilutions, post digestion spikes, and me	ethou of Standard						
		additions	# . OO For the control of			✓			
		Were percent differences, recoveries, and the linearity within in the method?	the QC limits specified			•			
S10	OI	Method detection limit (MDL) studies							
310	Oi	Was a MDL study performed for each reported analyte?		✓					
		Is the MDL either adjusted or supported by the analysis of DC	CSs?	· ·					
S11	OI	Proficiency test reports	,000	-					
311	OI .	Was the laboratory's performance acceptable on the applicab	ale proficiency tests or	√					
		evaluation studies?	no pronoichoy tests of						
S12	OI	Standards documentation							
J 12		Are all standards used in the analyses NIST-traceable or obta	ained from other	√					
		appropriate sources?	anied from other						
S13	OI	Compound/analyte identification procedures							
0.0	<u> </u>	Are the procedures for compound/analyte identification docur	mented?	√					
S14	OI	Demonstration of analyst competency (DOC)							
		Was DOC conducted consistent with NELAC Chapter 5?		√					
		Is documentation of the analyst's competency up-to-date and	on file?	√		+			
S15	OI	Verification/validation documentation for met							
	-	Chapter 5)							
		Are all the methods used to generate the data documented, v	verified, and validated	✓					
		where applicable?	ormou, and valluatou,						
S16	OI	Laboratory standard operating procedures (S	OPs)						
		Are laboratory Standard Operating procedures (o	formed?	√					
-		,		1	1		1	1	

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

NA = Not applicable;

NR = Not reviewed;

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Labora	tory Name: Eurofins Houston	LRC Date: 05/09/2022						
Project Name: STC Silber Rd Pre-Design Investigation Laboratory Job Number: 860-25762-1								
Reviewer Name: Bethany McDaniel								
ER#1	Description							
1	Method 8260C: The matrix spike / matrix spike duplicate (MS/MSD) r	ecoveries and precision for analytical batch 860-51727 were outside control						
	limits. Sample matrix interference and/or non-homogeneity are susp	ected because the associated laboratory control sample (LCS/LCSD)						
	recovery was within acceptance limits.							
1. ER:	1. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).							

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-25762-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Detector: MSD/0 Column: DB-624

	Spike						
Analyte	Added	Result Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1-Dichloroethane	0.00100	0.00483	mg/L	0.00100	0.000244	03/03/2022	860-43530
1,2-Dichloroethane	0.00100	0.00498	mg/L	0.00100	0.000285	03/03/2022	860-43530
1,1-Dichloroethene	0.00100	0.00411	mg/L	0.00100	0.000216	03/03/2022	860-43530
cis-1,2-Dichloroethene	0.00100	0.00499	mg/L	0.00100	0.000174	03/03/2022	860-43530
Tetrachloroethene	0.00100	0.00463	mg/L	0.00100	0.000500	03/03/2022	860-43530
Trichloroethene	0.00100	0.00503	mg/L	0.00500	0.000424	03/03/2022	860-43530
Vinyl chloride	0.00100	0.00381	mg/L	0.00200	0.000234	03/03/2022	860-43530

3

4

5

7

0

10

12

4 4

15

17

Eurofins Xenco, Stafford 4145 Greenbriar Dr Stafford, TX 77477 Phone (281) 240-4200	Chain of Custody Record	stody Reco	rd		္ခ်ိန္နဲ့ eurofins Environment Testing America
Client Information	Sampler	Lab PM: McDaniel,	Bethany A	Carrier Tracking No(s):	COC No: 860-6507-2299.1
Client Contact John Ynfante	Phone;	E-Mail: Bethany.M	E-Mail: Bethany.McDaniel@Eurofinset.com	State of Origin:	Page: of Page
Company: Jacobs Engineering Group, Inc.	PWSID:	,	Analysis Requested	quested	# 907
Address: 14701 St. Mary's Lane Suite 300	Due Date Requested:				Bservation Codes:
City: Houston	TAT Requested (days): 1 day RUSH				C Zn Acetate O Asnao2
State, Zp: TX, 77079	Compliance Project: A Yes A No				NaHSO4 Q
Phone:	PO#				Amenior S Ascorbic Acid T
Emai: John.Ynfante@jacobs.com	WO#:		iald m		l ice U J Di Water V
Project Name: STC Silber Road Pre-Design Investigation	Project #: 86002024				EDA EDA
Sile:	SSOW#:				100 to
	Sample	├			Mumber
Sample Identification	Sample Date Time G=grab)	BT-Tissue, ArAL)	92608		Special Instructions/Note:
ST18-63-0505	S/C/22 No S 6	Freservation code: XX			a MS/MS
1-	DE 51 530	Water			Ļ.,
51311-	22/5/	Water			^
22 50-10-11815	6 mg1 22/5/5	Water	X		3
73-01-050522	3/2/2/ WHO 8	Water		79/9	0
		Water		Z-09	
		Water		8	
		Water			Temp. — 6 IK ID: noo-22
		Water			Corrected Temp: 0
		Water			
] [\top	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples are refa	ined longer than 1 month)
Non-Hazard Frammable Skin Intrant Pois Deliverable Requested: I III, IV Other (specify)	Poison B Unknown Radiological		Special Instructions/QC Requirements:	Disposal By Lab Ar	Archive For Months
Empty Kit Relinquished by:	Date:	Time		Method of Shipment	
Relinquished by:	Date/Time: 5/6/22 08/7	Company	Racaivaddy	3	12 0817 Company
Relinquished by:	Date/Time:	Company	Beceived by:	Date/Time:	Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.			Cooler Temperature(s) °C and Other Remarks:	emarks:	
					Ver 01/16/2019

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-25762-1

Login Number: 25762 List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

7

0

44

12

11

15

17

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-25832-1

Client Project/Site: STC Silber Rd Pre-Design Investigation

Jacobs Engineering Group, Inc. 12750 Merit Drive **Suite 1100** Dallas, Texas 75251

Attn: John Knott

Bethany McD

Authorized for release by: 5/9/2022 6:11:47 PM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	9
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
State Forms	20
TRRP Checklist	20
DCS Report	24
Chain of Custody	25
Receipt Checklists	26

4

6

8

10

12

14

TE:

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Job ID: 860-25832-1

Qualifiers

	VOA

RL RPD

TEF

TEQ

TNTC

Qualifier	Qualifier Description
J	Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.
N1	MS, MSD: Spike recovery exceeds upper or lower control limits.
U	Analyte was not detected at or above the SDL.

•	Analyse was not established and established establishe
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
_OD	Limit of Detection (DoD/DOE)
_OQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Eurofins Houston

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25832-1

Job ID: 860-25832-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-25832-1

Receipt

The samples were received on 5/6/2022 4:42 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.7° C

4

ļ_5

6

9

10

12

1 A

15

17

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB33-03-050622

0.00131 J

Lab Sample ID: 860-25832-1

Lab Sample ID: 860-25832-2

Lab Sample ID: 860-25832-3

Lab Sample ID: 860-25832-4

Lab Sample ID: 860-25832-5

Lab Sample ID: 860-25832-6

8260C

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.0104	0.00100	0.000244	mg/L	1		8260C	Total/NA
1,2-Dichloroethane	0.00201	0.00100	0.000285	mg/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	0.00174	0.00100	0.000174	mg/L	1		8260C	Total/NA
Tetrachloroethene	0.000679 J	0.00100	0.000500	mg/L	1		8260C	Total/NA
Trichloroethene	0.0105	0.00500	0.000424	mg/L	1		8260C	Total/NA
1,1-Dichloroethene - DL	0.185	0.00500	0.00108	mg/L	5		8260C	Total/NA

Client Sample ID: SB33-02-050622

_					
Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D Method	Prep Type
1,1-Dichloroethane	0.00136	0.00100	0.000244 mg/L	1 8260C	Total/NA
1,1-Dichloroethene	0.0221	0.00100	0.000216 mg/L	1 8260C	Total/NA
cis-1 2-Dichloroethene	0.000225 J	0.00100	0.000174 mg/l	1 8260C	Total/NA

0.00500

0.000424 mg/L

Client Sample ID: SB33-01-050622

Trichloroethene

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.000843	J	0.00100	0.000244	mg/L	1	_	8260C	Total/NA
1,1-Dichloroethene	0.0122		0.00100	0.000216	mg/L	1		8260C	Total/NA
Trichloroethene	0.000637	J	0.00500	0.000424	mg/L	1		8260C	Total/NA

Client Sample ID: SB12-03-050622

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00339		0.00100	0.000244	mg/L	1	_	8260C	Total/NA
1,2-Dichloroethane	0.000911	J	0.00100	0.000285	mg/L	1		8260C	Total/NA
1,1-Dichloroethene	0.0386		0.00100	0.000216	mg/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	0.000430	J	0.00100	0.000174	mg/L	1		8260C	Total/NA
Trichloroethene	0.00200	J	0.00500	0.000424	mg/L	1		8260C	Total/NA

Client Sample ID: FD-01-020622

Analyte	Result C	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00972		0.00100	0.000244	mg/L	1	_	8260C	Total/NA
1,2-Dichloroethane	0.00194		0.00100	0.000285	mg/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	0.00160		0.00100	0.000174	mg/L	1		8260C	Total/NA
Tetrachloroethene	0.000608 J	J	0.00100	0.000500	mg/L	1		8260C	Total/NA
Trichloroethene	0.00961		0.00500	0.000424	mg/L	1		8260C	Total/NA
1,1-Dichloroethene - DL	0.247		0.00500	0.00108	mg/L	5		8260C	Total/NA

Client Sample ID: TB-01-020622

No Detections.

This Detection Summary does not include radiochemical test results.

Job ID: 860-25832-1

Total/NA

4

J

9

11

13

15

17

18

Eurofins Houston

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB33-03-050622

Date Collected: 05/06/22 09:25 Date Received: 05/06/22 16:42

Lab Sample ID: 860-25832-1

Matrix: Water

Job ID: 860-25832-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0104		0.00100	0.000244	mg/L			05/09/22 14:25	1
1,2-Dichloroethane	0.00201		0.00100	0.000285	mg/L			05/09/22 14:25	1
cis-1,2-Dichloroethene	0.00174		0.00100	0.000174	mg/L			05/09/22 14:25	1
Tetrachloroethene	0.000679	J	0.00100	0.000500	mg/L			05/09/22 14:25	1
Trichloroethene	0.0105		0.00500	0.000424	mg/L			05/09/22 14:25	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/09/22 14:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		75 - 131			-		05/09/22 14:25	1
Toluene-d8 (Surr)	105		80 - 117					05/09/22 14:25	1
4-Bromofluorobenzene (Surr)	103		74 - 124					05/09/22 14:25	1
1,2-Dichloroethane-d4 (Surr)	105		63 - 144					05/09/22 14:25	1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.185		0.00500	0.00108	mg/L			05/09/22 15:12	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	95		75 _ 131			-		05/09/22 15:12	5
Toluene-d8 (Surr)	100		80 - 117					05/09/22 15:12	5
4-Bromofluorobenzene (Surr)	96		74 - 124					05/09/22 15:12	5
1,2-Dichloroethane-d4 (Surr)	82		63 - 144					05/09/22 15:12	5

Client Sample ID: SB33-02-050622 Lab Sample ID: 860-25832-2

Date Collected: 05/06/22 10:30

Date Received: 05/06/22 16:42

Method: 8260C - Volatile Orga	•	•				_			
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00136		0.00100	0.000244	mg/L			05/09/22 14:46	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/09/22 14:46	1
1,1-Dichloroethene	0.0221		0.00100	0.000216	mg/L			05/09/22 14:46	1
cis-1,2-Dichloroethene	0.000225	J	0.00100	0.000174	mg/L			05/09/22 14:46	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/09/22 14:46	1
Trichloroethene	0.00131	J	0.00500	0.000424	mg/L			05/09/22 14:46	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/09/22 14:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101		75 _ 131			_		05/09/22 14:46	1
Toluene-d8 (Surr)	100		80 - 117					05/09/22 14:46	1
4-Bromofluorobenzene (Surr)	102		74 - 124					05/09/22 14:46	1
1,2-Dichloroethane-d4 (Surr)	101		63 - 144					05/09/22 14:46	1

Client Sample ID: SB33-01-050622 Lab Sample ID: 860-25832-3 Date Collected: 05/06/22 10:45 **Matrix: Water**

Date Received: 05/06/22 16:42

Method: 8260C - Volatile Organic Compounds by GC/MS										
	Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,1-Dichloroethane	0.000843	J	0.00100	0.000244	mg/L			05/09/22 15:06	1
	1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/09/22 15:06	1

Eurofins Houston

Page 6 of 26 5/9/2022

Matrix: Water

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB33-01-050622

Date Collected: 05/06/22 10:45 Date Received: 05/06/22 16:42 Lab Sample ID: 860-25832-3

Matrix: Water

Job ID: 860-25832-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.0122		0.00100	0.000216	mg/L			05/09/22 15:06	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/09/22 15:06	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/09/22 15:06	1
Trichloroethene	0.000637	J	0.00500	0.000424	mg/L			05/09/22 15:06	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/09/22 15:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		75 _ 131			-		05/09/22 15:06	1
Toluene-d8 (Surr)	103		80 - 117					05/09/22 15:06	1
4-Bromofluorobenzene (Surr)	102		74 - 124					05/09/22 15:06	1
1,2-Dichloroethane-d4 (Surr)	104		63 - 144					05/09/22 15:06	1

Client Sample ID: SB12-03-050622	Lab Sample ID: 860-25832-4
Date Collected: 05/06/22 14:20	Matrix: Water
Date Received: 05/06/22 16:42	

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00339		0.00100	0.000244	mg/L			05/09/22 15:27	1
1,2-Dichloroethane	0.000911	J	0.00100	0.000285	mg/L			05/09/22 15:27	1
1,1-Dichloroethene	0.0386		0.00100	0.000216	mg/L			05/09/22 15:27	1
cis-1,2-Dichloroethene	0.000430	J	0.00100	0.000174	mg/L			05/09/22 15:27	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/09/22 15:27	1
Trichloroethene	0.00200	J	0.00500	0.000424	mg/L			05/09/22 15:27	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/09/22 15:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		75 - 131			_		05/09/22 15:27	1
Toluene-d8 (Surr)	102		80 - 117					05/09/22 15:27	1
4-Bromofluorobenzene (Surr)	103		74 - 124					05/09/22 15:27	1
1,2-Dichloroethane-d4 (Surr)	105		63 - 144					05/09/22 15:27	1

Lab Sample ID: 860-25832-5 Client Sample ID: FD-01-020622 Date Collected: 05/06/22 00:00 **Matrix: Water**

Date Received: 05/06/22 16:42

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00972		0.00100	0.000244	mg/L			05/09/22 15:47	1
1,2-Dichloroethane	0.00194		0.00100	0.000285	mg/L			05/09/22 15:47	1
cis-1,2-Dichloroethene	0.00160		0.00100	0.000174	mg/L			05/09/22 15:47	1
Tetrachloroethene	0.000608	J	0.00100	0.000500	mg/L			05/09/22 15:47	1
Trichloroethene	0.00961		0.00500	0.000424	mg/L			05/09/22 15:47	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/09/22 15:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		75 - 131			-		05/09/22 15:47	1
Toluene-d8 (Surr)	104		80 - 117					05/09/22 15:47	1
4-Bromofluorobenzene (Surr)	101		74 - 124					05/09/22 15:47	1
1,2-Dichloroethane-d4 (Surr)	105		63 - 144					05/09/22 15:47	1

Eurofins Houston

Page 7 of 26

5/9/2022

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: FD-01-020622

Date Collected: 05/06/22 00:00 Date Received: 05/06/22 16:42 Lab Sample ID: 860-25832-5

Matrix: Water

Job ID: 860-25832-1

Method: 8260C - Volatile Organic Compounds by GC/MS - DL

Wictilda. 02000 - Volutile Orga	inc compounds	by Contino -							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.247		0.00500	0.00108	mg/L			05/09/22 16:29	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		75 - 131			-		05/09/22 16:29	5
Toluene-d8 (Surr)	100		80 - 117					05/09/22 16:29	5
4-Bromofluorobenzene (Surr)	102		74 - 124					05/09/22 16:29	5
1,2-Dichloroethane-d4 (Surr)	104		63 - 144					05/09/22 16:29	5

Client Sample ID: TB-01-020622

Date Collected: 05/06/22 07:45

Date Received: 05/06/22 16:42

Lab Sample ID: 860-25832-6

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Wethou. 02000 - Volatile Oig	gariic Compounds i	Jy GC/IVIS							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/09/22 12:22	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/09/22 12:22	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/09/22 12:22	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/09/22 12:22	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/09/22 12:22	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/09/22 12:22	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/09/22 12:22	1

Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100	75 _ 131	_		05/09/22 12:22	1
Toluene-d8 (Surr)	101	80 - 117			05/09/22 12:22	1
4-Bromofluorobenzene (Surr)	102	74 - 124			05/09/22 12:22	1
1 2-Dichloroethane-d4 (Surr)	98	63 144			05/09/22 12:22	1

Eurofins Houston

5/9/2022

2

<u>+</u>

6

8

10

1 1

13

14

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-25832-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

J

_

5

0

8

9

11

12

14

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25832-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sur	rogate Recovery	/ (Acceptance
		DBFM	TOL	BFB	DCA	
Lab Sample ID	Client Sample ID	(75-131)	(80-117)	(74-124)	(63-144)	
860-25829-A-1 MS	Matrix Spike	101	101	102	99	
860-25832-1 - DL	SB33-03-050622	95	100	96	82	
860-25832-1	SB33-03-050622	100	105	103	105	
860-25832-2	SB33-02-050622	101	100	102	101	
860-25832-3	SB33-01-050622	102	103	102	104	
860-25832-4	SB12-03-050622	103	102	103	105	
860-25832-5	FD-01-020622	102	104	101	105	
860-25832-5 - DL	FD-01-020622	103	100	102	104	
860-25832-6	TB-01-020622	100	101	102	98	
880-14475-E-1 MS	Matrix Spike	97	96	94	80	
LCS 860-52114/3	Lab Control Sample	99	97	93	82	
LCS 860-52115/3	Lab Control Sample	102	100	101	99	
LCSD 860-52114/4	Lab Control Sample Dup	96	99	96	80	
LCSD 860-52115/4	Lab Control Sample Dup	101	100	102	98	
MB 860-52114/9	Method Blank	95	98	97	81	
MB 860-52115/9	Method Blank	101	100	104	99	

Surrogate Legend

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

5

8

10

12

13

15

10

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-52114/9

Matrix: Water

Analysis Batch: 52114

		MB	MB							
	Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/09/22 11:27	1
ı	1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/09/22 11:27	1
	1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/09/22 11:27	1
I	cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/09/22 11:27	1
	Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/09/22 11:27	1
	Trichloroethene	0.000424	U	0.00500	0.000424	ma/L			05/09/22 11:27	1

MB MB

0.000234 U

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	95	75 - 131		05/09/22 11:27	1
Toluene-d8 (Surr)	98	80 - 117		05/09/22 11:27	1
4-Bromofluorobenzene (Surr)	97	74 - 124		05/09/22 11:27	1
1,2-Dichloroethane-d4 (Surr)	81	63 - 144		05/09/22 11:27	1

0.00200

0.000234 mg/L

Lab Sample ID: LCS 860-52114/3

Matrix: Water

Vinyl chloride

Analysis Batch: 52114

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

Spike LCS LCS %Rec Added Result Qualifier %Rec Limits Analyte Unit 0.0500 0.04525 90 1,1-Dichloroethane mg/L 72 - 125 1,2-Dichloroethane 0.0500 0.03737 75 mg/L 68 - 127 1,1-Dichloroethene 0.0500 0.05345 mg/L 107 59 - 172 cis-1,2-Dichloroethene 0.0500 0.04128 83 75 - 125 mg/L Tetrachloroethene 0.0500 0.04970 mg/L 99 71 - 125 Trichloroethene 0.0500 0.04879 98 62 - 137 mg/L Vinyl chloride 0.0500 0.05517 110 60 - 140 mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	99		75 ₋ 131
Toluene-d8 (Surr)	97		80 - 117
4-Bromofluorobenzene (Surr)	93		74 - 124
1,2-Dichloroethane-d4 (Surr)	82		63 - 144

Lab Sample ID: LCSD 860-52114/4

Matrix: Water

Analysis Batch: 52114

Client Sample ID: I	ab Control Sample Dup
	Prep Type: Total/NA

,	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.04488		mg/L		90	72 - 125	1	25
1,2-Dichloroethane	0.0500	0.03835		mg/L		77	68 - 127	3	25
1,1-Dichloroethene	0.0500	0.05118		mg/L		102	59 - 172	4	25
cis-1,2-Dichloroethene	0.0500	0.04130		mg/L		83	75 - 125	0	25
Tetrachloroethene	0.0500	0.04863		mg/L		97	71 - 125	2	25
Trichloroethene	0.0500	0.04805		mg/L		96	62 - 137	2	25
Vinyl chloride	0.0500	0.05306		mg/L		106	60 - 140	4	25

Eurofins Houston

Page 11 of 26

Job ID: 860-25832-1

Prep Type: Total/NA

Client Sample ID: Method Blank

05/09/22 11:27

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LCSD LCSD

Lab Sample ID: LCSD 860-52114/4

Matrix: Water

Analysis Batch: 52114

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 96 75 - 131 Toluene-d8 (Surr) 99 80 - 117 4-Bromofluorobenzene (Surr) 96 74 - 124 1,2-Dichloroethane-d4 (Surr) 80 63 - 144

Lab Sample ID: 880-14475-E-1 MS

Matrix: Water

Analysis Batch: 52114

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Job ID: 860-25832-1

%Rec Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec 1,1-Dichloroethane 0.000244 U 0.0500 0.04299 86 72 - 125 mg/L 1,2-Dichloroethane 0.000285 U 0.0500 0.03682 mg/L 74 68 - 127 1,1-Dichloroethene 0.000216 U 0.0500 0.05034 mg/L 101 59 - 172 cis-1,2-Dichloroethene 0.000174 U 0.0500 0.04005 mg/L 80 75 - 125 Tetrachloroethene 0.000500 U 0.0500 0.04703 mg/L 94 71 - 125 Trichloroethene 0.000424 U 0.0500 0.04602 92 62 - 137 mg/L Vinyl chloride 0.000234 U 0.0500 0.04999 mg/L 100 60 - 140

MS MS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	97		75 - 131
Toluene-d8 (Surr)	96		80 - 117
4-Bromofluorobenzene (Surr)	94		74 - 124
1,2-Dichloroethane-d4 (Surr)	80		63 - 144

Lab Sample ID: MB 860-52115/9

Matrix: Water

Analysis Batch: 52115

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/09/22 12:02	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/09/22 12:02	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/09/22 12:02	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/09/22 12:02	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/09/22 12:02	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/09/22 12:02	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/09/22 12:02	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prep	ared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101		75 - 131			05/09/22 12:02	1
Toluene-d8 (Surr)	100		80 - 117			05/09/22 12:02	1
4-Bromofluorobenzene (Surr)	104		74 - 124			05/09/22 12:02	1
1,2-Dichloroethane-d4 (Surr)	99		63 - 144			05/09/22 12:02	1

Eurofins Houston

Client: Jacobs Engineering Group, Inc.

Lab Sample ID: LCS 860-52115/3

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 860-25832-1

Matrix: Water Analysis Batch: 52115

۱		Бріке	LCS	LCS				%Rec	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	1,1-Dichloroethane	0.0500	0.05937		mg/L		119	72 - 125	
	1,2-Dichloroethane	0.0500	0.05664		mg/L		113	68 - 127	
	1,1-Dichloroethene	0.0500	0.05791		mg/L		116	59 - 172	
	cis-1,2-Dichloroethene	0.0500	0.05963		mg/L		119	75 - 125	
	Tetrachloroethene	0.0500	0.05923		mg/L		118	71 - 125	
	Trichloroethene	0.0500	0.05795		mg/L		116	62 - 137	
١	Vinyl chloride	0.0500	0.06733		mg/L		135	60 - 140	
1									

Chiles

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	102		75 _ 131
Toluene-d8 (Surr)	100		80 - 117
4-Bromofluorobenzene (Surr)	101		74 - 124
1,2-Dichloroethane-d4 (Surr)	99		63 - 144

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 52115

Lab Sample ID: LCSD 860-52115/4

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.05787		mg/L		116	72 - 125	3	25
1,2-Dichloroethane	0.0500	0.05336		mg/L		107	68 - 127	6	25
1,1-Dichloroethene	0.0500	0.05745		mg/L		115	59 - 172	1	25
cis-1,2-Dichloroethene	0.0500	0.05768		mg/L		115	75 - 125	3	25
Tetrachloroethene	0.0500	0.05922		mg/L		118	71 - 125	0	25
Trichloroethene	0.0500	0.05737		mg/L		115	62 - 137	1	25
Vinyl chloride	0.0500	0.06563		mg/L		131	60 - 140	3	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	101		75 - 131
Toluene-d8 (Surr)	100		80 - 117
4-Bromofluorobenzene (Surr)	102		74 - 124
1.2-Dichloroethane-d4 (Surr)	98		63 - 144

Lab Sample ID: 860-25829-A-1 MS

0.000424 U

0.000234 U

Matrix: Water

Trichloroethene

Vinyl chloride

Analysis Batch: 52115

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.000244	U	0.0500	0.06342	N1	mg/L		127	72 - 125	
1,2-Dichloroethane	0.000285	U	0.0500	0.05989		mg/L		120	68 - 127	
1,1-Dichloroethene	0.000216	U	0.0500	0.06215		mg/L		124	59 - 172	
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.06240		mg/L		125	75 - 125	
Tetrachloroethene	0.000500	U	0.0500	0.06296	N1	mg/L		126	71 - 125	

0.06216

0.06478

mg/L

mg/L

124

130

62 - 137 60 - 140

0.0500

0.0500

Eurofins Houston

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Page 13 of 26

63 - 144

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25832-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

99

Lab Sample ID: 860-25829-A-1 MS

Matrix: Water

Analysis Batch: 52115

1,2-Dichloroethane-d4 (Surr)

Client	Sample II): Mat	rix Sp	oike
	Prep	Type:	Total	/NA

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	101		75 _ 131
Toluene-d8 (Surr)	101		80 - 117
4-Bromofluorobenzene (Surr)	102		74 - 124

9

11

13

15

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25832-1

GC/MS VOA

Analysis Batch: 52114

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-25832-1 - DL	SB33-03-050622	Total/NA	Water	8260C	
MB 860-52114/9	Method Blank	Total/NA	Water	8260C	
LCS 860-52114/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-52114/4	Lab Control Sample Dup	Total/NA	Water	8260C	
880-14475-E-1 MS	Matrix Spike	Total/NA	Water	8260C	

Analysis Batch: 52115

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-25832-1	SB33-03-050622	Total/NA	Water	8260C	
860-25832-2	SB33-02-050622	Total/NA	Water	8260C	
860-25832-3	SB33-01-050622	Total/NA	Water	8260C	
860-25832-4	SB12-03-050622	Total/NA	Water	8260C	
860-25832-5	FD-01-020622	Total/NA	Water	8260C	
860-25832-5 - DL	FD-01-020622	Total/NA	Water	8260C	
860-25832-6	TB-01-020622	Total/NA	Water	8260C	
MB 860-52115/9	Method Blank	Total/NA	Water	8260C	
LCS 860-52115/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-52115/4	Lab Control Sample Dup	Total/NA	Water	8260C	
860-25829-A-1 MS	Matrix Spike	Total/NA	Water	8260C	

4

5

7

46

11

12

14

16

17

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB33-03-050622 Lab Sample ID: 860-25832-1

Date Collected: 05/06/22 09:25

Matrix: Water Date Received: 05/06/22 16:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	52115	05/09/22 14:25	NA	XEN STF
Total/NA	Analysis	8260C	DL	5	5 mL	5 mL	52114	05/09/22 15:12	TTD	XEN STF

Client Sample ID: SB33-02-050622 Lab Sample ID: 860-25832-2

Date Collected: 05/06/22 10:30 **Matrix: Water**

Date Received: 05/06/22 16:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	52115	05/09/22 14:46	NA	XEN STF

Client Sample ID: SB33-01-050622

Lab Sample ID: 860-25832-3 Date Collected: 05/06/22 10:45 **Matrix: Water**

Date Received: 05/06/22 16:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	52115	05/09/22 15:06	NA	XEN STF

Client Sample ID: SB12-03-050622 Lab Sample ID: 860-25832-4

Date Collected: 05/06/22 14:20 **Matrix: Water**

Date Received: 05/06/22 16:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	52115	05/09/22 15:27	NA	XEN STF

Client Sample ID: FD-01-020622 Lab Sample ID: 860-25832-5

Date Collected: 05/06/22 00:00 **Matrix: Water**

Date Received: 05/06/22 16:42

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	52115	05/09/22 15:47	NA	XEN STF
Total/NA	Analysis	8260C	DI	5	5 ml	5 ml	52115	05/09/22 16:29	NA	XFN STF

Lab Sample ID: 860-25832-6 Client Sample ID: TB-01-020622

Date Collected: 05/06/22 07:45 Date Received: 05/06/22 16:42

_											
	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C	·		5 mL	5 mL	52115	05/09/22 12:22	NA	XEN STF	_

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

Matrix: Water

Job ID: 860-25832-1

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25832-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

2

4

4

6

R

9

11

12

14

16

Eurofins Houston

Method Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	XEN STF
5030C	Purge and Trap	SW846	XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-25832-1

Sample Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-25832-1	SB33-03-050622	Water	05/06/22 09:25	05/06/22 16:42
860-25832-2	SB33-02-050622	Water	05/06/22 10:30	05/06/22 16:42
860-25832-3	SB33-01-050622	Water	05/06/22 10:45	05/06/22 16:42
860-25832-4	SB12-03-050622	Water	05/06/22 14:20	05/06/22 16:42
860-25832-5	FD-01-020622	Water	05/06/22 00:00	05/06/22 16:42
860-25832-6	TB-01-020622	Water	05/06/22 07:45	05/06/22 16:42

Job ID: 860-25832-1

3

4

a

9

10

11

13

14

4.0

17

Appendix A Laboratory Data Package Cover Page - Page 1 of 4

This d	ata ı	package	is 1	or	Eurofins	Houston	job	number	860	-25832-1	and	consists	of

- ☑ R1 Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. preparation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified compounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.
- ☑ R10 Other problems or anomalies.

Official Title (printed)

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Bethany McDaniel	Ett, mail	5/9/2022
Name (printed)	Signature	Date
Senior Proiect Manager		

Page 20 of 26

2

2

Δ

5

7

9

4 4

12

15

1

Laboratory Review Checklist: Reportable Data - Page 2 of 4

Laboratory Name:	Eurofins Houston	LRC Date:	5/9/2022
Project Name:	STC Silber Rd Pre-Design Investigation	Laboratory Job Number:	860-25832-1
Poviower Name:	Bothany McDaniel		

#1	A ²	Description	l voc	Na	NA ³	ND ⁴	ER# ⁵
		Description Chain-of-custody (C-O-C)	Yes	NO	IVA	INIX	ER#
K I			Х				
		Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?					
no L		Were all departures from standard conditions described in an exception report?	Х				
R2 (Sample and quality control (QC) identification		H			
		Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	X				
- L		Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Х				
R3 (Test reports	\ \ \				
		Were all samples prepared and analyzed within holding times?	X				
		Other than those results < MQL, were all other raw values bracketed by calibration standards?	X				
		Were calculations checked by a peer or supervisor?	Х				
		Were all analyte identifications checked by a peer or supervisor?	Х				
		Were sample detection limits reported for all analytes not detected?	Х				
		Were all results for soil and sediment samples reported on a dry weight basis?			Х		
		Were % moisture (or solids) reported for all soil and sediment samples?			Χ		
		Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035?			Χ		
		If required for the project, are TICs reported?			Χ		
R4 (Surrogate recovery data					
		Were surrogates added prior to extraction?	Х				
		Were surrogate percent recoveries in all samples within the laboratory QC limits?	Х				
R5 (OI	Test reports/summary forms for blank samples					
		Were appropriate type(s) of blanks analyzed?	Х				
		Were blanks analyzed at the appropriate frequency?	Х				
		Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup					
		procedures?	Х				
		Were blank concentrations < MQL?	Х				
R6 (OI	Laboratory control samples (LCS):					
		Were all COCs included in the LCS?	Х				
		Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	Х				
		Were LCSs analyzed at the required frequency?	Х				
		Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Х				
		Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used					
		to calculate the SDLs?	Х				
		Was the LCSD RPD within QC limits?	X				
R7		Matrix spike (MS) and matrix spike duplicate (MSD) data	 ^`				
/ ·		Were the project/method specified analytes included in the MS and MSD?	Х				
		Were MS/MSD analyzed at the appropriate frequency?	X				
		Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	 ^	Х			R07C
		Were MS/MSD RPDs within laboratory QC limits?			Х		NO7 C
00 1		Analytical duplicate data	-	H	^		
₹8		,	-	\vdash	V	\vdash	
		Were appropriate analytical duplicates analyzed for each matrix?	-		X	$\vdash \vdash \vdash$	
		Were analytical duplicates analyzed at the appropriate frequency?	-	\vdash	X	\vdash	
DO 1.		Were RPDs or relative standard deviations within the laboratory QC limits?	-	\vdash	٨	$\vdash \vdash$	
R9 (Method quantitation limits (MQLs):	L.,	Н		$\vdash \vdash$	
		Are the MQLs for each method analyte included in the laboratory data package?	X	\vdash		$\vdash \vdash \vdash$	
		Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	X	Ш		$\vdash \vdash$	
		Are unadjusted MQLs and DCSs included in the laboratory data package?	Х	Ш		$\vdash \vdash$	
R10 (Other problems/anomalies		\Box			
		Are all known problems/anomalies/special conditions noted in this LRC and ER?	Х	Ш			
		Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results?		х			R10B
		Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices					
		and methods associated with this laboratory data package?	Х				
		Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required repo	ort(s). I	tems			

. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

- 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
- 3. NA = Not applicable;
- 4. NR = Not reviewed;
- 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Page 21 of 26

2

3

4

7

9

11

4 4

15

17

5/9/2022

Laboratory Review checklist: Supporting Data - Page 3 of 4

Laboratory Name:	Eurofins Houston	LRC Date:	5/9/2022
Project Name:	STC Silber Rd Pre-Design Investigation	Laboratory Job Number:	860-25832-1
Reviewer Name:	Rethany McDaniel		<u> </u>

1 1 .2				3	41	5
# ¹ A ²		Yes	No	NA ³	NR⁴	ER#°
S1 OI	Initial calibration (ICAL)					
	Were response factors and/or relative response factors for each analyte within QC limits?	X				
	Were percent RSDs or correlation coefficient criteria met?	Х	Ш			
	Was the number of standards recommended in the method used for all analytes?	Х				
	Were all points generated between the lowest and highest standard used to calculate the curve?	Х				
	Are ICAL data available for all instruments used?	Х				
	Has the initial calibration curve been verified using an appropriate second source standard?	Х				
32 OI	Initial and continuing calibration verification (ICV and CCV) and continuing calibration blank (CCB):					
	Was the CCV analyzed at the method-required frequency?	Х				
	Were percent differences for each analyte within the method-required QC limits?	Х				
	Was the ICAL curve verified for each analyte?	Х				
	Was the absolute value of the analyte concentration in the inorganic CCB < MDL?			Х		
3 0	Mass spectral tuning					
	Was the appropriate compound for the method used for tuning?	Х				
	Were ion abundance data within the method-required QC limits?	X	H			
4 0	Internal standards (IS)		H			
,	Were IS area counts and retention times within the method-required QC limits?	Х				
5 OI	Raw data (NELAC Section 5.5.10)	- ^				
3 O1	Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Х				-
	Were data associated with manual integrations flagged on the raw data?	X				
6 0	Dual column confirmation	- ^ -	H			
6 O				Х		
·- Io	Did dual column confirmation results meet the method-required QC?		Н	^		
7 0	Tentatively identified compounds (TICs)	_				
- I.	If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?	_		Х		
8	Interference Check Sample (ICS) results					
- I.	Were percent recoveries within method QC limits?	_		Х		
9 I	Serial dilutions, post digestion spikes, and method of standard additions					
	Were percent differences, recoveries, and the linearity within the QC limits specified in the method?		Ш	Х		
01 OI	Method detection limit (MDL) studies					
	Was a MDL study performed for each reported analyte?	X				
	Is the MDL either adjusted or supported by the analysis of DCSs?	Х				
11 OI	Proficiency test reports					
	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	Х				
12 OI	Standards documentation					
	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?	Х				
13 OI	Compound/analyte identification procedures					
	Are the procedures for compound/analyte identification documented?	Х				
14 OI	Demonstration of analyst competency (DOC)					
	Was DOC conducted consistent with NELAC Chapter 5?	Х				
	Is documentation of the analyst's competency up-to-date and on file?	Х				
15 OI	Verification/validation documentation for methods (NELAC Chapter 5)					
	Are all the methods used to generate the data documented, verified, and validated, where applicable?	X				
16 0	Laboratory standard operating procedures (SOPs)	- ^-				
	Are laboratory SOPs current and on file for each method performed?	Х				
1.			tems		Ll	
1.	identified by the letter "S" should be retained and made available upon request for the appropriate retention period		CIIIS			
2		١.				
2.	O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);					
3.	NA = Not applicable;					
4.	NR = Not reviewed;					
5.	ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "N	o" is check	(ed).			

Page 22 of 26

Laboratory Review Checklist: Exception Reports - Page 4 of 4

Laboratory Name:	Eurofins Houston	LRC Date:	5/9/2022
Project Name:	STC Silber Rd Pre-Design Investigation	Laboratory Job Number:	860-25832-1
Reviewer Name:	Bethany McDaniel		

ER # ¹	Description
IRU/C	Method 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-52115 were outside control limits. Sample matrix interference is suspected.
IR10R	Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: SB33-03-050622 (860-25832-1) and FD-01-020622 (860-25832-5). Elevated reporting limits (RLs) are provided.
1.	Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items
	identified by the letter "S" should be retained and made available upon request for the appropriate retention period.
2.	O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
3.	NA = Not applicable;
4.	NR = Not reviewed;
5.	ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25832-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A292 Detector: MSD/0 Column: DB-624

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1-Dichloroethane	0.00500	0.00501		mg/L	0.00100	0.000244	01/07/2022	860-36806
1,2-Dichloroethane	0.00500	0.00493		mg/L	0.00100	0.000285	01/07/2022	860-36806
1,1-Dichloroethene	0.00500	0.00500		mg/L	0.00100	0.000216	01/07/2022	860-36806
cis-1,2-Dichloroethene	0.00500	0.00502		mg/L	0.00100	0.000174	01/07/2022	860-36806
Tetrachloroethene	0.00500	0.00523		mg/L	0.00100	0.000500	01/07/2022	860-36806
Trichloroethene	0.00500	0.00484	J	mg/L	0.00500	0.000424	01/07/2022	860-36806
Vinyl chloride	0.00500	0.00496		mg/L	0.00200	0.000234	01/07/2022	860-36806

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Detector: MSD/0 Column: DB-624

Spike

Analyte Added Result Qualifier Unit RL MDL **Analysis Date Analysis Batch** 1,1-Dichloroethene 0.00100 0.00411 mg/L 0.00100 0.000216 03/03/2022 860-43530

ш

16

17

Eurofins Xenco, Stafford Jemp. L. IR ID.HOUL323		مامر مادر	bacood about 0 to do	7		ra 💸	🔄 eurofins Environment Testing	it Testing
000			rusiony r				America	
	 		Lab PM	M: aniel Rethany A	Carrier Tracking No(s)		COC Na: 860-8507-2209 4	
Client Collection	Dhone.		WICE F.MS.	c frame, period of	State of Origin.	-apaga-	100-75-00	
Culent Contact. John Ynfante	rione:			Sethany.McDaniel@Eurofinset.com		Page [[or_]	
Company: Jacobs Engineering Group, Inc.		PWSID	<u>.</u>	Anal	Analysis Requested	Job #:		
Address: 14701 St. Mary's Lane Suite 300	Due Data Requested:					Presen	ation Codes:	
City: Houston	TAT Requested (days):	t day RUSH				B NaCl	H cetate	
State, Zp: TX, 77079	Compliance Project:	∆ Yes ∆ No					1.00	
Phone:	#O-				-		or Se Acid	shydrate
Emait: John. Ynfante@jacobs.com	WO#					<u> </u>	>	}
Projest Name: STC Silber Road Pre-Design Investigation	Project #: 86002024) (O 80		enletr X J		(Ky)
Site:	SSOW#:			N)GE	, , ,	100 to		,
		Sample Type	ple Matrix 3e (W-water, S-saile, omp., conversation)	: befelij bi Misklimo: 7 (dom) - 80:		TedmuN let		
Sample Identification	Sample Date	`\	-의통	20)			Special Instructions/Note:	ote:
<1222-03-050077	5/1.107	(\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Water	×	λpα	~		
< 133 -03 - 050b22	T	1030	+-	\ \ \ \	The state of the s			
. ا		\	Water	*	Jo U			
SR12-03-05422	1 22/9/5	120 6	S Water	X	CPS		:	
FD-01-050622	21/1/5	Ļ	Water	X	ZE899			
73-01-050bz	12/19/5	SEC.	Water	X	Z-09			
. 1			Water		0			
			Water					
			Water					
			Water					
			Water			:		
[] 	Poison B	n Badiological	orical	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Archive For Month Disposal By 1 ah Archive For Month Archive For Month Particular Par	may be assessed if sam	nples are retained fong	ger than 1 month) Months	
Other (specify)	١	}	in the second	Special Instructions/QC Requirements:	equirements:			
Empty Kit Relinquished by		Date:		Time:	Method of Shipment	Shipment		
Relinquished by: MAL	Date/Time: 5	12/0	Company 4:42	Received by:	7-26	DaterTime 1422	V_{o}	3
Refinquished by:	Date/Time:		Company	Received by:		Date/Time:	Company	
	Date/Time:		Сотралу	Received by:		Date/Time:	Company	:
Custody Seals Intact Custody Seal No.				Cooler Temperature(s) °C and Other Remarks:	nd Other Remarks:			
							Ver 01/16/2019	610

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc. Job Number: 860-25832-1

Login Number: 25832 **List Source: Eurofins Houston**

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	

Page 26 of 26 5/9/2022

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-25901-1

Client Project/Site: STC Silber Rd Pre-Design Investigation

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 5/11/2022 3:03:33 PM

Bethany McDaniel, Senior Project Manager (713)358-2005
Bethany.McDaniel@et.eurofinsus.com

LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

Λ

5

6

8

4.0

4.0

13

16

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	9
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
State Forms	20
TRRP Checklist	20
DCS Report	24
Chain of Custody	25
Receipt Checklists	26

3

4

8

10

12

13

15

17

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Job ID: 860-25901-1

Qualifiers

G	\sim	/ R /	\ /	$\overline{}$	•
		/ IV	v	u	Д

RL

RPD

TEF

TEQ

TNTC

Qualifier	Qualifier Description
J	Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.
N1	MS, MSD: Spike recovery exceeds upper or lower control limits.
U	Analyte was not detected at or above the SDL.

•	Amaryo was not estated at a above the egg.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Eurofins Houston

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25901-1

Job ID: 860-25901-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-25901-1

Receipt

The samples were received on 5/10/2022 8:17 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.1°C

6

4

6

0

10

12

13

15

17

IR

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB31-03-050922 Lab Sample ID: 860-25901-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	0.00313		0.00100	0.000216	mg/L	1	_	8260C	Total/NA
Tetrachloroethene	0.000504	J	0.00100	0.000500	mg/L	1		8260C	Total/NA

Client Sample ID: SB31-02-050922

Γ					
Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D Method	Prep Type
1,1-Dichloroethene	0.000574 J	0.00100	0.000216 mg/L	1 8260C	Total/NA

Client Sample ID: SB32-03-050922

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethane	0.00335	0.00100	0.000285	mg/L	1	_	8260C	Total/NA
cis-1,2-Dichloroethene	0.00560	0.00100	0.000174	mg/L	1		8260C	Total/NA
Tetrachloroethene	0.0347	0.00100	0.000500	mg/L	1		8260C	Total/NA
Trichloroethene	0.00574	0.00500	0.000424	mg/L	1		8260C	Total/NA
Vinyl chloride	0.0431	0.00200	0.000234	mg/L	1		8260C	Total/NA
1,1-Dichloroethane - DL	0.324	0.0100	0.00244	mg/L	10		8260C	Total/NA
1,1-Dichloroethene - DL	0.648	0.0100	0.00216	mg/L	10		8260C	Total/NA

Client Sample ID: SB18-03-050922

Analyte	Result Qualifi	er MQL (Adj)	SDL	Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	0.0106	0.00100	0.000244	mg/L	1	8260C	Total/NA
1,2-Dichloroethane	0.000400 J	0.00100	0.000285	mg/L	1	8260C	Total/NA
1,1-Dichloroethene	0.0670	0.00100	0.000216	mg/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	0.00796	0.00100	0.000174	mg/L	1	8260C	Total/NA
Tetrachloroethene	0.00185	0.00100	0.000500	mg/L	1	8260C	Total/NA
Trichloroethene	0.00268 J	0.00500	0.000424	mg/L	1	8260C	Total/NA
Vinyl chloride	0.000892 J	0.00200	0.000234	mg/L	1	8260C	Total/NA

Client Sample ID: SB18-02-050922

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00119		0.00100	0.000244	mg/L	1	_	8260C	Total/NA
1,1-Dichloroethene	0.00663		0.00100	0.000216	mg/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	0.000951	J	0.00100	0.000174	mg/L	1		8260C	Total/NA
Tetrachloroethene	0.000953	J	0.00100	0.000500	mg/L	1		8260C	Total/NA
Trichloroethene	0.000626	J	0.00500	0.000424	mg/L	1		8260C	Total/NA

Client Sample ID: TB-01-050922

No Detections.

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 860-25901-2

Lab Sample ID: 860-25901-3

Lab Sample ID: 860-25901-4

Lab Sample ID: 860-25901-5

Lab Sample ID: 860-25901-6

Job ID: 860-25901-1

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB31-03-050922

Date Collected: 05/09/22 08:40 Date Received: 05/10/22 08:17 Lab Sample ID: 860-25901-1

Matrix: Water

Job ID: 860-25901-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/10/22 22:17	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/10/22 22:17	1
1,1-Dichloroethene	0.00313		0.00100	0.000216	mg/L			05/10/22 22:17	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/10/22 22:17	1
Tetrachloroethene	0.000504	J	0.00100	0.000500	mg/L			05/10/22 22:17	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/10/22 22:17	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/10/22 22:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101		75 - 131			-		05/10/22 22:17	1
Toluene-d8 (Surr)	102		80 - 117					05/10/22 22:17	1
4-Bromofluorobenzene (Surr)	102		74 - 124					05/10/22 22:17	1
1,2-Dichloroethane-d4 (Surr)	107		63 - 144					05/10/22 22:17	1

Client Sample ID: SB31-02-050922

Date Collected: 05/09/22 08:55

Date Received: 05/10/22 08:17

Lab Sample ID: 860-25901-2

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Method: 6260C - Volatile Organi	c Compounds b	iy GC/IVIS							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/10/22 13:24	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/10/22 13:24	1
1,1-Dichloroethene	0.000574	J	0.00100	0.000216	mg/L			05/10/22 13:24	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/10/22 13:24	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/10/22 13:24	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/10/22 13:24	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/10/22 13:24	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		75 - 131		05/10/22 13:24	1
Toluene-d8 (Surr)	102		80 - 117		05/10/22 13:24	1
4-Bromofluorobenzene (Surr)	103		74 - 124		05/10/22 13:24	1
1,2-Dichloroethane-d4 (Surr)	106		63 - 144		05/10/22 13:24	1

Client Sample ID: SB32-03-050922

Date Collected: 05/09/22 12:45

Date Received: 05/10/22 08:17

.ab Samp	le ID:	860-2	25901-3	
----------	--------	-------	---------	--

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	0.00335		0.00100	0.000285	mg/L			05/10/22 13:44	1
cis-1,2-Dichloroethene	0.00560		0.00100	0.000174	mg/L			05/10/22 13:44	1
Tetrachloroethene	0.0347		0.00100	0.000500	mg/L			05/10/22 13:44	1
Trichloroethene	0.00574		0.00500	0.000424	mg/L			05/10/22 13:44	1
Vinyl chloride	0.0431		0.00200	0.000234	mg/L			05/10/22 13:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101		75 - 131			_		05/10/22 13:44	1
Toluene-d8 (Surr)	102		80 - 117					05/10/22 13:44	1
4-Bromofluorobenzene (Surr)	102		74 - 124					05/10/22 13:44	1
1,2-Dichloroethane-d4 (Surr)	105		63 - 144					05/10/22 13:44	1

Eurofins Houston

Page 6 of 26

2

3

5

7

9

11

12

14

16

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB32-03-050922

Date Collected: 05/09/22 12:45 Date Received: 05/10/22 08:17

Lab Sample ID: 860-25901-3

Job ID: 860-25901-1

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.324		0.0100	0.00244	mg/L			05/10/22 17:30	10
1,1-Dichloroethene	0.648		0.0100	0.00216	mg/L			05/10/22 17:30	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103		75 _ 131			-		05/10/22 17:30	10
Toluene-d8 (Surr)	100		80 - 117					05/10/22 17:30	10
4-Bromofluorobenzene (Surr)	104		74 - 124					05/10/22 17:30	10
1,2-Dichloroethane-d4 (Surr)	103		63 - 144					05/10/22 17:30	10

Client Sample ID: SB18-03-050922

Date Collected: 05/09/22 16:50 Date Received: 05/10/22 08:17

Lab Sample ID: 860-25901-4

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0106		0.00100	0.000244	mg/L			05/10/22 16:28	1
1,2-Dichloroethane	0.000400	J	0.00100	0.000285	mg/L			05/10/22 16:28	1
1,1-Dichloroethene	0.0670		0.00100	0.000216	mg/L			05/10/22 16:28	1
cis-1,2-Dichloroethene	0.00796		0.00100	0.000174	mg/L			05/10/22 16:28	1
Tetrachloroethene	0.00185		0.00100	0.000500	mg/L			05/10/22 16:28	1
Trichloroethene	0.00268	J	0.00500	0.000424	mg/L			05/10/22 16:28	1
Vinyl chloride	0.000892	J	0.00200	0.000234	mg/L			05/10/22 16:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	104		75 _ 131			_		05/10/22 16:28	1
Toluene-d8 (Surr)	101		80 - 117					05/10/22 16:28	1
4-Bromofluorobenzene (Surr)	102		74 - 124					05/10/22 16:28	1
1,2-Dichloroethane-d4 (Surr)	109		63 - 144					05/10/22 16:28	1

Client Sample ID: SB18-02-050922

Date Collected: 05/09/22 17:15

Date Received: 05/10/22 08:17

Lab Sample ID: 860-25901-5

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00119		0.00100	0.000244	mg/L			05/10/22 17:09	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/10/22 17:09	1
1,1-Dichloroethene	0.00663		0.00100	0.000216	mg/L			05/10/22 17:09	1
cis-1,2-Dichloroethene	0.000951	J	0.00100	0.000174	mg/L			05/10/22 17:09	1
Tetrachloroethene	0.000953	J	0.00100	0.000500	mg/L			05/10/22 17:09	1
Trichloroethene	0.000626	J	0.00500	0.000424	mg/L			05/10/22 17:09	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/10/22 17:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101		75 - 131			_		05/10/22 17:09	1
Toluene-d8 (Surr)	101		80 - 117					05/10/22 17:09	1
4-Bromofluorobenzene (Surr)	102		74 - 124					05/10/22 17:09	1
1,2-Dichloroethane-d4 (Surr)	103		63 - 144					05/10/22 17:09	

Eurofins Houston

Page 7 of 26

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: TB-01-050922

Date Collected: 05/09/22 07:45 Date Received: 05/10/22 08:17 Lab Sample ID: 860-25901-6

Matrix: Water

Job ID: 860-25901-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/10/22 11:00	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/10/22 11:00	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/10/22 11:00	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/10/22 11:00	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/10/22 11:00	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/10/22 11:00	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/10/22 11:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101		75 _ 131			-		05/10/22 11:00	1
Toluene-d8 (Surr)	102		80 - 117					05/10/22 11:00	1
4-Bromofluorobenzene (Surr)	104		74 - 124					05/10/22 11:00	1
1,2-Dichloroethane-d4 (Surr)	103		63 - 144					05/10/22 11:00	1

4

6

8

10

11

13

14

16

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-25901-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

11

13

14

16

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25901-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sur	rrogate Recov	ery (Acc
		DBFM	TOL	BFB	DCA	
Lab Sample ID	Client Sample ID	(75-131)	(80-117)	(74-124)	(63-144)	
860-25737-C-4 MS	Matrix Spike	102	100	101	98	
860-25901-1	SB31-03-050922	101	102	102	107	
860-25901-1 MS	SB31-03-050922	102	99	101	102	
860-25901-1 MSD	SB31-03-050922	101	101	102	102	
860-25901-2	SB31-02-050922	103	102	103	106	
860-25901-3	SB32-03-050922	101	102	102	105	
860-25901-3 - DL	SB32-03-050922	103	100	104	103	
860-25901-4	SB18-03-050922	104	101	102	109	
860-25901-5	SB18-02-050922	101	101	102	103	
860-25901-6	TB-01-050922	101	102	104	103	
LCS 860-52306/3	Lab Control Sample	100	101	103	99	
LCS 860-52399/3	Lab Control Sample	103	100	102	99	
LCSD 860-52306/4	Lab Control Sample Dup	101	99	102	100	
LCSD 860-52399/4	Lab Control Sample Dup	101	101	102	101	
MB 860-52306/10	Method Blank	101	102	105	101	
MB 860-52399/10	Method Blank	101	100	104	103	

Surrogate Legend

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Houston

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

0.000424 U

0.000234 U

Lab Sample ID: MB 860-52306/10 Client Sample ID: Method Blank

Matrix: Water Analysis Batch: 52306

Trichloroethene

Vinyl chloride

MB MB Analyte Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fac 1,1-Dichloroethane 0.000244 U 0.00100 0.000244 mg/L 05/10/22 09:58 1,2-Dichloroethane 0.000285 U 0.00100 0.000285 mg/L 05/10/22 09:58 1,1-Dichloroethene 0.000216 U 0.00100 0.000216 mg/L 05/10/22 09:58 0.000174 mg/L cis-1,2-Dichloroethene 0.000174 U 0.00100 05/10/22 09:58 Tetrachloroethene 0.000500 mg/L 05/10/22 09:58 0.000500 U 0.00100

0.00500

0.00200

0.000424 mg/L

0.000234 mg/L

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Dibromofluoromethane (Surr) 101 75 - 131 05/10/22 09:58 Toluene-d8 (Surr) 102 80 - 117 05/10/22 09:58 4-Bromofluorobenzene (Surr) 105 74 - 124 05/10/22 09:58 1,2-Dichloroethane-d4 (Surr) 63 - 144 05/10/22 09:58 101

Lab Sample ID: LCS 860-52306/3

Client Sample ID: Lab Control Sample
Matrix: Water

Prep Type: Total/NA

Analysis Batch: 52306

Spike LCS LCS %Rec Added Qualifier Analyte Result Unit %Rec Limits 1,1-Dichloroethane 0.0500 0.05669 mg/L 113 72 - 125 1,2-Dichloroethane 0.0500 0.05343 mg/L 107 68 - 127 1,1-Dichloroethene 0.0500 0.05363 107 59 - 172 mg/L cis-1,2-Dichloroethene 0.0500 0.05581 mg/L 112 75 - 125 Tetrachloroethene 0.0500 0.05337 107 mg/L 71 - 125Trichloroethene 0.0500 0.05374 mg/L 107 62 - 137 Vinyl chloride 0.0500 0.06221 124 60 - 140 mg/L

LCS LCS Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 100 75 - 131 Toluene-d8 (Surr) 101 80 - 117 4-Bromofluorobenzene (Surr) 74 - 124 103 1,2-Dichloroethane-d4 (Surr) 99 63 - 144

Lab Sample ID: LCSD 860-52306/4

Client Sample ID: Lab Control Sample Dup
Matrix: Water

Prep Type: Total/NA

Analysis Batch: 52306

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.05212		mg/L		104	72 - 125	8	25
1,2-Dichloroethane	0.0500	0.05071		mg/L		101	68 - 127	5	25
1,1-Dichloroethene	0.0500	0.05051		mg/L		101	59 - 172	6	25
cis-1,2-Dichloroethene	0.0500	0.05256		mg/L		105	75 - 125	6	25
Tetrachloroethene	0.0500	0.05014		mg/L		100	71 - 125	6	25
Trichloroethene	0.0500	0.04967		mg/L		99	62 - 137	8	25
Vinyl chloride	0.0500	0.05801		mg/L		116	60 - 140	7	25

Eurofins Houston

Job ID: 860-25901-1

Prep Type: Total/NA

05/10/22 09:58

05/10/22 09:58

3

4

6

8

10

12

13

14

16

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LCSD LCSD

Lab Sample ID: LCSD 860-52306/4

Matrix: Water

Analysis Batch: 52306

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 101 75 - 131 Toluene-d8 (Surr) 99 80 - 117 4-Bromofluorobenzene (Surr) 102 74 - 124 1,2-Dichloroethane-d4 (Surr) 100 63 - 144

Lab Sample ID: 860-25737-C-4 MS

Matrix: Water

Analysis Batch: 52306

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Job ID: 860-25901-1

%Rec Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec 1,1-Dichloroethane 0.000244 U 0.0500 116 0.05803 72 - 125 mg/L 1,2-Dichloroethane 0.000285 U 0.0500 0.05355 mg/L 107 68 - 127 1,1-Dichloroethene 0.000216 U 0.0500 0.05496 mg/L 110 59 - 172 cis-1,2-Dichloroethene 0.000174 U 0.0500 0.05749 mg/L 115 75 - 125 Tetrachloroethene 0.000500 U 0.0500 0.05604 mg/L 112 71 - 125 Trichloroethene 0.000424 U 0.0500 0.05518 110 62 - 137 mg/L Vinyl chloride 0.000234 U 0.0500 0.06563 131 mg/L 60 - 140

MS MS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	102		75 - 131
Toluene-d8 (Surr)	100		80 - 117
4-Bromofluorobenzene (Surr)	101		74 - 124
1,2-Dichloroethane-d4 (Surr)	98		63 - 144

Lab Sample ID: MB 860-52399/10

Matrix: Water

Analysis Batch: 52399

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/10/22 21:56	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/10/22 21:56	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/10/22 21:56	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/10/22 21:56	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/10/22 21:56	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/10/22 21:56	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/10/22 21:56	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prep	pared	Analyzed	Dil Fac	
Dibromofluoromethane (Surr)	101		75 - 131			05/10/22 21:56	1	
Toluene-d8 (Surr)	100		80 - 117			05/10/22 21:56	1	
4-Bromofluorobenzene (Surr)	104		74 - 124			05/10/22 21:56	1	
1,2-Dichloroethane-d4 (Surr)	103		63 - 144			05/10/22 21:56	1	

Eurofins Houston

Client: Jacobs Engineering Group, Inc.

Lab Sample ID: LCS 860-52399/3

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 860-25901-1

Matrix: Water Analysis Batch: 52399

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.0500	0.05581		mg/L		112	72 - 125	
1,2-Dichloroethane	0.0500	0.05041		mg/L		101	68 - 127	
1,1-Dichloroethene	0.0500	0.04940		mg/L		99	59 - 172	
cis-1,2-Dichloroethene	0.0500	0.05311		mg/L		106	75 - 125	
Tetrachloroethene	0.0500	0.04843		mg/L		97	71 - 125	
Trichloroethene	0.0500	0.05035		mg/L		101	62 - 137	
Vinyl chloride	0.0500	0.05801		mg/L		116	60 - 140	

LCS LCS

Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 103 75 - 131 80 - 117 Toluene-d8 (Surr) 100 4-Bromofluorobenzene (Surr) 102 74 - 124 1,2-Dichloroethane-d4 (Surr) 99 63 - 144

Lab Sample ID: LCSD 860-52399/4

Matrix: Water

Analysis Batch: 52399

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

RPD

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.05816		mg/L		116	72 - 125	4	25
1,2-Dichloroethane	0.0500	0.05441		mg/L		109	68 - 127	8	25
1,1-Dichloroethene	0.0500	0.05521		mg/L		110	59 - 172	11	25
cis-1,2-Dichloroethene	0.0500	0.05654		mg/L		113	75 - 125	6	25
Tetrachloroethene	0.0500	0.05069		mg/L		101	71 - 125	5	25
Trichloroethene	0.0500	0.05359		mg/L		107	62 - 137	6	25
Vinyl chloride	0.0500	0.06351		mg/L		127	60 - 140	9	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	101		75 - 131
Toluene-d8 (Surr)	101		80 - 117
4-Bromofluorobenzene (Surr)	102		74 - 124
1,2-Dichloroethane-d4 (Surr)	101		63 - 144

Lab Sample ID: 860-25901-1 MS

Matrix: Water

Analysis Batch: 52399

Client Sample	ID: SB31-03-050922	
	Dunn Tunner Total/NIA	

Prep Type: Total/NA

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.000244	U	0.0500	0.06456	N1	mg/L		129	72 - 125	
1,2-Dichloroethane	0.000285	U	0.0500	0.06186		mg/L		124	68 - 127	
1,1-Dichloroethene	0.00313		0.0500	0.06909		mg/L		132	59 - 172	
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.06289	N1	mg/L		126	75 - 125	
Tetrachloroethene	0.000504	J	0.0500	0.06405	N1	mg/L		127	71 - 125	
Trichloroethene	0.000424	U	0.0500	0.06342		mg/L		127	62 - 137	
Vinyl chloride	0.000234	U	0.0500	0.05489		mg/L		110	60 - 140	

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25901-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

102

Lab Sample ID: 860-25901-1 MS

Matrix: Water

Analysis Batch: 52399

1,2-Dichloroethane-d4 (Surr)

Client Sample ID: SB31-03-050922

Prep Type: Total/NA

MS MS Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 102 75 - 131 Toluene-d8 (Surr) 99 80 - 117 4-Bromofluorobenzene (Surr) 101 74 - 124

Lab Sample ID: 860-25901-1 MSD Client Sample ID: SB31-03-050922

63 - 144

Matrix: Water

Prep Type: Total/NA Analysis Batch: 52399

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.000244	U	0.0500	0.07082	N1	mg/L		142	72 - 125	9	25
1,2-Dichloroethane	0.000285	U	0.0500	0.06573	N1	mg/L		131	68 - 127	6	25
1,1-Dichloroethene	0.00313		0.0500	0.07470		mg/L		143	59 - 172	8	25
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.06855	N1	mg/L		137	75 - 125	9	25
Tetrachloroethene	0.000504	J	0.0500	0.07049	N1	mg/L		140	71 - 125	10	25
Trichloroethene	0.000424	U	0.0500	0.06953	N1	mg/L		139	62 - 137	9	25
Vinyl chloride	0.000234	U	0.0500	0.06119		mg/L		122	60 - 140	11	25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	101		75 - 131
Toluene-d8 (Surr)	101		80 - 117
4-Bromofluorobenzene (Surr)	102		74 - 124
1,2-Dichloroethane-d4 (Surr)	102		63 - 144

Eurofins Houston

5/11/2022

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25901-1

GC/MS VOA

Analysis Batch: 52306

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-25901-2	SB31-02-050922	Total/NA	Water	8260C	
860-25901-3	SB32-03-050922	Total/NA	Water	8260C	
860-25901-3 - DL	SB32-03-050922	Total/NA	Water	8260C	
860-25901-4	SB18-03-050922	Total/NA	Water	8260C	
860-25901-5	SB18-02-050922	Total/NA	Water	8260C	
860-25901-6	TB-01-050922	Total/NA	Water	8260C	
MB 860-52306/10	Method Blank	Total/NA	Water	8260C	
LCS 860-52306/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-52306/4	Lab Control Sample Dup	Total/NA	Water	8260C	
860-25737-C-4 MS	Matrix Spike	Total/NA	Water	8260C	

Analysis Batch: 52399

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-25901-1	SB31-03-050922	Total/NA	Water	8260C	
MB 860-52399/10	Method Blank	Total/NA	Water	8260C	
LCS 860-52399/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-52399/4	Lab Control Sample Dup	Total/NA	Water	8260C	
860-25901-1 MS	SB31-03-050922	Total/NA	Water	8260C	
860-25901-1 MSD	SB31-03-050922	Total/NA	Water	8260C	

I ID 000 05004 4

3

4

6

9

10

11

12

16

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID: 860-25901-1 Client Sample ID: SB31-03-050922

Date Collected: 05/09/22 08:40 Date Received: 05/10/22 08:17

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Run Factor Amount Amount Number or Analyzed Analyst Type Lab Total/NA Analysis 8260C 5 mL 52399 05/10/22 22:17 A1S XEN STF 5 mL

Client Sample ID: SB31-02-050922

Lab Sample ID: 860-25901-2 Date Collected: 05/09/22 08:55 **Matrix: Water**

Date Received: 05/10/22 08:17

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Туре Run Factor Analyst Lab 8260C 52306 05/10/22 13:24 NA XEN STF Total/NA Analysis 5 mL 5 mL

Client Sample ID: SB32-03-050922

Lab Sample ID: 860-25901-3 Date Collected: 05/09/22 12:45 **Matrix: Water**

Date Received: 05/10/22 08:17

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 8260C XEN STF Analysis 5 mL 5 mL 52306 05/10/22 13:44 NA Analysis 05/10/22 17:30 XEN STF Total/NA 8260C DL 10 5 mL 5 mL 52306 NA

Client Sample ID: SB18-03-050922

Lab Sample ID: 860-25901-4

Date Collected: 05/09/22 16:50 **Matrix: Water**

Date Received: 05/10/22 08:17

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260C 52306 05/10/22 16:28 NA XEN STF 5 mL 5 mL

Client Sample ID: SB18-02-050922

Lab Sample ID: 860-25901-5 Date Collected: 05/09/22 17:15 **Matrix: Water**

Date Received: 05/10/22 08:17

Batch Batch Dil Initial Final Batch Prepared Method Factor Amount Amount Number or Analyzed Prep Type Туре Run Analyst Lab 8260C 52306 05/10/22 17:09 XEN STF Total/NA Analysis 5 mL 5 mL NA

Client Sample ID: TB-01-050922 Lab Sample ID: 860-25901-6

Date Collected: 05/09/22 07:45

Date Received: 05/10/22 08:17

Batch Batch Dil Initial Final Batch Prepared Method Number or Analyzed **Prep Type** Type Run Factor Amount Amount Analyst Lab Total/NA Analysis 8260C 52306 05/10/22 11:00 NA XEN STF 5 mL 5 mL

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

Job ID: 860-25901-1

Matrix: Water

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25901-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

2

4

6

9

11

12

14

4.0

17

Method Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Protocol Laboratory

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	XEN STF
5030C	Purge and Trap	SW846	XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-25901-1

4

5

7

8

4.0

11

13

14

16

Sample Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
860-25901-1	SB31-03-050922	Water	05/09/22 08:40	05/10/22 08:17	
860-25901-2	SB31-02-050922	Water	05/09/22 08:55	05/10/22 08:17	
860-25901-3	SB32-03-050922	Water	05/09/22 12:45	05/10/22 08:17	
860-25901-4	SB18-03-050922	Water	05/09/22 16:50	05/10/22 08:17	
860-25901-5	SB18-02-050922	Water	05/09/22 17:15	05/10/22 08:17	
860-25901-6	TB-01-050922	Water	05/09/22 07:45	05/10/22 08:17	

Job ID: 860-25901-1

Appendix A Laboratory Data Package Cover Page - Page 1 of 4

This data	package	is for	Eurofins	Houston	job nu	ımber 8	360-25901-1	and	consists	of:

- ☑ R1 Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. preparation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified compounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.
- ☑ R10 Other problems or anomalies.

Official Title (printed)

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Bethany McDaniel	Ett, mail	5/11/2022
Name (printed)	Signature	Date
Senior Proiect Manager		

Page 20 of 26

2

2

Λ

5

8

10

12

15

11

IR

Laboratory Review Checklist: Reportable Data - Page 2 of 4

Laboratory Name:	Eurofins Houston	LRC Date:	5/11/2022
Project Name:	STC Silber Rd Pre-Design Investigation	Laboratory Job Number:	860-25901-1
Poviower Name:	Rothany McDaniel		

# ¹	A ²	Description	Yes	No	NA ³	NR ⁴	ER# ⁵
R1	OI	Chain-of-custody (C-O-C)					
	-	Did samples meet the laboratory's standard conditions of sample acceptability upon receipt?	Х				
		Were all departures from standard conditions described in an exception report?	Х				
₹2	OI	Sample and quality control (QC) identification					
		Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	Х				
		Are all laboratory ID numbers cross-referenced to the corresponding QC data?	Х				
₹3	OI	Test reports					
		Were all samples prepared and analyzed within holding times?	Х				
		Other than those results < MQL, were all other raw values bracketed by calibration standards?	Х				
		Were calculations checked by a peer or supervisor?	Х				
		Were all analyte identifications checked by a peer or supervisor?	Х				
		Were sample detection limits reported for all analytes not detected?	Х				
		Were all results for soil and sediment samples reported on a dry weight basis?			Х		
		Were % moisture (or solids) reported for all soil and sediment samples?	1		Х		
		Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035?	1		Х		
		If required for the project, are TICs reported?			Х		
4	0	Surrogate recovery data				H	
•		Were surrogates added prior to extraction?	Х				
		Were surrogate percent recoveries in all samples within the laboratory QC limits?	X			H	
5	ОІ	Test reports/summary forms for blank samples	+^				
	Oi	Were appropriate type(s) of blanks analyzed?	Х				
		Were blanks analyzed at the appropriate frequency?	X				
		Were method blanks taken through the entire analytical process, including preparation and, if applicable, cleanup	 ^				
		procedures?	X				
^		Were blank concentrations < MQL?	X			\vdash	
6	OI	Laboratory control samples (LCS):	- V			\vdash	
		Were all COCs included in the LCS?	X				
		Was each LCS taken through the entire analytical procedure, including prep and cleanup steps?	X				
		Were LCSs analyzed at the required frequency?	X			\vdash	
		Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	Х				
		Does the detectability check sample data document the laboratory's capability to detect the COCs at the MDL used					
		to calculate the SDLs?	Х				
		Was the LCSD RPD within QC limits?	Х				
7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data					
		Were the project/method specified analytes included in the MS and MSD?	Х				
		Were MS/MSD analyzed at the appropriate frequency?	Х				
		Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?		Х			R07C
		Were MS/MSD RPDs within laboratory QC limits?	Х				
8	OI	Analytical duplicate data					
		Were appropriate analytical duplicates analyzed for each matrix?			Х		
		Were analytical duplicates analyzed at the appropriate frequency?			Χ		
		Were RPDs or relative standard deviations within the laboratory QC limits?			Х		
9	OI	Method quantitation limits (MQLs):					
	•	Are the MQLs for each method analyte included in the laboratory data package?	Х			m	
		Do the MQLs correspond to the concentration of the lowest non-zero calibration standard?	Х			m	
		Are unadjusted MQLs and DCSs included in the laboratory data package?	X				
10	ΟI	Other problems/anomalies	Ϊ́			\vdash	
	<u> </u>	Are all known problems/anomalies/special conditions noted in this LRC and ER?	Х			\vdash	
			+^			\vdash	
		Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results?		х			R10B
		·	\vdash	 ^		├	IVIUD
		Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program for the analytes, matrices					
	4	and methods associated with this laboratory data package?	X				
	1.	Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required repo	บณ(S). I	ιems			

i. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

- 2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
- 3. NA = Not applicable;
- 4. NR = Not reviewed;
- 5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

А

5

7

9

12

11

15

17

IC

Laboratory Review checklist: Supporting Data - Page 3 of 4

Laboratory Name:	Eurofins Houston	LRC Date:	5/11/2022
Project Name:	STC Silber Rd Pre-Design Investigation	Laboratory Job Number:	860-25901-1
Reviewer Name:	Bethany McDaniel		

# ¹	A ²	Description	Yes	No	NA ³	NR⁴	ER#
31	OI	Initial calibration (ICAL)					
		Were response factors and/or relative response factors for each analyte within QC limits?	Х				
		Were percent RSDs or correlation coefficient criteria met?	Х				
		Was the number of standards recommended in the method used for all analytes?	Х				
		Were all points generated between the lowest and highest standard used to calculate the curve?	Х				
		Are ICAL data available for all instruments used?	Х				
		Has the initial calibration curve been verified using an appropriate second source standard?	Х				
	l						
S2	OI	Initial and continuing calibration verification (ICV and CCV) and continuing calibration blank (CCB):					
		Was the CCV analyzed at the method-required frequency?	Х				
		Were percent differences for each analyte within the method-required QC limits?		Х			S02B
		Was the ICAL curve verified for each analyte?	Х				
		Was the absolute value of the analyte concentration in the inorganic CCB < MDL?	Х				
33	0	Mass spectral tuning					
		Was the appropriate compound for the method used for tuning?	Х				
		Were ion abundance data within the method-required QC limits?	Х				
34	0	Internal standards (IS)					
		Were IS area counts and retention times within the method-required QC limits?	Х				
35	OI	Raw data (NELAC Section 5.5.10)					
		Were the raw data (for example, chromatograms, spectral data) reviewed by an analyst?	Х				
		Were data associated with manual integrations flagged on the raw data?	Х				
36	0	Dual column confirmation					
		Did dual column confirmation results meet the method-required QC?			Х		
S7	0	Tentatively identified compounds (TICs)					
		If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			Х		
S8	ı	Interference Check Sample (ICS) results					
		Were percent recoveries within method QC limits?			Х		
S9	l	Serial dilutions, post digestion spikes, and method of standard additions			<u> </u>		
		Were percent differences, recoveries, and the linearity within the QC limits specified in the method?			Х		
S10	ΟI	Method detection limit (MDL) studies					
	٠.	Was a MDL study performed for each reported analyte?	Х				
		Is the MDL either adjusted or supported by the analysis of DCSs?	X				
211	ΟI	Proficiency test reports	^				
,,,	Oi	Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	X				
212	ΟI	Standards documentation	^				
312	Oi	Are all standards used in the analyses NIST-traceable or obtained from other appropriate sources?					
242		, , , , , , , , , , , , , , , , , , , ,	X	-		_	
513	OI	Compound/analyte identification procedures		<u> </u>			
24.4		Are the procedures for compound/analyte identification documented?	X	<u> </u>			
514	OI	Demonstration of analyst competency (DOC)					
		Was DOC conducted consistent with NELAC Chapter 5?	X				
	١	Is documentation of the analyst's competency up-to-date and on file?	X	<u> </u>			
S15	OI	Verification/validation documentation for methods (NELAC Chapter 5)		_			
		Are all the methods used to generate the data documented, verified, and validated, where applicable?	X				
S16	OI	Laboratory standard operating procedures (SOPs)					
		Are laboratory SOPs current and on file for each method performed?	Х	<u> </u>			<u> </u>
	1.	Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required		tems			
		identified by the letter "S" should be retained and made available upon request for the appropriate retention period	d.				
	2.	O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);					
	3.	NA = Not applicable;					
	4.	NR = Not reviewed;					
	5.	ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "N	o" is check	(ed).			

5/11/2022

Laboratory Review Checklist: Exception Reports - Page 4 of 4

Laboratory Name:	Eurofins Houston	LRC Date:	5/11/2022
Project Name:	STC Silber Rd Pre-Design Investigation	Laboratory Job Number:	860-25901-1
Reviewer Name:	Bethany McDaniel		

ER # ¹	Description
	Method 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-52399 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.
R10B	Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: SB32-03-050922 (860-25901-3). Elevated reporting limits (RLs) are provided.
S02B	Method 8260C: The continuing calibration verification (CCV) associated with batch 860-52399 exhibited % difference of > 20% for the following analyte(s) Vinyl chloride (23.8%); however, the results were within the LCS acceptance limits. The EPA method requires that all target analytes in the continuing calibration verification standard be within 20% difference from the initial calibration. According to the laboratory standard operating procedure, the continuing calibration is acceptable if it meets the laboratory control sample acceptance criteria.
1.	Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.
2.	O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);
3.	NA = Not applicable;
4.	NR = Not reviewed;
5.	ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

_

_

Q

9

10

12

13

15

17

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25901-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A292 Detector: MSD/0 Column: DB-624

msuument. A232	Dete	JUL WODIU					Column. DB-024
	Spike						
Analyte	Added	Result Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1-Dichloroethane	0.00500	0.00501	mg/L	0.00100	0.000244	01/07/2022	860-36806
1,2-Dichloroethane	0.00500	0.00493	mg/L	0.00100	0.000285	01/07/2022	860-36806
1,1-Dichloroethene	0.00500	0.00500	mg/L	0.00100	0.000216	01/07/2022	860-36806
cis-1,2-Dichloroethene	0.00500	0.00502	mg/L	0.00100	0.000174	01/07/2022	860-36806
Tetrachloroethene	0.00500	0.00523	mg/L	0.00100	0.000500	01/07/2022	860-36806
Trichloroethene	0.00500	0.00484 J	mg/L	0.00500	0.000424	01/07/2022	860-36806
Vinyl chloride	0.00500	0.00496	mg/L	0.00200	0.000234	01/07/2022	860-36806

3

4

5

7

8

10

12

. .

15

17

Eurofins Xenco, Stafford 4145 Greenbriar Dr Stafford, TX 77477 Phone (281) 240-4200	Chain of Custody Record	ody Record		💸 eurofins Environment Testing America
Client Information	Sampler	Lab PW: McDaniel, Bethany A	Carrier Tracking No(s):	COC No: 860-6507-2299.1
Client Contact: John Ynfante	Phone:	E-Mail: Bethany.McDaniel@Eurofinset.com	State of Origin:	Page:
Company: Jacobs Engineering Group, Inc.	PWSID:	Analysis	Requested	#qop
Address: 14701 St. Mary's Lane Suite 300	Due Date Requested:		, p)	sservation Codes:
City: Houston	TAT Requested (days): 1 day RUSH			A HCL M Hexane B NaOH N None C Zn Acetate O AsNaO2
State, Zip. 17X, 77079	Compliance Project: △ Yes △ No			Nitric Acid P NaHSO4 Q
Phone:	PO#:			MeOH Amchior Ascorbic Acid
Email: John Ynfante@jacobs.com	WO#:	ÖM√ö: (⇔)v		I Ice U Water V
Project Name: STC Silber Road Pre-Design Investigation	Project #; 86002024	e ic. es	-	K EDTA W
Site:	#MOSS	og S		Offer
	Sample Type Sample (C=comp,	Matrix (Monater, Second Control of Control o		aequan iet
Sample Identification	Sample Date Time G=grab) pr-rissus, a-va	il X		Special Instructions/Note:
5831-3-05-422	28	Water	SnO	9 MS/MD
SB31-02-0509 22	0855	Water		
27 620-20-25215	5 SKU 2214/\$	Water		(
22650-80-5185	5 0591 22/b/s	Water		
S1318-02-050922	9 SILI 22/6/5	Water		
F13-01-050922	ShLD 22/6/3	Water		2
		Water		
		Water		- 10:HOI1-323
		Water	-	Temp: \ O IR ID III
		Water		Corrected Temp. O.
		Water		
Possible Hazard Identification Non-Hazard	Poison B Unknown Radiological	Sample Disposal (A fee may be ass Return To Client Disp	essed if samples are re	tained longer than 1 month) Archive For Months
ľ		opeda ilisuudiolis/QC Kedui	. Г	
Empty Kit Kelinquished by	Date:	Time:	Method of Shipment:	C
Year rights for by	5/16/22 0KM		5/16/22	817 E
Keinduishea by			Date/Timd;	Company
	Date/Time:	Company Received by:	Date/Time:	Сотралу
Custody Seals Intact. Custody Seal No.		Cooler Temperature(s) °C and Other Remarks:	her Remarks:	
				Ver 01/16/2019

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc. Job Number: 860-25901-1

Login Number: 25901 List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
he cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
he cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
ooler Temperature is acceptable.	True	
ooler Temperature is recorded.	True	
OC is present.	True	
DC is filled out in ink and legible.	True	
OC is filled out with all pertinent information.	True	
the Field Sampler's name present on COC?	True	
ere are no discrepancies between the containers received and the COC.	True	
mples are received within Holding Time (excluding tests with immediate s)	True	
mple containers have legible labels.	True	
ntainers are not broken or leaking.	True	
mple collection date/times are provided.	True	
propriate sample containers are used.	True	
ample bottles are completely filled.	True	
ample Preservation Verified.	True	
nere is sufficient vol. for all requested analyses, incl. any requested S/MSDs	True	
ontainers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	

5

6

8

4.6

11

13

14

10

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-25965-1

Client Project/Site: STC Silber Rd Pre-Design Investigation

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 5/12/2022 2:29:38 PM

Bethany McDaniel, Senior Project Manager (713)358-2005
Bethany.McDaniel@et.eurofinsus.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

Л

5

6

0

9

1 4

12

13

16

17

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	9
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
State Forms	18
TRRP Checklist	18
DCS Report	22
Chain of Custody	23
Receipt Checklists	24

-5

4

6

8

10

12

14

15

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-25965-1

Project/Site: STC Silber Rd Pre-Design Investigation

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation These commonly used abbreviations may or n	ay not be present in this report.
---	-----------------------------------

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Houston

Page 3 of 24 5/12/2022

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25965-1

Job ID: 860-25965-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-25965-1

Receipt

The samples were received on 5/11/2022 8:11 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.8°C

-

4

5

6

9

11

12

14

16

1 /

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID: 860-25965-1

Lab Sample ID: 860-25965-2

Lab Sample ID: 860-25965-3

Lab Sample ID: 860-25965-4

Lab Sample ID: 860-25965-5

Lab Sample ID: 860-25965-6

Job ID: 860-25965-1

Client Sample ID: SB07-01-051022

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D N	Method	Prep Type
1,1-Dichloroethane	0.00471	0.00100	0.000244	mg/L	1	_ 8	8260C	Total/NA
1,1-Dichloroethene	0.00462	0.00100	0.000216	mg/L	1	8	8260C	Total/NA
cis-1,2-Dichloroethene	0.0156	0.00100	0.000174	mg/L	1	8	8260C	Total/NA
Tetrachloroethene	0.0222	0.00100	0.000500	mg/L	1	8	8260C	Total/NA
Trichloroethene	0.0133	0.00500	0.000424	mg/L	1	8	8260C	Total/NA
Vinyl chloride	0.00141 J	0.00200	0.000234	mg/L	1	8	8260C	Total/NA

Client Sample ID: SB08-03-051022

Analyte	Result Qualifie	er MQL (Adj)	SDL	Unit	Dil Fac I	D Method	Prep Type
1,1-Dichloroethane	0.00807	0.00100	0.000244	mg/L		8260C	Total/NA
1,1-Dichloroethene	0.00180	0.00100	0.000216	mg/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	0.0257	0.00100	0.000174	mg/L	1	8260C	Total/NA
Tetrachloroethene	0.00143	0.00100	0.000500	mg/L	1	8260C	Total/NA
Trichloroethene	0.00231 J	0.00500	0.000424	mg/L	1	8260C	Total/NA
Vinyl chloride	0.0110	0.00200	0.000234	mg/L	1	8260C	Total/NA

Client Sample ID: SB08-02-051022

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac I) Method	Prep Type
1,1-Dichloroethane	0.0461	0.00500	0.00122	mg/L	5	8260C	Total/NA
1,1-Dichloroethene	0.0765	0.00500	0.00108	mg/L	5	8260C	Total/NA
Tetrachloroethene	0.293	0.00500	0.00250	mg/L	5	8260C	Total/NA
Trichloroethene	0.226	0.0250	0.00212	mg/L	5	8260C	Total/NA
Vinyl chloride	0.218	0.0100	0.00117	mg/L	5	8260C	Total/NA
cis-1,2-Dichloroethene - DL	0.904	0.0200	0.00348	mg/L	20	8260C	Total/NA

Client Sample ID: SB08-01-051022

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.110	0.00100	0.000244	mg/L	1	_	8260C	Total/NA
1,2-Dichloroethane	0.00273	0.00100	0.000285	mg/L	1		8260C	Total/NA
1,1-Dichloroethene	0.122	0.00100	0.000216	mg/L	1		8260C	Total/NA
Tetrachloroethene	0.0862	0.00100	0.000500	mg/L	1		8260C	Total/NA
Trichloroethene	0.0570	0.00500	0.000424	mg/L	1		8260C	Total/NA
Vinyl chloride	0.0452	0.00200	0.000234	mg/L	1		8260C	Total/NA
cis-1,2-Dichloroethene - DL	0.179	0.00500	0.000870	mg/L	5		8260C	Total/NA

Client Sample ID: FD-01-051022

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D Method	Prep Type
1,1-Dichloroethane	0.00492	0.00100	0.000244	mg/L	1	8260C	Total/NA
1,1-Dichloroethene	0.00544	0.00100	0.000216	mg/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	0.0173	0.00100	0.000174	mg/L	1	8260C	Total/NA
Tetrachloroethene	0.0341	0.00100	0.000500	mg/L	1	8260C	Total/NA
Trichloroethene	0.0166	0.00500	0.000424	mg/L	1	8260C	Total/NA
Vinyl chloride	0.00183 J	0.00200	0.000234	mg/L	1	8260C	Total/NA

Client Sample ID: TB-01-051022

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins Houston

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB07-01-051022

Date Collected: 05/10/22 12:50 Date Received: 05/11/22 08:11 Lab Sample ID: 860-25965-1

Analyzed

05/11/22 14:15

05/11/22 14:15

05/11/22 14:15

05/11/22 14:15

05/11/22 14:15

05/11/22 14:15

05/11/22 14:15

Matrix: Water

Dil Fac

Job ID: 860-25965-1

Method: 8260C - Volatile Organic Compounds by GC/MS Result Qualifier SDL Unit Analyte MQL (Adj) D Prepared 1,1-Dichloroethane 0.00471 0.00100 0.000244 mg/L 1,2-Dichloroethane 0.000285 U 0.000285 mg/L 0.00100 1,1-Dichloroethene 0.00462 0.00100 0.000216 mg/L 0.000174 mg/L cis-1,2-Dichloroethene 0.00100 0.0156 0.00100 0.000500 mg/L **Tetrachloroethene** 0.0222

0.0133

0.00141 J

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 05/11/22 14:15 Dibromofluoromethane (Surr) 101 75 - 131 Toluene-d8 (Surr) 100 80 - 117 05/11/22 14:15 4-Bromofluorobenzene (Surr) 100 74 - 124 05/11/22 14:15 1,2-Dichloroethane-d4 (Surr) 104 63 - 144 05/11/22 14:15

0.00500

0.00200

0.000424 mg/L

0.000234 mg/L

Client Sample ID: SB08-03-051022

Date Collected: 05/10/22 16:55

Date Received: 05/11/22 08:11

Trichloroethene

Vinyl chloride

Lab Sample ID: 860-25965-2

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fac 1,1-Dichloroethane 0.00807 0.00100 0.000244 mg/L 05/11/22 13:54 1.2-Dichloroethane 0.000285 U 0.00100 0.000285 mg/L 05/11/22 13:54 1,1-Dichloroethene 0.00180 0.00100 0.000216 mg/L 05/11/22 13:54 0.00100 0.000174 mg/L 05/11/22 13:54 cis-1,2-Dichloroethene 0.0257 **Tetrachloroethene** 0.00100 0.000500 mg/L 05/11/22 13:54 0.00143 0.00500 0.000424 mg/L 05/11/22 13:54 **Trichloroethene** 0.00231 J Vinyl chloride 0.0110 0.00200 0.000234 mg/L 05/11/22 13:54

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101		75 - 131		05/11/22 13:54	1
Toluene-d8 (Surr)	99		80 - 117		05/11/22 13:54	1
4-Bromofluorobenzene (Surr)	101		74 - 124		05/11/22 13:54	1
1,2-Dichloroethane-d4 (Surr)	106		63 - 144		05/11/22 13:54	1

Client Sample ID: SB08-02-051022

Date Collected: 05/10/22 17:05

Date Received: 05/11/22 08:11

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Lab Sample ID: 860-25965-3

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0461		0.00500	0.00122	mg/L			05/11/22 15:36	5
1,2-Dichloroethane	0.00143	U	0.00500	0.00143	mg/L			05/11/22 15:36	5
1,1-Dichloroethene	0.0765		0.00500	0.00108	mg/L			05/11/22 15:36	5
Tetrachloroethene	0.293		0.00500	0.00250	mg/L			05/11/22 15:36	5
Trichloroethene	0.226		0.0250	0.00212	mg/L			05/11/22 15:36	5
Vinyl chloride	0.218		0.0100	0.00117	mg/L			05/11/22 15:36	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		75 - 131					05/11/22 15:36	- 5

80 - 117

74 - 124

99

101

Eurofins Houston

5

5

05/11/22 15:36

05/11/22 15:36

Page 6 of 24 5/12/2022

3

4

6

8

10

40

13

15

17

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB08-02-051022

Date Collected: 05/10/22 17:05 Date Received: 05/11/22 08:11

Lab Sample ID: 860-25965-3

Matrix: Water

Job ID: 860-25965-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		63 - 144		05/11/22 15:36	5

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.904		0.0200	0.00348	mg/L			05/11/22 15:57	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		75 - 131			·		05/11/22 15:57	20
Toluene-d8 (Surr)	102		80 - 117					05/11/22 15:57	20
4-Bromofluorobenzene (Surr)	101		74 - 124					05/11/22 15:57	20
1,2-Dichloroethane-d4 (Surr)	106		63 - 144					05/11/22 15:57	20

Client Sample ID: SB08-01-051022

Date Collected: 05/10/22 17:20 Date Received: 05/11/22 08:11

Lab Sample ID: 860-25965-4

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.110	0.00100	0.000244	mg/L			05/11/22 14:55	1
1,2-Dichloroethane	0.00273	0.00100	0.000285	mg/L			05/11/22 14:55	1
1,1-Dichloroethene	0.122	0.00100	0.000216	mg/L			05/11/22 14:55	1
Tetrachloroethene	0.0862	0.00100	0.000500	mg/L			05/11/22 14:55	1
Trichloroethene	0.0570	0.00500	0.000424	mg/L			05/11/22 14:55	1
Vinyl chloride	0.0452	0.00200	0.000234	mg/L			05/11/22 14:55	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analvzed	Dil Fac
Dibromofluoromethane (Surr)	101	75 - 131		05/11/22 14:55	1
` ,					,
Toluene-d8 (Surr)	99	80 - 117		05/11/22 14:55	1
4-Bromofluorobenzene (Surr)	100	74 - 124		05/11/22 14:55	1
1,2-Dichloroethane-d4 (Surr)	106	63 - 144		05/11/22 14:55	1

Method: 8260C - Volatile Organic Compounds by GC/MS - DL											
Analyte	Result Qualifier	MQL (Adj)	SDL Unit	. D	Prepared	Analyzed					
cis-1,2-Dichloroethene	0.179	0.00500	0.000870 mg/l			05/11/22 15:16					

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac	
Dibromofluoromethane (Surr)	102	75 - 131		05/11/22 15:16	5	
Toluene-d8 (Surr)	100	80 - 117		05/11/22 15:16	5	
4-Bromofluorobenzene (Surr)	101	74 - 124		05/11/22 15:16	5	
1,2-Dichloroethane-d4 (Surr)	105	63 - 144		05/11/22 15:16	5	

Client Sample ID: FD-01-051022 Lab Sample ID: 860-25965-5 Date Collected: 05/10/22 00:00 **Matrix: Water**

Date Received: 05/11/22 08:11

Method: 8260C - Volatile Organic Compounds by GC/MS												
Analyte	Result Qualifie	er MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac				
1,1-Dichloroethane	0.00492	0.00100	0.000244	mg/L			05/11/22 14:35	1				
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			05/11/22 14:35	1				
1,1-Dichloroethene	0.00544	0.00100	0.000216	mg/L			05/11/22 14:35	1				
cis-1 2-Dichloroethene	0.0173	0.00100	0.000174	ma/l			05/11/22 14:35	1				

Eurofins Houston

Page 7 of 24 5/12/2022

Dil Fac

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: FD-01-051022

Date Collected: 05/10/22 00:00

Date Received: 05/11/22 08:11

Lab Sample ID: 860-25965-5

Matrix: Water

Matrix: Water

Job ID: 860-25965-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.0341		0.00100	0.000500	mg/L			05/11/22 14:35	1
Trichloroethene	0.0166		0.00500	0.000424	mg/L			05/11/22 14:35	1
Vinyl chloride	0.00183	J	0.00200	0.000234	mg/L			05/11/22 14:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)			75 - 131					05/11/22 14:35	1
Toluene-d8 (Surr)	100		80 - 117					05/11/22 14:35	1
4-Bromofluorobenzene (Surr)	102		74 - 124					05/11/22 14:35	1
1,2-Dichloroethane-d4 (Surr)	106		63 - 144					05/11/22 14:35	

Client Sample ID: TB-01-051022 Lab Sample ID: 860-25965-6

Date Collected: 05/10/22 07:45

Date Received: 05/11/22 08:11

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/11/22 13:33	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/11/22 13:33	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/11/22 13:33	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/11/22 13:33	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/11/22 13:33	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/11/22 13:33	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/11/22 13:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99		75 - 131					05/11/22 13:33	1
Toluene-d8 (Surr)	102		80 - 117					05/11/22 13:33	1
4-Bromofluorobenzene (Surr)	105		74 - 124					05/11/22 13:33	1
1,2-Dichloroethane-d4 (Surr)	105		63 - 144					05/11/22 13:33	1

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-25965-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

3

4

5

7

q

10

12

1 A

16

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

					ogate Recov
		DBFM	TOL	BFB	DCA
Lab Sample ID	Client Sample ID	(75-131)	(80-117)	(74-124)	(63-144)
820-4204-B-1 MS	Matrix Spike	100	99	99	96
860-25965-1	SB07-01-051022	101	100	100	104
860-25965-2	SB08-03-051022	101	99	101	106
860-25965-3	SB08-02-051022	102	99	101	104
860-25965-3 - DL	SB08-02-051022	100	102	101	106
860-25965-4	SB08-01-051022	101	99	100	106
860-25965-4 - DL	SB08-01-051022	102	100	101	105
860-25965-5	FD-01-051022	101	100	102	106
860-25965-6	TB-01-051022	99	102	105	105
LCS 860-52514/3	Lab Control Sample	100	98	98	99
LCSD 860-52514/4	Lab Control Sample Dup	100	100	99	99
MB 860-52514/11	Method Blank	98	99	101	101

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Houston

5/12/2022

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-52514/11

Matrix: Water

Analysis Batch: 52514

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 860-25965-1

MB MB Result Qualifier SDL Unit Dil Fac Analyte MQL (Adj) D Prepared Analyzed 1,1-Dichloroethane 0.000244 U 0.00100 0.000244 mg/L 05/11/22 10:09 1,2-Dichloroethane 0.000285 U 0.00100 0.000285 mg/L 05/11/22 10:09 1,1-Dichloroethene 0.000216 U 0.00100 0.000216 mg/L 05/11/22 10:09 0.000174 U 0.00100 0.000174 mg/L cis-1,2-Dichloroethene 05/11/22 10:09 Tetrachloroethene 0.000500 U 0.00100 0.000500 mg/L 05/11/22 10:09 Trichloroethene 0.000424 U 0.00500 0.000424 mg/L 05/11/22 10:09 Vinyl chloride 0.000234 U 0.00200 0.000234 mg/L 05/11/22 10:09

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 98 05/11/22 10:09 Dibromofluoromethane (Surr) 75 - 131 Toluene-d8 (Surr) 99 80 - 117 05/11/22 10:09 4-Bromofluorobenzene (Surr) 101 74 - 124 05/11/22 10:09 1,2-Dichloroethane-d4 (Surr) 101 63 - 144 05/11/22 10:09

Lab Sample ID: LCS 860-52514/3

Matrix: Water

Analysis Batch: 52514

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS %Rec Spike Added Result Qualifier Unit D %Rec Limits Analyte 0.0500 0.04783 96 72 - 125 1,1-Dichloroethane mg/L 1,2-Dichloroethane 0.0500 96 0.04791 mg/L 68 - 1271.1-Dichloroethene 0.0500 0.04979 mg/L 100 59 - 172 cis-1,2-Dichloroethene 0.0500 0.04751 95 75 - 125 mg/L Tetrachloroethene 0.0500 0.04752 mg/L 95 71 - 125Trichloroethene 0.0500 0.04757 95 62 - 137 mg/L Vinyl chloride 0.0500 0.05212 104 60 - 140 mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	100		75 - 131
Toluene-d8 (Surr)	98		80 - 117
4-Bromofluorobenzene (Surr)	98		74 - 124
1,2-Dichloroethane-d4 (Surr)	99		63 - 144

Lab Sample ID: LCSD 860-52514/4

Matrix: Water

Analysis Batch: 52514

Client Sample ID: Lab	Control	Sample	Dup
	Prep Ty	pe: Tota	I/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.04799		mg/L		96	72 - 125	0	25
1,2-Dichloroethane	0.0500	0.04800		mg/L		96	68 - 127	0	25
1,1-Dichloroethene	0.0500	0.04905		mg/L		98	59 - 172	1	25
cis-1,2-Dichloroethene	0.0500	0.04693		mg/L		94	75 - 125	1	25
Tetrachloroethene	0.0500	0.04804		mg/L		96	71 - 125	1	25
Trichloroethene	0.0500	0.04728		mg/L		95	62 - 137	1	25
Vinyl chloride	0.0500	0.05103		mg/L		102	60 - 140	2	25

Eurofins Houston

Page 11 of 24

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25965-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-52514/4

Matrix: Water

Analysis Batch: 52514

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Recovery Qualifier Limits Surrogate Dibromofluoromethane (Surr) 100 75 - 131 Toluene-d8 (Surr) 100 80 - 117 4-Bromofluorobenzene (Surr) 99 74 - 124 1,2-Dichloroethane-d4 (Surr) 99 63 - 144

Lab Sample ID: 820-4204-B-1 MS

Matrix: Water

Client Sample ID: Matrix Spike

Analysis Batch: 52514

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.000244	U	0.0500	0.04848		mg/L		97	72 - 125	
1,2-Dichloroethane	0.000285	U	0.0500	0.04863		mg/L		97	68 - 127	
1,1-Dichloroethene	0.000216	U	0.0500	0.04906		mg/L		98	59 - 172	
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.04736		mg/L		95	75 - 125	
Tetrachloroethene	0.000500	U	0.0500	0.04820		mg/L		96	71 - 125	
Trichloroethene	0.000424	U	0.0500	0.04790		mg/L		96	62 - 137	
Vinyl chloride	0.000234	U	0.0500	0.05213		mg/L		104	60 - 140	

MS MS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	100		75 - 131
Toluene-d8 (Surr)	99		80 - 117
4-Bromofluorobenzene (Surr)	99		74 - 124
1,2-Dichloroethane-d4 (Surr)	96		63 - 144

Prep Type: Total/NA

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25965-1

GC/MS VOA

Analysis Batch: 52514

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-25965-1	SB07-01-051022	Total/NA	Water	8260C	·
860-25965-2	SB08-03-051022	Total/NA	Water	8260C	
860-25965-3	SB08-02-051022	Total/NA	Water	8260C	
860-25965-3 - DL	SB08-02-051022	Total/NA	Water	8260C	
860-25965-4	SB08-01-051022	Total/NA	Water	8260C	
860-25965-4 - DL	SB08-01-051022	Total/NA	Water	8260C	
860-25965-5	FD-01-051022	Total/NA	Water	8260C	
860-25965-6	TB-01-051022	Total/NA	Water	8260C	
MB 860-52514/11	Method Blank	Total/NA	Water	8260C	
LCS 860-52514/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-52514/4	Lab Control Sample Dup	Total/NA	Water	8260C	
820-4204-B-1 MS	Matrix Spike	Total/NA	Water	8260C	

4

5

6

8

10

11

12

11

16

17

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB07-01-051022

Lab Sample ID: 860-25965-1 **Matrix: Water**

Date Collected: 05/10/22 12:50

Date Received: 05/11/22 08:11

Dil Batch Batch Initial Final Batch Prepared Method **Factor Prep Type** Type Run **Amount** Amount Number or Analyzed Analyst Lab 05/11/22 14:15 TTD XEN STF Total/NA Analysis 8260C 5 mL 5 mL 52514

Client Sample ID: SB08-03-051022

Lab Sample ID: 860-25965-2 Date Collected: 05/10/22 16:55 **Matrix: Water**

Date Received: 05/11/22 08:11

Batch Batch Dil Initial Final **Batch Prepared Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260C 5 mL 5 mL 52514 05/11/22 13:54 TTD XEN STF

Client Sample ID: SB08-02-051022

Lab Sample ID: 860-25965-3 Date Collected: 05/10/22 17:05 **Matrix: Water**

Date Received: 05/11/22 08:11

Batch Batch Dil Initial Final Batch Prepared Method Factor Number or Analyzed **Prep Type** Type Run Amount Amount **Analyst** Lab Total/NA 8260C 5 52514 05/11/22 15:36 TTD XEN STF Analysis 5 mL 5 mL Total/NA Analysis 8260C DL 20 5 mL 5 mL 52514 05/11/22 15:57 TTD XEN STF

Client Sample ID: SB08-01-051022

Lab Sample ID: 860-25965-4 Date Collected: 05/10/22 17:20 **Matrix: Water**

Date Received: 05/11/22 08:11

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method **Amount** Number Type Run **Factor Amount** or Analyzed Analyst Lab Total/NA Analysis 8260C 52514 05/11/22 14:55 TTD XEN STF 5 mL 5 mL Total/NA Analysis 8260C DL 5 52514 05/11/22 15:16 TTD **XEN STF** 5 mL 5 mL

Client Sample ID: FD-01-051022

Lab Sample ID: 860-25965-5 Date Collected: 05/10/22 00:00 Matrix: Water

Date Received: 05/11/22 08:11

Batch Batch Dil Initial Final **Batch** Prepared Method Number or Analyzed **Prep Type** Type Run Factor Amount Amount Analyst Lab Total/NA Analysis 8260C 52514 05/11/22 14:35 TTD XEN STF 5 mL 5 mL

Client Sample ID: TB-01-051022 Lab Sample ID: 860-25965-6

Date Collected: 05/10/22 07:45 Date Received: 05/11/22 08:11

Batch Batch Dil Initial Final Batch **Prepared** Method Prep Type Type Run **Factor** Amount Amount Number or Analyzed Analyst Lab 8260C 5 ml 52514 05/11/22 13:33 TTD XFN STF Total/NA Analysis 5 ml

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

Matrix: Water

Job ID: 860-25965-1

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-25965-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

6

9

11

12

14

16

17

Method Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Protocol	Laboratory

Job ID: 860-25965-1

Method **Method Description** 8260C Volatile Organic Compounds by GC/MS SW846 XEN STF 5030C Purge and Trap SW846 **XEN STF**

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-25965-1	SB07-01-051022	Water	05/10/22 12:50	05/11/22 08:11
860-25965-2	SB08-03-051022	Water	05/10/22 16:55	05/11/22 08:11
860-25965-3	SB08-02-051022	Water	05/10/22 17:05	05/11/22 08:11
860-25965-4	SB08-01-051022	Water	05/10/22 17:20	05/11/22 08:11
860-25965-5	FD-01-051022	Water	05/10/22 00:00	05/11/22 08:11
860-25965-6	TB-01-051022	Water	05/10/22 07:45	05/11/22 08:11

Job ID: 860-25965-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-25965-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/_/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	05/12/2022

2

3

4

O

9

11

13

15

17

Laboratory Data Package Cover Page - Page 2 of 4

		lame: Eurofins Houston	LRC Date: 05/12/202					
		e: STC Silber Rd Pre-Design Investigation	Laboratory Job Numb	er: 860-	25965-1			
		ame: Bethany McDaniel						
# ¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵
R1	OI	Chain-of-custody (C-O-C)						
	'	Did samples meet the laboratory's standard conditions of	sample acceptability upon	✓				
		receipt?						
		Were all departures from standard conditions described in	n an exception report?	✓				
R2	OI	Sample and quality control (QC) identificat	tion					
	•	Are all field sample ID numbers cross-referenced to the la		✓				
		Are all laboratory ID numbers cross-referenced to the cor	responding QC data?	✓				
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding to	imes?	✓				
		Other than those results < MQL, were all other raw value	s bracketed by calibration	✓				
		standards?						
		Were calculations checked by a peer or supervisor?		✓				
		Were all analyte identifications checked by a peer or super		✓				
		Were sample detection limits reported for all analytes not		✓				
		Were all results for soil and sediment samples reported o				✓		
		Were % moisture (or solids) reported for all soil and sedir	•			✓		
		Were bulk soils/solids samples for volatile analysis extract	cted with methanol per			✓		
		SW846 Method 5035?			1	1		
		If required for the project, are TICs reported?				✓		
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?		✓				
		Were surrogate percent recoveries in all samples within t	-	✓				
R5	OI	Test reports/summary forms for blank sam	ıples					
		Were appropriate type(s) of blanks analyzed?		✓				
		Were blanks analyzed at the appropriate frequency?		✓				
		Were method blanks taken through the entire analytical p	rocess, including preparation	✓				
		and, if applicable, cleanup procedures?						
		Were blank concentrations < MQL?		✓				
R6	OI	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		✓				
		Was each LCS taken through the entire analytical proced	lure, including prep and	✓				
		cleanup steps?						
		Were LCSs analyzed at the required frequency?	00 15-34-0	✓				
		Were LCS (and LCSD, if applicable) %Rs within the labor		✓				
		Does the detectability check sample data document the la		✓				
		detect the COCs at the MDL used to calculate the SDLs?	'	✓				
	01	Was the LCSD RPD within QC limits?	1 (MOD) 1-1-	V				
R7	OI	Matrix spike (MS) and matrix spike duplica						
		Were the project/method specified analytes included in the	ne MS and MSD?	√				
		Were MS/MSD analyzed at the appropriate frequency?	4 OO line:4-0	✓				
		Were MS (and MSD, if applicable) %Rs within the laborar	iory QC iiffiis?	· ·	1	/		
De		Were MS/MSD RPDs within laboratory QC limits?				V		
R8	OI	Analytical duplicate data	matrix?					
		Were appropriate analytical duplicates analyzed for each			1	√		
		Were analytical duplicates analyzed at the appropriate fre				✓ ✓		
DC		Were RPDs or relative standard deviations within the laboration of the standard deviation of the standard deviations within the laboration of the standard deviation of the standard	oratory QC IIIIIIS?			V		
R9	OI	Method quantitation limits (MQLs):	and and an all and a					
		Are the MQLs for each method analyte included in the lat		✓ ✓				
		Do the MQLs correspond to the concentration of the lower	est non-zero calibration	•				
		standard?	ny data nackago?	✓				
D4^		Are unadjusted MQLs and DCSs included in the laborato	ту чата раскаде?	V				
R10	OI	Other problems/anomalies	adia Mia I DO an I EBO					
		Are all known problems/anomalies/special conditions not		✓				
		Was applicable and available technology used to lower th	ne SDL to minimize the matrix		✓			1
		interference effects on the sample results?						
		Is the laboratory NELAC-accredited under the Texas Lab		✓				
		for the analytes, matrices and methods associated with the	nis laboratory data package?					

Page 19 of 24 5/12/2022

1/

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 05/12/2022
Project Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-25965-1
Reviewer Name: Bethany McDaniel	•

		e: STC Silber Rd Pre-Design Investigation Laboratory Job	Number: 860	-25965-1			
		ame: Bethany McDaniel				1	
# ¹	A ²	Description	Yes	No	NA ³	NR⁴	ER#⁵
S1	OI	Initial calibration (ICAL)					
		Were response factors and/or relative response factors for each analyte within Q	C V				
		limits?					
		Were percent RSDs or correlation coefficient criteria met?	7 🗸				
		Was the number of standards recommended in the method used for all analytes?					
		Were all points generated between the lowest and highest standard used to calc	ulate				
		the curve? Are ICAL data available for all instruments used?	✓				
		Has the initial calibration curve been verified using an appropriate second source					+
		standard?	,				
S2	OI	Initial and continuing calibration verification (ICCV and CCV) and				
		continuing calibration blank (CCB):	'				
		Was the CCV analyzed at the method-required frequency?	✓				
		Were percent differences for each analyte within the method-required QC limits?	·				
		Was the ICAL curve verified for each analyte?			✓		1
		Was the absolute value of the analyte concentration in the inorganic CCB < MDL	.?		✓		
S3	0	Mass spectral tuning					
	1	Was the appropriate compound for the method used for tuning?	✓				
		Were ion abundance data within the method-required QC limits?	✓				
S4	0	Internal standards (IS)					
		Were IS area counts and retention times within the method-required QC limits?	✓				
S5	OI	Raw data (NELAC Section 5.5.10)					
		Were the raw data (for example, chromatograms, spectral data) reviewed by an	✓				
		analyst?					
		Were data associated with manual integrations flagged on the raw data?	✓				+
S6	0	Dual column confirmation					
		Did dual column confirmation results meet the method-required QC?			√		_
S7	0	Tentatively identified compounds (TICs)					
<u> </u>		If TICs were requested, were the mass spectra and TIC data subject to appropria	ate		✓		
		checks?					
S8		Interference Check Sample (ICS) results					
	1 -	Were percent recoveries within method QC limits?			✓		
S9	T I	Serial dilutions, post digestion spikes, and method of stand	ard				
00	'	additions	aid				
		Were percent differences, recoveries, and the linearity within the QC limits specific	find		 		
		in the method?	ileu				
S10	OI	Method detection limit (MDL) studies					
310	Oi	Was a MDL study performed for each reported analyte?	√				
		Is the MDL either adjusted or supported by the analysis of DCSs?					
S11	OI	3 11 3	•				
311	UI	Proficiency test reports	or 🗸				
		Was the laboratory's performance acceptable on the applicable proficiency tests evaluation studies?	OI ¥				
S12	OI	Standards documentation					
312	l Oi	Are all standards used in the analyses NIST-traceable or obtained from other	✓				
		· ·					
612	OI	appropriate sources?					
S13	Oi	Compound/analyte identification procedures Are the procedures for compound/analyte identification documented?	✓				
044			V				
S14	OI	Demonstration of analyst competency (DOC)					
		Was DOC conducted consistent with NELAC Chapter 5?	✓ ✓		-		
045		Is documentation of the analyst's competency up-to-date and on file?	V				
S15	OI	Verification/validation documentation for methods (NELAC					
		Chapter 5)					
		Are all the methods used to generate the data documented, verified, and validate	ed, ✓				
		where applicable?					
S16	OI	Laboratory standard operating procedures (SOPs)					
		Are laboratory SOPs current and on file for each method performed?	✓				
					-		

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

2

3

4

7

9

11

13

15

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

^{3.} NA = Not applicable;

^{4.} NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Labora	atory Name: Eurofins Houston	LRC Date: 05/12/2022
Projec	t Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-25965-1
Review	ver Name: Bethany McDaniel	
ER#1	Description	
1	Method 8260C: The following sample was diluted due to the nature o limits (RLs) are provided.	f the sample matrix: SB08-02-051022 (860-25965-3). Elevated reporting
	Method 8260C: The following samples were diluted to bring the conce (860-25965-3) and SB08-01-051022 (860-25965-4). Elevated reporti	entration of target analytes within the calibration range: SB08-02-051022 ing limits (RLs) are provided.
1. ER	# = Exception Report identification number (an Exception Report shou	ld be completed for an item if "NR" or "No" is checked).

Ш

Detection Check Summary

Client: Jacobs Engineering Group, Inc. Job ID: 860-25965-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Detector: MSD/0 Column: DB-624

	Spike						
Analyte	Added	Result Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1-Dichloroethane	0.00100	0.00483	mg/L	0.00100	0.000244	03/03/2022	860-43530
1,2-Dichloroethane	0.00100	0.00498	mg/L	0.00100	0.000285	03/03/2022	860-43530
1,1-Dichloroethene	0.00100	0.00411	mg/L	0.00100	0.000216	03/03/2022	860-43530
cis-1,2-Dichloroethene	0.00100	0.00499	mg/L	0.00100	0.000174	03/03/2022	860-43530
Tetrachloroethene	0.00100	0.00463	mg/L	0.00100	0.000500	03/03/2022	860-43530
Trichloroethene	0.00100	0.00503	mg/L	0.00500	0.000424	03/03/2022	860-43530
Vinyl chloride	0.00100	0.00381	mg/L	0.00200	0.000234	03/03/2022	860-43530

3

4

5

7

8

10

12

13

15

16

17

4145 Greenbriar Dr Stafford TX 77477 Phone (281) 240-4200	Chain of Cu	ain of Custody Record	ord		es curonns	Environment Testing America
Client Information	Sampler	Lab PW: McDanie	I, Bethany A	Carrier Tracking No(s):	COC No: 860-6507-2299.1	99.1
Client Contact John Ynfante	Phone:	E-Mail: Bethany	E-Mail: Bethany.McDaniel@Eurofinset.com	State of Origin:	Page: Page I of	1
Company: Jacobs Engineering Group, Inc.	PWSID:		Analysis	Requested	# qor	
Address: 14701 St. Mary's Lane Suite 300	Due Date Requested:				Preservation Codes:	I
City: Houston	TAT Requested (days): 1 day RUSH				B NaOH	N None O AsNaO2
State, Zip: 1X, 77079	Compliance Project A Yes A No	T	7 4 7	-	D Nitric Acid	a. O
Phone:		[G Amehica	rω⊢
Emait: John. Ynfante@jacobs.com	*O*	OK No	(ç)(-	_	
Project Name: STC Silber Road Pre-Design Investigation	Project #: 86002024	B⊖人) 6			٧ ــا	≥ N
Site:	SSOW#:	Idшe			or con	
	Sample Type	Matrix (w-water sails)	A (MOD) A		TedmuN:18	
Sample Identification		BT=Tissue, A-Air)	979 A	<u> </u>		Special Instructions/Note:
51307-01-15102	12 12 120 6	Water	X		m	:
51308-03-05622	=	Water	X		3	
S1304-02-05105	1705	Water	X		2	
2508-01-05/02	6 orti 17/11/5	Water	X	1111111	2	
FD-0 -051072	6) GN 12/11/5	Water	X			1 IR ID-HOU-323
713-01-051002	SHOW ONE	Water		nied	C/F:-0 97	-
		Water			Corrected Lemp.	emp.
		Water		9Z-0		
		Water		98		
		Water			,	
		Water				j
Possible Hazard Identification Non-Hazard Flammable Skin Initant Poi	Poison B Unknown Radiological		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	y be assessed if sample Disposal By Lab	s are retained longer the	n 1 month) Months
Deliverable Requested: I, II, III, IV Other (specify)	TRRP		Special Instructions/QC Requirements:			
Empty Kit Relinquished by	Date:	Тіте		Method of Shipment	nt	
Relinquished by: (Сотрапу	Received by	Date/	Date/Time: 5811	Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	ïme:	Сотралу
Relinquished by:	Data/Time:	Сотралу	Received by:	Date/Time;	ine;	Сотрапу
Custody Seals Intact: Custody Seal No.			Cooler Temperature(s) °C and Other Remarks:	ther Remarks:		
						Ver 01/16/2019

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-25965-1

Login Number: 25965 List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

3

4

6

8

10

12

11

4.6

17

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-26040-1

Client Project/Site: STC Silber Rd Pre-Design Investigation

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 5/13/2022 10:34:44 AM

Bethany McDaniel, Senior Project Manager (713)358-2005
Bethany.McDaniel@et.eurofinsus.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	9
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	14
Certification Summary	16
Method Summary	17
Sample Summary	18
State Forms	19
TRRP Checklist	19
DCS Report	23
Chain of Custody	24
Receipt Checklists	25

12

1 1

15

17

Definitions/Glossary

Client: Jacobs Engineering Group, Inc. Job ID: 860-26040-1

Project/Site: STC Silber Rd Pre-Design Investigation

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation These commonly used abbreviations may or may i	not be present in this report.
---	--------------------------------

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

5

7

0

10

111

13

15

17

118

Eurofins Houston

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26040-1

Job ID: 860-26040-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-26040-1

Receipt

The samples were received on 5/12/2022~8:10~AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was $0.6^{\circ}C$

4

5

6

1

_

10

13

4 E

17

Detection Summary

Client: Jacobs Engineering Group, Inc.

Client Sample ID: SB04-03-051122

Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID: 860-26040-1

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.0168	0.00100	0.000244	mg/L	1	_	8260C	Total/NA
1,1-Dichloroethene	0.0284	0.00100	0.000216	mg/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	0.00224	0.00100	0.000174	mg/L	1		8260C	Total/NA
Vinyl chloride	0.00140 J	0.00200	0.000234	mg/L	1		8260C	Total/NA

Client Sample ID: SB04-02-051122 Lab Sample ID: 860-26040-2

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac I	O Method	Prep Type
1,1-Dichloroethane	0.00748	0.00100	0.000244	mg/L	1	8260C	Total/NA
1,1-Dichloroethene	0.00636	0.00100	0.000216	mg/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	0.00145	0.00100	0.000174	mg/L	1	8260C	Total/NA
Vinyl chloride	0.000604 J	0.00200	0.000234	mg/L	1	8260C	Total/NA

Client Sample ID: SB04-01-051122

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D Method	Prep Type
1,1-Dichloroethane	0.00694	0.00100	0.000244	mg/L	1	8260C	Total/NA
1,1-Dichloroethene	0.00449	0.00100	0.000216	mg/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	0.00221	0.00100	0.000174	mg/L	1	8260C	Total/NA
Vinyl chloride	0.00357	0.00200	0.000234	mg/L	1	8260C	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.0258	0.00100	0.000244	mg/L	1	_	8260C	Total/NA
1,1-Dichloroethene	0.0130	0.00100	0.000216	mg/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	0.000355 J	0.00100	0.000174	mg/L	1		8260C	Total/NA
Vinyl chloride	0.00298	0.00200	0.000234	mg/L	1		8260C	Total/NA

Client Sample ID: SB06-02-051122 Lab Sample ID: 860-26040-5

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac	D Method	Prep Type
1,1-Dichloroethene	0.000805 J	0.00100	0.000216 mg/L	1	8260C	Total/NA

No Detections.

Client Sample ID: EB-01-051122	Lab Sample ID: 860-26040-7
·	• • • • • • • • • • • • • • • • • • •

No Detections.

Client Sample ID: TB-01-051122 Lab Sample ID: 860-26040-8

No Detections.

This Detection Summary does not include radiochemical test results.

5/13/2022

Job ID: 860-26040-1

Lab Sample ID: 860-26040-3

2

4

_

9

11

13

15

17

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB04-03-051122

Date Collected: 05/11/22 11:35 Date Received: 05/12/22 08:10 Lab Sample ID: 860-26040-1

Matrix: Water

Job ID: 860-26040-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0168	0.00100	0.000244	mg/L			05/12/22 16:54	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			05/12/22 16:54	1
1,1-Dichloroethene	0.0284	0.00100	0.000216	mg/L			05/12/22 16:54	1
cis-1,2-Dichloroethene	0.00224	0.00100	0.000174	mg/L			05/12/22 16:54	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			05/12/22 16:54	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			05/12/22 16:54	1
Vinyl chloride	0.00140 J	0.00200	0.000234	mg/L			05/12/22 16:54	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100	75 - 131	05/12/22 16:5	4 1
Toluene-d8 (Surr)	100	80 - 117	05/12/22 16:5	34 1
4-Bromofluorobenzene (Surr)	100	74 - 124	05/12/22 16:5	4 1
1,2-Dichloroethane-d4 (Surr)	101	63 - 144	05/12/22 16:5	4 1

Client Sample ID: SB04-02-051122

Date Collected: 05/11/22 11:45

Date Received: 05/12/22 08:10

Lab Sample ID: 860-26040-2

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Wethou. 02000 - Volatile C	organic compounds by t	3C/IVIS						
Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00748	0.00100	0.000244	mg/L			05/12/22 17:14	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			05/12/22 17:14	1
1,1-Dichloroethene	0.00636	0.00100	0.000216	mg/L			05/12/22 17:14	1
cis-1,2-Dichloroethene	0.00145	0.00100	0.000174	mg/L			05/12/22 17:14	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			05/12/22 17:14	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			05/12/22 17:14	1
Vinyl chloride	0.000604 J	0.00200	0.000234	mg/L			05/12/22 17:14	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101		75 - 131		05/12/22 17:14	1
Toluene-d8 (Surr)	100		80 - 117		05/12/22 17:14	1
4-Bromofluorobenzene (Surr)	101		74 - 124		05/12/22 17:14	1
1,2-Dichloroethane-d4 (Surr)	102		63 - 144		05/12/22 17:14	1

Client Sample ID: SB04-01-051122

Date Collected: 05/11/22 11:55

Date Received: 05/12/22 08:10

Lab Sample ID: 86	0-26040-3
-------------------	-----------

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00694		0.00100	0.000244	mg/L			05/12/22 17:35	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/12/22 17:35	1
1,1-Dichloroethene	0.00449		0.00100	0.000216	mg/L			05/12/22 17:35	1
cis-1,2-Dichloroethene	0.00221		0.00100	0.000174	mg/L			05/12/22 17:35	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/12/22 17:35	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/12/22 17:35	1
Vinyl chloride	0.00357		0.00200	0.000234	mg/L			05/12/22 17:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		75 - 131			•		05/12/22 17:35	1
Toluene-d8 (Surr)	99		80 - 117					05/12/22 17:35	1

Eurofins Houston

5/13/2022

Page 6 of 25

2

4

5

9

11

13

15

17

Client Sample ID: SB04-01-051122 Lab Sample ID: 860-26040-3

Date Received: 05/12/22 08:10

Date Collected: 05/11/22 11:55 **Matrix: Water**

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100	74 - 124		05/12/22 17:35	1
1,2-Dichloroethane-d4 (Surr)	101	63 - 144		05/12/22 17:35	1

Client Sample ID: SB06-03-051122

Date Collected: 05/11/22 16:15 Date Received: 05/12/22 08:10

Lab Sample ID: 860-26040-4 **Matrix: Water**

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0258		0.00100	0.000244	mg/L			05/12/22 17:55	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/12/22 17:55	1
1,1-Dichloroethene	0.0130		0.00100	0.000216	mg/L			05/12/22 17:55	1
cis-1,2-Dichloroethene	0.000355	J	0.00100	0.000174	mg/L			05/12/22 17:55	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/12/22 17:55	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/12/22 17:55	1
Vinyl chloride	0.00298		0.00200	0.000234	mg/L			05/12/22 17:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qu	ualifier Limits		Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100	75 - 131	_		05/12/22 17:55	1
Toluene-d8 (Surr)	101	80 - 117			05/12/22 17:55	1
4-Bromofluorobenzene (Surr)	102	74 - 124			05/12/22 17:55	1
1,2-Dichloroethane-d4 (Surr)	104	63 - 144			05/12/22 17:55	1

Client Sample ID: SB06-02-051122

Date Collected: 05/11/22 16:45

Date Received: 05/12/22 08:10

Mathad: 8260C - Valatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/12/22 18:16	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/12/22 18:16	1
1,1-Dichloroethene	0.000805	J	0.00100	0.000216	mg/L			05/12/22 18:16	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/12/22 18:16	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/12/22 18:16	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/12/22 18:16	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/12/22 18:16	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99		75 - 131		05/12/22 18:16	1
Toluene-d8 (Surr)	98		80 - 117		05/12/22 18:16	1
4-Bromofluorobenzene (Surr)	99		74 - 124		05/12/22 18:16	1
1,2-Dichloroethane-d4 (Surr)	104		63 - 144		05/12/22 18:16	1

Client Sample ID: SB06-01-051122

Date Collected: 05/11/22 16:55

Date Received: 05/12/22 08:10

Method: 8260C - Volatile Organ	Method: 8260C - Volatile Organic Compounds by GC/MS								
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/12/22 18:36	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/12/22 18:36	1

Eurofins Houston

Matrix: Water

Page 7 of 25 5/13/2022

Job ID: 860-26040-1

Lab Sample ID: 860-26040-5

Lab Sample ID: 860-26040-6

Matrix: Water

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB06-01-051122

Date Collected: 05/11/22 16:55 Date Received: 05/12/22 08:10 Lab Sample ID: 860-26040-6

05/12/22 18:36

05/12/22 18:36

05/12/22 18:36

Matrix: Water

Job ID: 860-26040-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

99

99

100

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/12/22 18:36	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/12/22 18:36	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/12/22 18:36	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/12/22 18:36	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/12/22 18:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	98		75 - 131			-		05/12/22 18:36	1

80 - 117

74 - 124

63 - 144

Date Collected: 05/11/22 08:10 Matrix: Water

Date Received: 05/12/22 08:10

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result Qua	lifier MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244 U	0.00100	0.000244	mg/L			05/12/22 13:29	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			05/12/22 13:29	1
1,1-Dichloroethene	0.000216 U	0.00100	0.000216	mg/L			05/12/22 13:29	1
cis-1,2-Dichloroethene	0.000174 U	0.00100	0.000174	mg/L			05/12/22 13:29	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			05/12/22 13:29	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			05/12/22 13:29	1
Vinyl chloride	0.000234 U	0.00200	0.000234	mg/L			05/12/22 13:29	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Dibromofluoromethane (Surr)	98	75 - 131	05/12/22 13:2	9 1
Toluene-d8 (Surr)	102	80 - 117	05/12/22 13:2	9 1
4-Bromofluorobenzene (Surr)	101	74 - 124	05/12/22 13:2	9 1
1,2-Dichloroethane-d4 (Surr)	103	63 - 144	05/12/22 13:2	9 1

Date Collected: 05/11/22 07:45 Date Received: 05/12/22 08:10

Mathadi 9260C Valatila Organia Campaunda hy CC/M

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/12/22 13:08	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/12/22 13:08	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/12/22 13:08	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/12/22 13:08	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/12/22 13:08	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/12/22 13:08	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/12/22 13:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromothono (Curr)			75 121					05/12/22 12:00	

Surrogate	/orecovery	Qualifier	LIIIIII		riepaieu	Allalyzeu	DII Fac	
Dibromofluoromethane (Surr)	99		75 - 131	_		05/12/22 13:08	1	
Toluene-d8 (Surr)	101		80 - 117			05/12/22 13:08	1	
4-Bromofluorobenzene (Surr)	100		74 - 124			05/12/22 13:08	1	
1,2-Dichloroethane-d4 (Surr)	102		63 - 144			05/12/22 13:08	1	

Eurofins Houston

Matrix: Water

Page 8 of 25 5/13/2022

3

4

6

8

4.6

11

13

15

1=

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26040-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

3

4

7

9

4 4

12

14

15

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)					
		DBFM	TOL	BFB	DCA		
Lab Sample ID	Client Sample ID	(75-131)	(80-117)	(74-124)	(63-144)		
860-25835-J-40 MS	Matrix Spike	103	98	100	103		
860-26040-1	SB04-03-051122	100	100	100	101		
360-26040-2	SB04-02-051122	101	100	101	102		
860-26040-3	SB04-01-051122	100	99	100	101		
860-26040-4	SB06-03-051122	100	101	102	104		
860-26040-5	SB06-02-051122	99	98	99	104		
860-26040-6	SB06-01-051122	98	99	99	100		
860-26040-7	EB-01-051122	98	102	101	103		
860-26040-8	TB-01-051122	99	101	100	102		
LCS 860-52599/3	Lab Control Sample	103	98	100	102		
LCSD 860-52599/4	Lab Control Sample Dup	101	98	99	101		
MB 860-52599/11	Method Blank	100	100	99	102		

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Houston

Job ID: 860-26040-1

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-52599/11

Matrix: Water

Analysis Batch: 52599

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 860-26040-1

MB MB

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/12/22 12:07	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/12/22 12:07	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/12/22 12:07	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/12/22 12:07	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/12/22 12:07	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/12/22 12:07	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/12/22 12:07	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		75 - 131		05/12/22 12:07	1
Toluene-d8 (Surr)	100		80 - 117		05/12/22 12:07	1
4-Bromofluorobenzene (Surr)	99		74 - 124		05/12/22 12:07	1
1,2-Dichloroethane-d4 (Surr)	102		63 - 144		05/12/22 12:07	1

Lab Sample ID: LCS 860-52599/3

Matrix: Water

Analysis Batch: 52599

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 0.0500 1,1-Dichloroethane 0.05692 mg/L 114 72 - 125 1,2-Dichloroethane 0.0500 0.05813 116 68 - 127 mg/L 0.0500 1,1-Dichloroethene 0.05711 mg/L 114 59 - 172 cis-1,2-Dichloroethene 0.0500 0.05650 mg/L 113 75 - 125 Tetrachloroethene 0.0500 0.05525 mg/L 110 71 - 125 Trichloroethene 0.0500 0.05604 mg/L 112 62 - 137 Vinyl chloride 0.0500 0.05740 115 60 - 140 mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	103		75 - 131
Toluene-d8 (Surr)	98		80 - 117
4-Bromofluorobenzene (Surr)	100		74 - 124
1,2-Dichloroethane-d4 (Surr)	102		63 - 144

Lab Sample ID: LCSD 860-52599/4

Matrix: Water

Analysis Batch: 52599

Client Sample ID: Lab	Control Samp	le Dup
	Prep Type: To	otal/NA

	Spike	LCSD LCS	D			%Rec		RPD
Analyte	Added	Result Qual	lifier Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.05177	mg/L		104	72 - 125	9	25
1,2-Dichloroethane	0.0500	0.05382	mg/L		108	68 - 127	8	25
1,1-Dichloroethene	0.0500	0.05081	mg/L		102	59 - 172	12	25
cis-1,2-Dichloroethene	0.0500	0.05149	mg/L		103	75 - 125	9	25
Tetrachloroethene	0.0500	0.05039	mg/L		101	71 - 125	9	25
Trichloroethene	0.0500	0.04995	mg/L		100	62 - 137	11	25
Vinyl chloride	0.0500	0.05015	mg/L		100	60 - 140	13	25

Page 11 of 25

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-52599/4

Matrix: Water

Analysis Batch: 52599

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 860-26040-1

LCSD LCSD %Recovery Qualifier Limits Surrogate Dibromofluoromethane (Surr) 101 75 - 131 Toluene-d8 (Surr) 98 80 - 117 4-Bromofluorobenzene (Surr) 99 74 - 124 1,2-Dichloroethane-d4 (Surr) 101 63 - 144

Lab Sample ID: 860-25835-J-40 MS

Matrix: Water

Analysis Batch: 52599

Client Sample ID: Matrix Spike

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethane	0.000244	U	0.0500	0.04432		mg/L		89	72 - 125
1,2-Dichloroethane	0.000285	U	0.0500	0.04412		mg/L		88	68 - 127
1,1-Dichloroethene	0.000216	U	0.0500	0.04373		mg/L		87	59 - 172
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.04284		mg/L		86	75 - 125
Tetrachloroethene	0.000500	U	0.0500	0.04386		mg/L		88	71 - 125
Trichloroethene	0.000424	U	0.0500	0.04274		mg/L		85	62 - 137
Vinyl chloride	0.000234	U	0.0500	0.04934		mg/L		99	60 - 140

MS MS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	103		75 - 131
Toluene-d8 (Surr)	98		80 - 117
4-Bromofluorobenzene (Surr)	100		74 - 124
1,2-Dichloroethane-d4 (Surr)	103		63 - 144

Prep Type: Total/NA

QC Association Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26040-1

GC/MS VOA

Analysis Batch: 52599

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26040-1	SB04-03-051122	Total/NA	Water	8260C	·
860-26040-2	SB04-02-051122	Total/NA	Water	8260C	
860-26040-3	SB04-01-051122	Total/NA	Water	8260C	
860-26040-4	SB06-03-051122	Total/NA	Water	8260C	
860-26040-5	SB06-02-051122	Total/NA	Water	8260C	
860-26040-6	SB06-01-051122	Total/NA	Water	8260C	
860-26040-7	EB-01-051122	Total/NA	Water	8260C	
860-26040-8	TB-01-051122	Total/NA	Water	8260C	
MB 860-52599/11	Method Blank	Total/NA	Water	8260C	
LCS 860-52599/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-52599/4	Lab Control Sample Dup	Total/NA	Water	8260C	
860-25835-J-40 MS	Matrix Spike	Total/NA	Water	8260C	

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB04-03-051122

Date Collected: 05/11/22 11:35

Lab Sample ID: 860-26040-1 **Matrix: Water**

Date Received: 05/12/22 08:10

Dil Batch Batch Initial Final Batch Prepared Method **Factor** or Analyzed **Prep Type** Type Run **Amount** Amount Number Analyst Lab Total/NA 52599 05/12/22 16:54 A1S XEN STF Analysis 8260C 5 mL 5 mL

Client Sample ID: SB04-02-051122

Lab Sample ID: 860-26040-2 Date Collected: 05/11/22 11:45 **Matrix: Water**

Date Received: 05/12/22 08:10

Batch Batch Dil Initial Final **Batch Prepared Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260C 5 mL 5 mL 52599 05/12/22 17:14 A1S XEN STF

Client Sample ID: SB04-01-051122

Lab Sample ID: 860-26040-3 Date Collected: 05/11/22 11:55 **Matrix: Water**

Date Received: 05/12/22 08:10

Batch Batch Dil Initial Final **Batch** Prepared Method **Factor** Number or Analyzed **Prep Type** Type Run Amount Amount **Analyst** Lab Total/NA Analysis 8260C 5 mL 52599 05/12/22 17:35 A1S XEN STF 5 mL

Client Sample ID: SB06-03-051122

Lab Sample ID: 860-26040-4 Date Collected: 05/11/22 16:15 **Matrix: Water**

Date Received: 05/12/22 08:10

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method **Factor** Amount Amount Number or Analyzed Type Run Analyst Lab Analysis 8260C 52599 05/12/22 17:55 A1S XEN STF Total/NA 5 mL 5 mL

Client Sample ID: SB06-02-051122

Lab Sample ID: 860-26040-5 Date Collected: 05/11/22 16:45 **Matrix: Water**

Date Received: 05/12/22 08:10

Batch Batch Dil Initial Final Batch Prepared Method Run Factor **Amount** Amount Number or Analyzed **Prep Type** Type Analyst Lab Total/NA Analysis 8260C 5 mL 5 mL 52599 05/12/22 18:16 A1S XEN STF

Client Sample ID: SB06-01-051122

Lab Sample ID: 860-26040-6 Date Collected: 05/11/22 16:55 **Matrix: Water**

Date Received: 05/12/22 08:10

Dil Initial Final Batch Batch Batch **Prepared Prep Type** Type Method **Factor** Amount Amount Number or Analyzed **Analyst** Run Lab 05/12/22 18:36 Total/NA Analysis 8260C 5 mL 5 mL 52599 A1S XEN STF

Client Sample ID: EB-01-051122

Lab Sample ID: 860-26040-7 Date Collected: 05/11/22 08:10 **Matrix: Water**

Date Received: 05/12/22 08:10

Batch Batch Dil Initial Final **Batch Prepared** Method Prep Type Type Run **Factor** Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260C 5 mL 5 mL 52599 05/12/22 13:29 A1S XEN STF

Eurofins Houston

Job ID: 860-26040-1

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: TB-01-051122 Lab Sample ID: 860-26040-8

Date Collected: 05/11/22 07:45 **Matrix: Water**

Date Received: 05/12/22 08:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	52599	05/12/22 13:08	A1S	XEN STF

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-26040-1

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

Job ID: 860-26040-1

2

4

5

9

11

13

. -

16

Method Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	XEN STF
5030C	Purge and Trap	SW846	XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-26040-1

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-26040-1	SB04-03-051122	Water	05/11/22 11:35	05/12/22 08:10
860-26040-2	SB04-02-051122	Water	05/11/22 11:45	05/12/22 08:10
860-26040-3	SB04-01-051122	Water	05/11/22 11:55	05/12/22 08:10
860-26040-4	SB06-03-051122	Water	05/11/22 16:15	05/12/22 08:10
860-26040-5	SB06-02-051122	Water	05/11/22 16:45	05/12/22 08:10
860-26040-6	SB06-01-051122	Water	05/11/22 16:55	05/12/22 08:10
860-26040-7	EB-01-051122	Water	05/11/22 08:10	05/12/22 08:10
860-26040-8	TB-01-051122	Water	05/11/22 07:45	05/12/22 08:10

Job ID: 860-26040-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-26040-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	05/13/2022

3

4

7

q

10

12

4

15

17

Laboratory Data Package Cover Page - Page 2 of 4

		Name: Eurofins Houston	LRC Date: 05/13/202					
		e: STC Silber Rd Pre-Design Investigation	Laboratory Job Numb	er: 860-	26040-1			
		ame: Bethany McDaniel						
# ¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵
R1	OI	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of	sample acceptability upon	✓				
		receipt?						
		Were all departures from standard conditions described in		✓				
R2	OI	Sample and quality control (QC) identificat	ion					
		Are all field sample ID numbers cross-referenced to the la		√				
		Are all laboratory ID numbers cross-referenced to the cor	responding QC data?	✓				
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding to		✓				
		Other than those results < MQL, were all other raw value	s bracketed by calibration	✓				
		standards?						
		Were calculations checked by a peer or supervisor?		√				
		Were all analyte identifications checked by a peer or super-		√				
		Were sample detection limits reported for all analytes not		✓				
		Were all results for soil and sediment samples reported o			1	√		
		Were % moisture (or solids) reported for all soil and sedir	•			/		
		Were bulk soils/solids samples for volatile analysis extraction	cted with methanol per			✓		
		SW846 Method 5035?				/		
		If required for the project, are TICs reported?				V		
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?	001:-3.0	√				
		Were surrogate percent recoveries in all samples within t		√				
R5	OI	Test reports/summary forms for blank sam	ples					
		Were appropriate type(s) of blanks analyzed?		√				
		Were blanks analyzed at the appropriate frequency?		√				
		Were method blanks taken through the entire analytical p	rocess, including preparation	✓				
		and, if applicable, cleanup procedures?						
		Were blank concentrations < MQL?		✓				
R6	OI	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		√				
		Was each LCS taken through the entire analytical proced	ure, including prep and	✓				
		cleanup steps?		✓				
		Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the labor	ratory OC limita?	✓				
				V ✓				
		Does the detectability check sample data document the la		•				
		detect the COCs at the MDL used to calculate the SDLs? Was the LCSD RPD within QC limits?		✓				
R7	OI		to (MSD) data	,				
K/	Oi	Matrix spike (MS) and matrix spike duplica Were the project/method specified analytes included in the		✓				
		Were MS/MSD analyzed at the appropriate frequency?	ie ivis and ivisb?	V ✓				
		Were MS (and MSD, if applicable) %Rs within the laborate	tory OC limits?	↓ ✓				
		Were MS/MSD RPDs within laboratory QC limits?	tory QC minto:	+ -		/		
R8	OI	Analytical duplicate data				•		
10	U	Were appropriate analytical duplicates analyzed for each	matrix?			/		
		Were analytical duplicates analyzed at the appropriate fre				\ \ \ \		
						V ✓		
R9	OI	Were RPDs or relative standard deviations within the laboratory QC limits? Method quantitation limits (MQLs):				•		
13	U	Are the MQLs for each method analyte included in the lal	poratory data nackage?	✓				
		Do the MQLs correspond to the concentration of the lower		→				
		standard?	551 HOH-2610 CAMPIATION					
		Are unadjusted MQLs and DCSs included in the laborato	ry data package?	✓				
R10	OI	Other problems/anomalies	., sala paolago:					
N I U	U	Are all known problems/anomalies/special conditions not	ed in this LRC and ED?	✓				
		·		✓				
		Was applicable and available technology used to lower th	ie ode to minimize the matrix					
		interference effects on the sample results?	oratory Accreditation Program	✓				
		Is the laboratory NELAC-accredited under the Texas Lab						
		for the analytes, matrices and methods associated with the	no iaudiatory data package?			1	1	

Page 20 of 25 5/13/2022

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 05/13/2022
Project Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-26040-1
Reviewer Name: Bethany McDaniel	-

			atory Job Numbe	er: 860-2	26040-1			
Revie	wer Na	ame: Bethany McDaniel						
# ¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#
S1	OI	Initial calibration (ICAL)						
	1	Were response factors and/or relative response factors for each analy	te within QC	✓				
		limits?						
		Were percent RSDs or correlation coefficient criteria met?		✓				
		Was the number of standards recommended in the method used for a	ll analytes?	✓				
		Were all points generated between the lowest and highest standard u	sed to calculate	✓				
		the curve?						
		Are ICAL data available for all instruments used?		√				
		Has the initial calibration curve been verified using an appropriate sec	ond source	✓				
		standard?						
S2	OI	Initial and continuing calibration verification (ICCV	and CCV) and					
		continuing calibration blank (CCB):						
		Was the CCV analyzed at the method-required frequency?	00 !! !! 0	√				
		Were percent differences for each analyte within the method-required	QC limits?	√				
		Was the ICAL curve verified for each analyte?	OD ANDLO	✓		✓		
		Was the absolute value of the analyte concentration in the inorganic (CB < MDL?			V		
S3	0	Mass spectral tuning						
		Was the appropriate compound for the method used for tuning?		√				
		Were ion abundance data within the method-required QC limits?		<u> </u>				
S4	0	Internal standards (IS)						
		Were IS area counts and retention times within the method-required (QC limits?	√				
S5	OI	Raw data (NELAC Section 5.5.10)						
		Were the raw data (for example, chromatograms, spectral data) revie	wed by an	✓				
		analyst?						
		Were data associated with manual integrations flagged on the raw da	a?	<u> </u>				
S6	0	Dual column confirmation						
		Did dual column confirmation results meet the method-required QC?				✓		
S7	0	Tentatively identified compounds (TICs)						
		If TICs were requested, were the mass spectra and TIC data subject	o appropriate			✓		
		checks?						
S8	I	Interference Check Sample (ICS) results						
		Were percent recoveries within method QC limits?				✓		
S9	l	Serial dilutions, post digestion spikes, and method	of standard					
		additions						
		Were percent differences, recoveries, and the linearity within the QC	imits specified			✓		
	_	in the method?						
S10	OI	Method detection limit (MDL) studies						
		Was a MDL study performed for each reported analyte?		✓				
		Is the MDL either adjusted or supported by the analysis of DCSs?		✓				
S11	OI	Proficiency test reports						
		Was the laboratory's performance acceptable on the applicable profic	ency tests or	✓				
		evaluation studies?						
S12	OI	Standards documentation						
		Are all standards used in the analyses NIST-traceable or obtained fro	m other	✓				
		appropriate sources?						\vdash
S13	OI	Compound/analyte identification procedures						
		Are the procedures for compound/analyte identification documented?		√				
S14	OI	Demonstration of analyst competency (DOC)						
		Was DOC conducted consistent with NELAC Chapter 5?		√				
		Is documentation of the analyst's competency up-to-date and on file?		✓				
S15	OI	Verification/validation documentation for methods (NELAC					
	<u>L</u>	Chapter 5)						
		Are all the methods used to generate the data documented, verified,	and validated,	✓				
		where applicable?						
S16	OI	Laboratory standard operating procedures (SOPs)						
		Are laboratory SOPs current and on file for each method performed?		√				_

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

NA = Not applicable;

NR = Not reviewed;

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Labora	tory Name: Eurofins Houston	LRC Date: 05/13/2022				
Project Name: STC Silber Rd Pre-Design Investigation		Laboratory Job Number: 860-26040-1				
Review	ver Name: Bethany McDaniel					
ER#1	R#1 Description					
No Exceptions						
1. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).						

-

Ę

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26040-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Detector: MSD/0 Column: DB-624

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1-Dichloroethane	0.00100	0.00483		mg/L	0.00100	0.000244	03/03/2022	860-43530
1,2-Dichloroethane	0.00100	0.00498		mg/L	0.00100	0.000285	03/03/2022	860-43530
1,1-Dichloroethene	0.00100	0.00411		mg/L	0.00100	0.000216	03/03/2022	860-43530
cis-1,2-Dichloroethene	0.00100	0.00499		mg/L	0.00100	0.000174	03/03/2022	860-43530
Tetrachloroethene	0.00100	0.00463		mg/L	0.00100	0.000500	03/03/2022	860-43530
Trichloroethene	0.00100	0.00503		mg/L	0.00500	0.000424	03/03/2022	860-43530
Vinyl chloride	0.00100	0.00381		mg/L	0.00200	0.000234	03/03/2022	860-43530

(65)	Special Instructions/Note: Corrected Temp: 1 Size IR ID:HOU-323 Sed if Samples are retained longer than 1 month) Sal By Lab Archive For Months
Relinquished by Received by Received by Received by	Date/fine: Company
Custody Seal No.	Date/Time.
Cooler Temperature(s) "C and Other Remarks: A Yes. A No	15
Δ Yes, Δ No	ζ,

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-26040-1

Login Number: 26040 List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

3

4

7

9

11

13

15

17

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-26137-1

Client Project/Site: STC Silber Rd Pre-Design Investigation

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 5/16/2022 11:33:00 AM

Bethany McDaniel, Senior Project Manager (713)358-2005
Bethany.McDaniel@et.eurofinsus.com

LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

4

5

7

8

10

12

13

4 5

16

17

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	8
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
State Forms	17
TRRP Checklist	17
DCS Report	21
Chain of Custody	22
Receipt Checklists	23

5

4

6

8

10

12

14

46

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26137-1

Project/Site: STC Silber Rd Pre-Design Investigation

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation	These commonly used	abbreviations n	may or may not b	e present in this report.
--------------	---------------------	-----------------	------------------	---------------------------

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

Л

_

-

8

46

11

14

16

17

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26137-1

Job ID: 860-26137-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-26137-1

Comments

No additional comments.

Receipt

The samples were received on 5/13/2022~8:13~AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.7° C.

1

4

_

8

9

11

13

14

16

11/

Detection Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation	Job ID: 860-26137-1
Client Sample ID: SB02-03-051222	Lab Sample ID: 860-26137-1
No Detections.	
Client Sample ID: FD-01-051222	Lab Sample ID: 860-26137-2

Lab Sample ID: 860-26137-2

Lab Sample ID: 860-26137-3

No Detections.

No Detections.

Client Sample ID: TB-01-051222

8

10

12

14

16

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB02-03-051222

Date Collected: 05/12/22 11:10 Date Received: 05/13/22 08:13 Lab Sample ID: 860-26137-1

Matrix: Water

Job ID: 860-26137-1

Method: 8260C - Volatile Organic Compounds by GC/MS

mothodi ozoos Toldillo	organio compour	nac ay c	0/1110						
Analyte	Result C	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	J	0.00100	0.000244	mg/L			05/13/22 15:16	1
1,2-Dichloroethane	0.000285 L	J	0.00100	0.000285	mg/L			05/13/22 15:16	1
1,1-Dichloroethene	0.000216 L	J	0.00100	0.000216	mg/L			05/13/22 15:16	1
cis-1,2-Dichloroethene	0.000174 L	j	0.00100	0.000174	mg/L			05/13/22 15:16	1
Tetrachloroethene	0.000500 L	J	0.00100	0.000500	mg/L			05/13/22 15:16	1
Trichloroethene	0.000424 L	J	0.00500	0.000424	mg/L			05/13/22 15:16	1
Vinyl chloride	0.000234 L	J	0.00200	0.000234	mg/L			05/13/22 15:16	1
-					_				

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		75 - 131		05/13/22 15:16	1
Toluene-d8 (Surr)	99		80 - 117		05/13/22 15:16	1
4-Bromofluorobenzene (Surr)	98		74 - 124		05/13/22 15:16	1
1,2-Dichloroethane-d4 (Surr)	100		63 - 144		05/13/22 15:16	1

Client Sample ID: FD-01-051222

Date Collected: 05/12/22 00:00

Date Received: 05/13/22 08:13

Lab Sample ID: 860-26137-2

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Method: 02000 - Volutile	Organic Compounds	rganic compounds by como						
Analyte	Result Qua	lifier MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244 U	0.00100	0.000244	mg/L			05/13/22 15:36	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			05/13/22 15:36	1
1,1-Dichloroethene	0.000216 U	0.00100	0.000216	mg/L			05/13/22 15:36	1
cis-1,2-Dichloroethene	0.000174 U	0.00100	0.000174	mg/L			05/13/22 15:36	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			05/13/22 15:36	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			05/13/22 15:36	1
Vinyl chloride	0.000234 U	0.00200	0.000234	mg/L			05/13/22 15:36	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyz	zed Dil Fac
Dibromofluoromethane (Surr)	101	75 - 131	05/13/22	15:36
Toluene-d8 (Surr)	99	80 - 117	05/13/22	15:36 1
4-Bromofluorobenzene (Surr)	98	74 - 124	05/13/22	15:36 1
1,2-Dichloroethane-d4 (Surr)	99	63 - 144	05/13/22	15:36 1

Client Sample ID: TB-01-051222

Date Collected: 05/12/22 07:35

Date Received: 05/13/22 08:13

Lab Sample ID: 860-26137-3

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/13/22 12:29	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/13/22 12:29	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/13/22 12:29	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/13/22 12:29	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/13/22 12:29	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/13/22 12:29	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/13/22 12:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	97		75 - 131			•		05/13/22 12:29	1
Toluene-d8 (Surr)	102		80 - 117					05/13/22 12:29	1

Eurofins Houston

Page 6 of 23 5/16/2022

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: TB-01-051222

Date Collected: 05/12/22 07:35

Lab Sample ID: 860-26137-3

Matrix: Water

Job ID: 860-26137-1

Date Received: 05/13/22 08:13

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100	74 - 124		05/13/22 12:29	1
1,2-Dichloroethane-d4 (Surr)	96	63 - 144		05/13/22 12:29	1

6

6

9

44

12

14

4.0

11/

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26137-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

1

7

9

10

12

15

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DBFM	TOL	BFB	DCA
Lab Sample ID	Client Sample ID	(75-131)	(80-117)	(74-124)	(63-144)
860-26035-B-2 MS	Matrix Spike	102	98	97	97
860-26035-B-2 MSD	Matrix Spike Duplicate	102	99	98	94
860-26137-1	SB02-03-051222	102	99	98	100
860-26137-2	FD-01-051222	101	99	98	99
860-26137-3	TB-01-051222	97	102	100	96
LCS 860-52790/3	Lab Control Sample	102	97	97	97
LCSD 860-52790/4	Lab Control Sample Dup	100	101	99	97
MB 860-52790/10	Method Blank	99	101	100	95

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Houston

Page 9 of 23 5/16/2022

Job ID: 860-26137-1

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-52790/10

Matrix: Water

Analysis Batch: 52790

Client Sample ID: Method Blank

Job ID: 860-26137-1

Prep Type: Total/NA

	МВ	МВ							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/13/22 12:08	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/13/22 12:08	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/13/22 12:08	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/13/22 12:08	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/13/22 12:08	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/13/22 12:08	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/13/22 12:08	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Dibromofluoromethane (Surr) 99 75 - 131 05/13/22 12:08 101 80 - 117 Toluene-d8 (Surr) 05/13/22 12:08 4-Bromofluorobenzene (Surr) 100 74 - 124 05/13/22 12:08 1,2-Dichloroethane-d4 (Surr) 95 63 - 144 05/13/22 12:08

Lab Sample ID: LCS 860-52790/3

Lab Sample ID: LCSD 860-52790/4

Matrix: Water

Matrix: Water

Analysis Batch: 52790

Analysis Batch: 52790

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.0500	0.04942		mg/L		99	72 - 125	
1,2-Dichloroethane	0.0500	0.04730		mg/L		95	68 - 127	
1,1-Dichloroethene	0.0500	0.05117		mg/L		102	59 - 172	
cis-1,2-Dichloroethene	0.0500	0.04880		mg/L		98	75 - 125	
Tetrachloroethene	0.0500	0.04918		mg/L		98	71 - 125	
Trichloroethene	0.0500	0.04863		mg/L		97	62 - 137	
Vinyl chloride	0.0500	0.05428		mg/L		109	60 - 140	

Limits

75 - 131

LCS LCS Surrogate %Recovery Qualifier Dibromofluoromethane (Surr) 102

97 80 - 117 Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) 97 74 - 124 1,2-Dichloroethane-d4 (Surr) 97 63 - 144

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

, o.o = o =	Spike	LCSD LCS	SD		%Rec		RPD
Analyte	Added	Result Qua	alifier Unit	D %Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.04494	mg/L	90	72 - 125	10	25
1,2-Dichloroethane	0.0500	0.04575	mg/L	91	68 - 127	3	25
1,1-Dichloroethene	0.0500	0.04492	mg/L	90	59 - 172	13	25
cis-1,2-Dichloroethene	0.0500	0.04451	mg/L	89	75 - 125	9	25
Tetrachloroethene	0.0500	0.04665	mg/L	93	71 - 125	5	25
Trichloroethene	0.0500	0.04539	mg/L	91	62 - 137	7	25
Vinyl chloride	0.0500	0.04659	mg/L	93	60 - 140	15	25

Eurofins Houston

Page 10 of 23

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26137-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LCSD LCSD

Lab Sample ID: LCSD 860-52790/4

Matrix: Water

Analysis Batch: 52790

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

%Recovery Qualifier Surrogate Limits Dibromofluoromethane (Surr) 100 75 - 131 Toluene-d8 (Surr) 101 80 - 117 4-Bromofluorobenzene (Surr) 99 74 - 124 1,2-Dichloroethane-d4 (Surr) 97 63 - 144

Lab Sample ID: 860-26035-B-2 MS

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Matrix: Water Analysis Batch: 52790

•	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.000244	U	0.0500	0.04749		mg/L		95	72 - 125	
1,2-Dichloroethane	0.000285	U	0.0500	0.04854		mg/L		97	68 - 127	
1,1-Dichloroethene	0.000216	U	0.0500	0.04665		mg/L		93	59 - 172	
cis-1,2-Dichloroethene	0.00881		0.0500	0.05678		mg/L		96	75 - 125	
Tetrachloroethene	0.00140		0.0500	0.04842		mg/L		94	71 - 125	
Trichloroethene	0.00332	J	0.0500	0.05090		mg/L		95	62 - 137	
Vinyl chloride	0.000234	U	0.0500	0.04930		mg/L		99	60 - 140	

MS MS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	102		75 - 131
Toluene-d8 (Surr)	98		80 - 117
4-Bromofluorobenzene (Surr)	97		74 - 124
1,2-Dichloroethane-d4 (Surr)	97		63 - 144

Lab Sample ID: 860-26035-B-2 MSD

Matrix: Water

Analysis Batch: 52790

Client Sample ID:	Matrix Spike	Duplicate
	Duan Tuna	Total/NIA

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.000244	U	0.0500	0.04204		mg/L		84	72 - 125	12	25
1,2-Dichloroethane	0.000285	U	0.0500	0.04080		mg/L		82	68 - 127	17	25
1,1-Dichloroethene	0.000216	U	0.0500	0.04307		mg/L		86	59 - 172	8	25
cis-1,2-Dichloroethene	0.00881		0.0500	0.05016		mg/L		83	75 - 125	12	25
Tetrachloroethene	0.00140		0.0500	0.04379		mg/L		85	71 - 125	10	25
Trichloroethene	0.00332	J	0.0500	0.04475		mg/L		83	62 - 137	13	25
Vinyl chloride	0.000234	U	0.0500	0.04801		mg/L		96	60 - 140	3	25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	102		75 - 131
Toluene-d8 (Surr)	99		80 - 117
4-Bromofluorobenzene (Surr)	98		74 - 124
1.2-Dichloroethane-d4 (Surr)	94		63 - 144

Eurofins Houston

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26137-1

GC/MS VOA

Analysis Batch: 52790

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26137-1	SB02-03-051222	Total/NA	Water	8260C	
860-26137-2	FD-01-051222	Total/NA	Water	8260C	
860-26137-3	TB-01-051222	Total/NA	Water	8260C	
MB 860-52790/10	Method Blank	Total/NA	Water	8260C	
LCS 860-52790/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-52790/4	Lab Control Sample Dup	Total/NA	Water	8260C	
860-26035-B-2 MS	Matrix Spike	Total/NA	Water	8260C	
860-26035-B-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260C	

J

4

5

7

0

10

11

13

14

16

11/

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB02-03-051222

Date Collected: 05/12/22 11:10

Date Received: 05/13/22 08:13

Lab Sample ID: 860-26137-1

Lab Sample ID: 860-26137-2

Matrix: Water

Job ID: 860-26137-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	52790	05/13/22 15:16	NA	XEN STF

Client Sample ID: FD-01-051222

Date Collected: 05/12/22 00:00

Date Received: 05/13/22 08:13

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	52790	05/13/22 15:36	NA	XEN STF

Client Sample ID: TB-01-051222

Lab Sample ID: 860-26137-3 Date Collected: 05/12/22 07:35

Matrix: Water

Date Received: 05/13/22 08:13

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type **Factor Amount Amount** Number or Analyzed Analyst Run Lab Total/NA Analysis 8260C 5 mL 5 mL 52790 05/13/22 12:29 NA XEN STF

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26137-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority Program		Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

3

4

5

7

8

3

11

12

14

4.0

11

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation Job ID: 860-26137-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	XEN STF
5030C	Purge and Trap	SW846	XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

4

O

7

_

4 4

12

13

15

17

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-26137-1	SB02-03-051222	Water	05/12/22 11:10	05/13/22 08:13
860-26137-2	FD-01-051222	Water	05/12/22 00:00	05/13/22 08:13
860-26137-3	TB-01-051222	Water	05/12/22 07:35	05/13/22 08:13

Job ID: 860-26137-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-26137-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	05/16/2022

2

4

O

7

Q

10

12

11

15

Laboratory Data Package Cover Page - Page 2 of 4

Laboratory Name: Eurofins Houston		LRC Date: 05/16/2022						
		e: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-26137-1					
		me Bethany McDaniel						
#¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵
R1	OI	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of sa	mple acceptability upon	✓				
		receipt?		✓				
D0		Were all departures from standard conditions described in a		V				
R2	OI	Sample and quality control (QC) identificatio						
		Are all field sample ID numbers cross-referenced to the laboratory ID numbers cross-referenced to the corresponding to the correspondin		✓				
D2			sponding QC data?	V				
R3	OI	Test reports Were all samples prepared and analyzed within holding time	2007	✓				
				V /				
		Other than those results < MQL, were all other raw values b standards?	racketed by calibration	,				
		Were calculations checked by a peer or supervisor?		✓				
		Were all analyte identifications checked by a peer or superv	isor?	✓				
		Were sample detection limits reported for all analytes not de		✓				
		Were all results for soil and sediment samples reported on a				✓		
		Were % moisture (or solids) reported for all soil and sedime				✓		
	Were bulk soils/solids samples for volatile analysis extracted with methanol per					✓		
	SW846 Method 5035?							
	If required for the project, are TICs reported?					✓		
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?		✓				
		Were surrogate percent recoveries in all samples within the		✓				
R5	OI	Test reports/summary forms for blank sample	es					
		Were appropriate type(s) of blanks analyzed?		✓				
		Were blanks analyzed at the appropriate frequency?		✓				
		Were method blanks taken through the entire analytical prod	cess, including preparation	✓				
		and, if applicable, cleanup procedures?						
	Were blank concentrations < MQL?			✓				
R6	OI	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		√				
		Was each LCS taken through the entire analytical procedure	e, including prep and	✓				
		cleanup steps?		✓				
		Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laborate	ony OC limite?	✓				
		Does the detectability check sample data document the laborate	-	✓				
		detect the COCs at the MDL used to calculate the SDLs?	лаюту в саравшту то	,				
		Was the LCSD RPD within QC limits?		✓				
R7	OI	Matrix spike (MS) and matrix spike duplicate	(MSD) data					
137	Oi	Were the project/method specified analytes included in the l		✓				
		Were MS/MSD analyzed at the appropriate frequency?		✓				
		Were MS (and MSD, if applicable) %Rs within the laborator	/ QC limits?	✓				
		Were MS/MSD RPDs within laboratory QC limits?	<u> </u>	✓				
R8	OI	Analytical duplicate data						
-	1	Were appropriate analytical duplicates analyzed for each ma	atrix?			✓		
		Were analytical duplicates analyzed at the appropriate frequ	iency?			✓		
		Were RPDs or relative standard deviations within the labora				✓		
R9	OI	Method quantitation limits (MQLs):						
		Are the MQLs for each method analyte included in the labor	atory data package?	✓				
		Do the MQLs correspond to the concentration of the lowest		✓				
		standard?						
		Are unadjusted MQLs and DCSs included in the laboratory	data package?	✓				
R10	OI	Other problems/anomalies						
	•	Are all known problems/anomalies/special conditions noted		✓				
		Was applicable and available technology used to lower the	SDL to minimize the matrix	✓				
		interference effects on the sample results?						
		Is the laboratory NELAC-accredited under the Texas Labora		✓				
		for the analytes, matrices and methods associated with this	laboratory data package?	1		1	1	

Page 18 of 23 5/16/2022

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 05/16/2022
Project Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-26137-1
Reviewer Name Bethany McDaniel	

			ooratory Job Number	: 860-2	26137-1			
Revie	wer Na	ame: Bethany McDaniel						
# ¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#5
S1	OI	Initial calibration (ICAL)						
		Were response factors and/or relative response factors for each a	nalyte within QC	✓				
		limits?						
		Were percent RSDs or correlation coefficient criteria met?		√				
		Was the number of standards recommended in the method used f		√				
		Were all points generated between the lowest and highest standard used to calculate						
	the curve? Are ICAL data available for all instruments used?							
		Has the initial calibration curve been verified using an appropriate	second source	✓ ✓				
		standard?	occoria source					
S2	OI	Initial and continuing calibration verification (ICCV and CCV) and						
_		continuing calibration blank (CCB):						
		Was the CCV analyzed at the method-required frequency?		✓				
		Were percent differences for each analyte within the method-requi	ired QC limits?	✓				
		Was the ICAL curve verified for each analyte?		✓				
		Was the absolute value of the analyte concentration in the inorgan	nic CCB < MDL?			✓		
S3	0	Mass spectral tuning						
		Was the appropriate compound for the method used for tuning?		✓				
		Were ion abundance data within the method-required QC limits?		√				
S4	0	Internal standards (IS)	100 11 11 0					
		Were IS area counts and retention times within the method-require	ed QC limits?	√				
S5	OI	Raw data (NELAC Section 5.5.10)						
		Were the raw data (for example, chromatograms, spectral data) re	eviewed by an	✓				
		analyst? Were data associated with manual integrations flagged on the raw	/ data?	√				
S6	0	Dual column confirmation	r data :	•				
30		Did dual column confirmation results meet the method-required Q	C?			/		
S 7	0	Tentatively identified compounds (TICs)	0.			-		
		If TICs were requested, were the mass spectra and TIC data subje	ect to appropriate			✓		
		checks?	cot to appropriate					
S8	ı	Interference Check Sample (ICS) results						
		Were percent recoveries within method QC limits?				✓		
S9	1	Serial dilutions, post digestion spikes, and metho	od of standard					
		additions						
		Were percent differences, recoveries, and the linearity within the C	QC limits specified			✓		
		in the method?	·					
S10	OI	Method detection limit (MDL) studies						
		Was a MDL study performed for each reported analyte?		✓				
		Is the MDL either adjusted or supported by the analysis of DCSs?		✓				
S11	OI	Proficiency test reports						
		Was the laboratory's performance acceptable on the applicable pr	oficiency tests or	✓				
040		evaluation studies?						
S12	OI	Standards documentation	I from oth	√				
		Are all standards used in the analyses NIST-traceable or obtained appropriate sources?	i irom otner	٧				
S13	OI	Compound/analyte identification procedures						
313	Oi	Are the procedures for compound/analyte identification documente	ed?	√				
S14	OI	Demonstration of analyst competency (DOC)	ou:					
J 17		Was DOC conducted consistent with NELAC Chapter 5?		✓				
		Is documentation of the analyst's competency up-to-date and on fi	ile?	✓		1		1
S15	OI	Verification/validation documentation for method						
	-	Chapter 5)	(112270					
		Are all the methods used to generate the data documented, verific	ed and validated	✓				
		, , monious uses to generate the data decamented, verific			1	1	1	1
		_	, ,					
S16	OI	where applicable? Laboratory standard operating procedures (SOPs						

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

NA = Not applicable;

NR = Not reviewed;

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Labora	tory Name: Eurofins Houston	LRC Date: 05/16/2022				
Project	Project Name: STC Silber Rd Pre-Design Investigation Laboratory Job Number: 860-26137-1					
Reviewer Name: Bethany McDaniel						
ER#1	ER#¹ Description					
No Exceptions						
ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).						

4.0

11/

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26137-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Detector: MSD/0 Column: DB-624

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1-Dichloroethane	0.00100	0.00483		mg/L	0.00100	0.000244	03/03/2022	860-43530
1,2-Dichloroethane	0.00100	0.00498		mg/L	0.00100	0.000285	03/03/2022	860-43530
1,1-Dichloroethene	0.00100	0.00411		mg/L	0.00100	0.000216	03/03/2022	860-43530
cis-1,2-Dichloroethene	0.00100	0.00499		mg/L	0.00100	0.000174	03/03/2022	860-43530
Tetrachloroethene	0.00100	0.00463		mg/L	0.00100	0.000500	03/03/2022	860-43530
Trichloroethene	0.00100	0.00503		mg/L	0.00500	0.000424	03/03/2022	860-43530
Vinyl chloride	0.00100	0.00381		mg/L	0.00200	0.000234	03/03/2022	860-43530

6

9

10

12

4 4

19

17

Client Information	Sampler	Lab PW: McDaniel Bethany A		Carrier Tracking No(s):	COC No:
Client Contact	Phone:	E-Mail:		State of Origin:	Page:
John Ynfante		Bethany McDan	Bethany McDaniel@Eurofinset.com	•	Page of
Company Jacobs Engineering Group, Inc.	PWSID:		Analysis Requested	sted	;# qor
Address: 14701 St. Mary's Lane Suite 300	Due Date Requested:				eservation Codes.
City: Houston	TAT Requested (days): 1 day RUSH				≅ Z O
State, Zp: TX, 77079	Compliance Project: A Yes A No				Nitric Acid P NaHSO4 Q
Phone:	PO#	: .			MeOH Amchlor Ascorbic Acid
Email: John.Ynfante@jacobs.com	WO #: D3542628.C.CS.TPE.SIL.22-01-02	N 10 8			Ice U Water V
Project Name: STC Silber Road Pre-Design Investigation		БД) 6		enlate	≯N
Site:	SSOW#:	s)) (-{ }		01 co1	Other
	Sample	Matrix de (Waster) (W		tel Number	
Sample Identification	Sample Date Time G=grab)	BY-Tissue, A-Air) II.		οT >	Special Instructions/Note:
SB01-03-0512	2				
TD-01-051222		Water			
22150-10-51	Status 078	Water		2	
2		Water			
		Water			
		Water			COCI
		Water			Temp I. 6 IR ID:HOU-323
		Water			Corrected Temp: O 1
860-2613/ Cham of Custody		Water			
		Water			
		Water			
Possible Hazard Identification			Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ssed if samples are retain	ed longer than 1 month)
ssted: I, II III IV Other (specify)	TRRP CIMIONIA		Requirement	Disposal by Lab	ACCIIVE FOI
Empty Kit Relinquished by:	Date:	Time:		Method of Shipment:	
Relinquished by: M. C.	Date/Time: 5/13/12 08/13	Сотрапу	Received Programmes And Market Programmes An	Date/Time:	Company Company
Refinquished by:		Company	Received by	Date/Time:	
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Custody Seals Intact: Custody Seal No.		Cool	Cooler Temperature(s) C and Other Remarks:	ن د د	
					Ver 01/16/2019

Curofins Environment Testing America

Chain of Custody Record

Eurofins Xenco, Stafford

4145 Greenbriar Dr Stafford, TX 77477 Phone (281) 240-4200

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-26137-1

Login Number: 26137 List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

3

4

5

7

9

11

13

15

17

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-26203-1

Client Project/Site: STC Silber Rd Pre-Design Investigation

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 5/17/2022 9:47:43 AM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

.....LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	9
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
State Forms	18
TRRP Checklist	18
DCS Report	22
Chain of Custody	23
Receipt Checklists	24

5

4

6

R

10

12

13

15

17

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26203-1

Project/Site: STC Silber Rd Pre-Design Investigation

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation	These commonly	used abbreviations may	or may not be	present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Houston

Page 3 of 24 5/17/2022

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26203-1

Job ID: 860-26203-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-26203-1

Receipt

The samples were received on 5/14/2022~8:10~AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was $3.2^{\circ}C$

3

4

ī

6

0

10

13

15

17

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26203-1

ID: 860-26203-1

Client Sample ID: SB03-03-051322	Lab Sample I

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	0.00233	0.00100	0.000244 mg/L		8260C	Total/NA
1,1-Dichloroethene	0.00407	0.00100	0.000216 mg/L	1	8260C	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL Un	nit Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00269	0.00100	0.000244 mg	g/L 1		8260C	Total/NA
1,1-Dichloroethene	0.00579	0.00100	0.000216 mg	g/L 1		8260C	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00240	0.00100	0.000244	mg/L	1	_	8260C	Total/NA
1,1-Dichloroethene	0.00606	0.00100	0.000216	mg/L	1		8260C	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D	Method	Prep Type
1,2-Dichloroethane	0.00879	0.00500	0.00143 mg/L		8260C	Total/NA

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00971		0.00500	0.00122	mg/L	5	_	8260C	Total/NA
1,2-Dichloroethane	0.00334	J	0.00500	0.00143	mg/L	5		8260C	Total/NA
1,1-Dichloroethene	0.00146	J	0.00500	0.00108	mg/L	5		8260C	Total/NA

No Detections.

This Detection Summary does not include radiochemical test results.

3

F

7

_

10

. .

14

15

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB03-03-051322

Date Collected: 05/13/22 08:20 Date Received: 05/14/22 08:10 Lab Sample ID: 860-26203-1

Matrix: Water

Job ID: 860-26203-1

Method: 8260C - Volatile O	•	•		001	11	_	D	A L	D'' E
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00233		0.00100	0.000244	mg/L			05/16/22 12:22	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/16/22 12:22	1
1,1-Dichloroethene	0.00407		0.00100	0.000216	mg/L			05/16/22 12:22	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/16/22 12:22	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/16/22 12:22	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/16/22 12:22	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/16/22 12:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		75 - 131					05/16/22 12:22	1
Toluene-d8 (Surr)	102		80 - 117					05/16/22 12:22	1

74 - 124

63 - 144

Client Sample ID: SB03-02-051322

Date Collected: 05/13/22 08:35

Date Received: 05/14/22 08:10

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

Lab Sample ID: 860-26203-2

05/16/22 12:22

05/16/22 12:22

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

102

94

Welliou. 6260C - Volatile	Organic Compounds by C							
Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00269	0.00100	0.000244	mg/L			05/16/22 12:42	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			05/16/22 12:42	1
1,1-Dichloroethene	0.00579	0.00100	0.000216	mg/L			05/16/22 12:42	1
cis-1,2-Dichloroethene	0.000174 U	0.00100	0.000174	mg/L			05/16/22 12:42	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			05/16/22 12:42	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			05/16/22 12:42	1
Vinyl chloride	0.000234 U	0.00200	0.000234	mg/L			05/16/22 12:42	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
Dibromofluoromethane (Surr)	100		75 - 131		05/16/22 12:42	1	
Toluene-d8 (Surr)	102		80 - 117		05/16/22 12:42	1	
4-Bromofluorobenzene (Surr)	100		74 - 124		05/16/22 12:42	1	
1,2-Dichloroethane-d4 (Surr)	94		63 - 144		05/16/22 12:42	1	

Client Sample ID: SB03-01-051322

Date Collected: 05/13/22 08:45

Date Received: 05/14/22 08:10

Lab Sample ID:	860-26203-3
----------------	-------------

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00240		0.00100	0.000244	mg/L			05/16/22 13:03	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/16/22 13:03	1
1,1-Dichloroethene	0.00606		0.00100	0.000216	mg/L			05/16/22 13:03	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/16/22 13:03	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/16/22 13:03	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/16/22 13:03	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/16/22 13:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	101		75 - 131			-		05/16/22 13:03	1
Toluene-d8 (Surr)	105		80 - 117					05/16/22 13:03	1

Eurofins Houston

Page 6 of 24 5/17/2022

Client Sample ID: SB03-01-051322 Lab Sample ID: 860-26203-3

Date Collected: 05/13/22 08:45 **Matrix: Water** Date Received: 05/14/22 08:10

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	104		74 - 124		05/16/22 13:03	1	
1,2-Dichloroethane-d4 (Surr)	93		63 - 144		05/16/22 13:03	1	

Client Sample ID: SB01-03-051322

Date Collected: 05/13/22 11:55 Date Received: 05/14/22 08:10

Lab Sample ID: 860-26203-4 **Matrix: Water**

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result C	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00122	U	0.00500	0.00122	mg/L			05/16/22 14:46	5
1,2-Dichloroethane	0.00879		0.00500	0.00143	mg/L			05/16/22 14:46	5
1,1-Dichloroethene	0.00108 L	U	0.00500	0.00108	mg/L			05/16/22 14:46	5
cis-1,2-Dichloroethene	0.000870 L	Ú	0.00500	0.000870	mg/L			05/16/22 14:46	5
Tetrachloroethene	0.00250 L	U	0.00500	0.00250	mg/L			05/16/22 14:46	5
Trichloroethene	0.00212 L	U	0.0250	0.00212	mg/L			05/16/22 14:46	5
Vinyl chloride	0.00117 L	Ú	0.0100	0.00117	mg/L			05/16/22 14:46	5

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		75 - 131	05/16/22 14:46	5
Toluene-d8 (Surr)	101		80 - 117	05/16/22 14:46	5
4-Bromofluorobenzene (Surr)	102		74 - 124	05/16/22 14:46	5
1,2-Dichloroethane-d4 (Surr)	96		63 - 144	05/16/22 14:46	5

Client Sample ID: SB01-02-051322

Date Collected: 05/13/22 12:20 Date Received: 05/14/22 08:10

Lab Sample ID: 860-26203-5

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

modical czoco Tolatic Grganic Compoundo by Cormo									
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00971		0.00500	0.00122	mg/L			05/16/22 15:06	5
1,2-Dichloroethane	0.00334	J	0.00500	0.00143	mg/L			05/16/22 15:06	5
1,1-Dichloroethene	0.00146	J	0.00500	0.00108	mg/L			05/16/22 15:06	5
cis-1,2-Dichloroethene	0.000870	U	0.00500	0.000870	mg/L			05/16/22 15:06	5
Tetrachloroethene	0.00250	U	0.00500	0.00250	mg/L			05/16/22 15:06	5
Trichloroethene	0.00212	U	0.0250	0.00212	mg/L			05/16/22 15:06	5
Vinyl chloride	0.00117	U	0.0100	0.00117	mg/L			05/16/22 15:06	5

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102	75 - 131	05/16/22 15	:06 5
Toluene-d8 (Surr)	102	80 - 117	05/16/22 15	:06 5
4-Bromofluorobenzene (Surr)	103	74 - 124	05/16/22 15	:06 5
1,2-Dichloroethane-d4 (Surr)	97	63 - 144	05/16/22 15	:06 5

Client Sample ID: TB-01-051322

Date Collected: 05/13/22 07:35 Date Received: 05/14/22 08:10

Lab Sample ID: 860-26203-6

Matrix: Water

Method:	8260C .	. Volatile	Organic	Compounds	by GC/MS

method: 02000 - volatile Organic Compounds by Como									
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/16/22 10:19	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/16/22 10:19	1

Eurofins Houston

Page 7 of 24 5/17/2022

Job ID: 860-26203-1

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: TB-01-051322

Date Collected: 05/13/22 07:35 Date Received: 05/14/22 08:10 Lab Sample ID: 860-26203-6

Matrix: Water

Job ID: 860-26203-1

Method: 8260C - Volatile O Analyte	•	Qualifier	MQL (Adj)	•	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L		•	05/16/22 10:19	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/16/22 10:19	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/16/22 10:19	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/16/22 10:19	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/16/22 10:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		75 - 131			•	-	05/16/22 10:19	1
Toluene-d8 (Surr)	102		80 - 117					05/16/22 10:19	1
4-Bromofluorobenzene (Surr)	102		74 - 124					05/16/22 10:19	1
1,2-Dichloroethane-d4 (Surr)	92		63 - 144					05/16/22 10:19	1

4

6

8

10

12

1 3

15

17

Ш

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26203-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

3

4

5

7

9

10

12

1 A

13

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DBFM	TOL	BFB	DCA
Lab Sample ID	Client Sample ID	(75-131)	(80-117)	(74-124)	(63-144)
860-26108-B-19 MS	Matrix Spike	102	101	102	91
860-26203-1	SB03-03-051322	102	102	102	94
860-26203-2	SB03-02-051322	100	102	100	94
860-26203-3	SB03-01-051322	101	105	104	93
860-26203-4	SB01-03-051322	100	101	102	96
860-26203-5	SB01-02-051322	102	102	103	97
860-26203-6	TB-01-051322	100	102	102	92
LCS 860-52953/3	Lab Control Sample	102	102	102	92
LCSD 860-52953/4	Lab Control Sample Dup	100	102	103	91
MB 860-52953/9	Method Blank	100	103	103	92

Surrogate Legend

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Houston

Job ID: 860-26203-1

3

4

6

8

10

4.6

13

15

17

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-52953/9

Matrix: Water

Analysis Batch: 52953

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 860-26203-1

MB MB

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/16/22 09:58	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/16/22 09:58	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/16/22 09:58	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/16/22 09:58	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/16/22 09:58	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/16/22 09:58	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/16/22 09:58	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100	75 - 131		05/16/22 09:58	1
Toluene-d8 (Surr)	103	80 - 117		05/16/22 09:58	1
4-Bromofluorobenzene (Surr)	103	74 - 124		05/16/22 09:58	1
1,2-Dichloroethane-d4 (Surr)	92	63 - 144		05/16/22 09:58	1

Lab Sample ID: LCS 860-52953/3

Matrix: Water

Analysis Batch: 52953

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 0.0500 1,1-Dichloroethane 0.05004 mg/L 100 72 - 125 1,2-Dichloroethane 0.0500 0.04493 90 68 - 127 mg/L 0.0500 108 1,1-Dichloroethene 0.05414 mg/L 59 - 172 cis-1,2-Dichloroethene 0.0500 0.04755 mg/L 95 75 - 125 Tetrachloroethene 0.0500 0.04905 mg/L 98 71 - 125 Trichloroethene 0.0500 0.04829 mg/L 97 62 - 137 Vinyl chloride 0.0500 0.05295 106 60 - 140 mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	102		75 - 131
Toluene-d8 (Surr)	102		80 - 117
4-Bromofluorobenzene (Surr)	102		74 - 124
1,2-Dichloroethane-d4 (Surr)	92		63 - 144

Lab Sample ID: LCSD 860-52953/4

Matrix: Water

Analysis Batch: 52953

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

•	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.05013		mg/L		100	72 - 125	0	25
1,2-Dichloroethane	0.0500	0.04648		mg/L		93	68 - 127	3	25
1,1-Dichloroethene	0.0500	0.05333		mg/L		107	59 - 172	2	25
cis-1,2-Dichloroethene	0.0500	0.04779		mg/L		96	75 - 125	1	25
Tetrachloroethene	0.0500	0.04920		mg/L		98	71 - 125	0	25
Trichloroethene	0.0500	0.04849		mg/L		97	62 - 137	0	25
Vinyl chloride	0.0500	0.05182		mg/L		104	60 - 140	2	25

Eurofins Houston

Page 11 of 24

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26203-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-52953/4

Matrix: Water

Analysis Batch: 52953

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Recovery Qualifier Limits Surrogate Dibromofluoromethane (Surr) 100 75 - 131 Toluene-d8 (Surr) 102 80 - 117 103 4-Bromofluorobenzene (Surr) 74 - 124 1,2-Dichloroethane-d4 (Surr) 91 63 - 144

Client Sample ID: Matrix Spike Lab Sample ID: 860-26108-B-19 MS **Matrix: Water**

Analysis Batch: 52953

%Rec Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 1.1-Dichloroethane 72 - 125 0.000244 U 0.0500 0.05249 mg/L 105 1,2-Dichloroethane 0.000285 U 0.0500 0.04563 mg/L 91 68 - 127 1,1-Dichloroethene 0.000216 U 0.0500 0.05740 mg/L 115 59 - 172 cis-1,2-Dichloroethene 0.0500 0.000174 U 0.04958 mg/L 99 75 - 125 Tetrachloroethene 0.0500 103 0.000500 U 0.05132 mg/L 71 - 125 Trichloroethene 0.000424 U 0.0500 0.05058 mg/L 101 62 - 137Vinyl chloride 0.000234 U 0.0500 0.05528 111 60 - 140 mg/L

MS MS Surrogate Qualifier Limits %Recovery 75 - 131 Dibromofluoromethane (Surr) 102 Toluene-d8 (Surr) 101 80 - 117 4-Bromofluorobenzene (Surr) 102 74 - 124 1,2-Dichloroethane-d4 (Surr) 91 63 - 144 Prep Type: Total/NA

QC Association Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26203-1

GC/MS VOA

Analysis Batch: 52953

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26203-1	SB03-03-051322	Total/NA	Water	8260C	
860-26203-2	SB03-02-051322	Total/NA	Water	8260C	
860-26203-3	SB03-01-051322	Total/NA	Water	8260C	
860-26203-4	SB01-03-051322	Total/NA	Water	8260C	
860-26203-5	SB01-02-051322	Total/NA	Water	8260C	
860-26203-6	TB-01-051322	Total/NA	Water	8260C	
MB 860-52953/9	Method Blank	Total/NA	Water	8260C	
LCS 860-52953/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-52953/4	Lab Control Sample Dup	Total/NA	Water	8260C	
860-26108-B-19 MS	Matrix Spike	Total/NA	Water	8260C	

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB03-03-051322

Date Collected: 05/13/22 08:20

Date Received: 05/14/22 08:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	52953	05/16/22 12:22	TTD	XEN STF

Client Sample ID: SB03-02-051322

Date Collected: 05/13/22 08:35

Date Received: 05/14/22 08:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	52953	05/16/22 12:42	TTD	XEN STF

Client Sample ID: SB03-01-051322

Date Collected: 05/13/22 08:45 Date Received: 05/14/22 08:10

ſ	_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
L	Total/NA	Analysis	8260C		1	5 mL	5 mL	52953	05/16/22 13:03	TTD	XEN STF

Client Sample ID: SB01-03-051322

Date Collected: 05/13/22 11:55

Date Received: 05/14/22 08:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		5	5 mL	5 mL	52953	05/16/22 14:46	TTD	XEN STF

Client Sample ID: SB01-02-051322

Date Collected: 05/13/22 12:20

Date Received: 05/14/22 08:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		5	5 mL	5 mL	52953	05/16/22 15:06	TTD	XEN STF

Client Sample ID: TB-01-051322

Date Collected: 05/13/22 07:35

Date Received: 05/14/22 08:10

_											
	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			5 ml	5 ml	52953	05/16/22 10:19	TTD	XFN STF	-

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-26203-1

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 860-26203-1

Lab Sample ID: 860-26203-2

Lab Sample ID: 860-26203-3

Lab Sample ID: 860-26203-4

Lab Sample ID: 860-26203-5

Lab Sample ID: 860-26203-6

Matrix: Water

Eurofins Houston

5/17/2022

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26203-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

3

4

5

7

Q

10

12

14

16

17

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation Job ID: 860-26203-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	XEN STF
5030C	Purge and Trap	SW846	XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-26203-1	SB03-03-051322	Water	05/13/22 08:20	05/14/22 08:10
860-26203-2	SB03-02-051322	Water	05/13/22 08:35	05/14/22 08:10
860-26203-3	SB03-01-051322	Water	05/13/22 08:45	05/14/22 08:10
860-26203-4	SB01-03-051322	Water	05/13/22 11:55	05/14/22 08:10
860-26203-5	SB01-02-051322	Water	05/13/22 12:20	05/14/22 08:10
860-26203-6	TB-01-051322	Water	05/13/22 07:35	05/14/22 08:10

Job ID: 860-26203-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-26203-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/_/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etympio	Senior Project Manager	05/17/2022

3

4

6

9

10

12

4

15

17

4 (

Laboratory Data Package Cover Page - Page 2 of 4

		lame: Eurofins Houston	LRC Date: 05/17/202					
		e: STC Silber Rd Pre-Design Investigation	Laboratory Job Numb	er: 860-	26203-1			
		ame: Bethany McDaniel						
# ¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵
R1	OI	Chain-of-custody (C-O-C)						
1		Did samples meet the laboratory's standard conditions of	✓					
		receipt?						
		Were all departures from standard conditions described in	n an exception report?	✓				
R2	OI	Sample and quality control (QC) identificat						
		Are all field sample ID numbers cross-referenced to the la	✓					
		Are all laboratory ID numbers cross-referenced to the cor	✓					
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding to	mes?	✓				
		Other than those results < MQL, were all other raw value	✓					
		standards?						
		Were calculations checked by a peer or supervisor?	✓					
		Were all analyte identifications checked by a peer or super	✓					
		Were sample detection limits reported for all analytes not		✓				
		Were all results for soil and sediment samples reported o			√			
		Were % moisture (or solids) reported for all soil and sedir			√			
		Were bulk soils/solids samples for volatile analysis extrac	ted with methanol per			✓		
		SW846 Method 5035?			1	✓		
D 4		If required for the project, are TICs reported?				V		
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?	h - l - h - m - t - m - OO lim-it-0	✓ ✓				
		Were surrogate percent recoveries in all samples within t	-	V				
R5	OI	Test reports/summary forms for blank sam	pies					
		Were appropriate type(s) of blanks analyzed?		✓				
		Were blanks analyzed at the appropriate frequency?		✓ ✓				
		Were method blanks taken through the entire analytical p	rocess, including preparation	v				
		and, if applicable, cleanup procedures?		✓				
DC		Were blank concentrations < MQL?		V				
R6	OI	Laboratory control samples (LCS): Were all COCs included in the LCS?		✓				
				✓				
		Was each LCS taken through the entire analytical proced	ure, including prep and	•				
		cleanup steps? Were LCSs analyzed at the required frequency?		✓				
		Were LCS analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the laboration in the labora	ratory OC limits?	V				
		Does the detectability check sample data document the label		· ·				
		detect the COCs at the MDL used to calculate the SDLs?		,				
		Was the LCSD RPD within QC limits?		✓				
R7	OI	Matrix spike (MS) and matrix spike duplica	to (MSD) data					
11/	Oi	Were the project/method specified analytes included in the		√				
		Were MS/MSD analyzed at the appropriate frequency?	and mob :	· ·				
		Were MS (and MSD, if applicable) %Rs within the laborate	tory QC limits?	· /				
		Were MS/MSD RPDs within laboratory QC limits?	,			√		
R8	OI	Analytical duplicate data						
		Were appropriate analytical duplicates analyzed for each	matrix?			✓		
		Were analytical duplicates analyzed at the appropriate fre				√		
		Were RPDs or relative standard deviations within the laboration				✓		
R9	OI	Method quantitation limits (MQLs):						
		Are the MQLs for each method analyte included in the lat	poratory data package?	✓				
		Do the MQLs correspond to the concentration of the lower		✓				
		standard?						
		Are unadjusted MQLs and DCSs included in the laborato	✓					
R10	OI	Other problems/anomalies	· •					
	1	Are all known problems/anomalies/special conditions not	ed in this LRC and ER?	✓				
		Was applicable and available technology used to lower th			✓			1
		interference effects on the sample results?	To the many					
		Is the laboratory NELAC-accredited under the Texas Laboratory	oratory Accreditation Program	✓				
		for the analytes, matrices and methods associated with the						

Page 19 of 24 5/17/2022

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 05/17/2022
Project Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-26203-1
Reviewer Name Bethany McDaniel	•

		e: STC Silber Rd Pre-Design Investigation Laboratory Job Numb	er: 860-	26203-1			
Revie	wer Na	me: Bethany McDaniel					
#¹	A ²	Description	Yes	No	NA ³	NR⁴	ER#
S1 OI		Initial calibration (ICAL)					
	1	Were response factors and/or relative response factors for each analyte within QC	✓				
		limits?					
		Were percent RSDs or correlation coefficient criteria met?	✓				
		Was the number of standards recommended in the method used for all analytes?	✓				
		Were all points generated between the lowest and highest standard used to calculate	✓				
		the curve?					
		Are ICAL data available for all instruments used?	✓				
		Has the initial calibration curve been verified using an appropriate second source	✓				
		standard?					
S2	OI	Initial and continuing calibration verification (ICCV and CCV) and					
		continuing calibration blank (CCB):					
		Was the CCV analyzed at the method-required frequency?	✓				
		Were percent differences for each analyte within the method-required QC limits?	√				
		Was the ICAL curve verified for each analyte?	✓		✓	-	
00		Was the absolute value of the analyte concentration in the inorganic CCB < MDL?			V		
S3	0	Mass spectral tuning					
		Was the appropriate compound for the method used for tuning?	√				
0.4		Were ion abundance data within the method-required QC limits?	V				
S4	0	Internal standards (IS)					
0-		Were IS area counts and retention times within the method-required QC limits?	✓				
S5	OI	Raw data (NELAC Section 5.5.10)					
		Were the raw data (for example, chromatograms, spectral data) reviewed by an	✓				
		analyst?	✓				
		Were data associated with manual integrations flagged on the raw data?	V				
S6	0	Dual column confirmation					
		Did dual column confirmation results meet the method-required QC?			✓		
S7	0	Tentatively identified compounds (TICs)					
		If TICs were requested, were the mass spectra and TIC data subject to appropriate			✓		
	T .	checks?					
S8	ļ	Interference Check Sample (ICS) results					
		Were percent recoveries within method QC limits?			✓		
S9		Serial dilutions, post digestion spikes, and method of standard					
		additions					
		Were percent differences, recoveries, and the linearity within the QC limits specified			✓		
		in the method?					
S10	OI	Method detection limit (MDL) studies					
		Was a MDL study performed for each reported analyte?	✓				
	01	Is the MDL either adjusted or supported by the analysis of DCSs?	✓				
S11	OI	Proficiency test reports					
		Was the laboratory's performance acceptable on the applicable proficiency tests or	✓				1
040		evaluation studies?					
S12	OI	Standards documentation					
		Are all standards used in the analyses NIST-traceable or obtained from other	✓				
040		appropriate sources?					
S13	OI	Compound/analyte identification procedures					
		Are the procedures for compound/analyte identification documented?	√				
044							
S14	OI	Demonstration of analyst competency (DOC)	/				
S14	OI	Was DOC conducted consistent with NELAC Chapter 5?	1				
		Was DOC conducted consistent with NELAC Chapter 5? Is documentation of the analyst's competency up-to-date and on file?	✓ ✓				
S14 S15	OI	Was DOC conducted consistent with NELAC Chapter 5? Is documentation of the analyst's competency up-to-date and on file? Verification/validation documentation for methods (NELAC					
		Was DOC conducted consistent with NELAC Chapter 5? Is documentation of the analyst's competency up-to-date and on file? Verification/validation documentation for methods (NELAC Chapter 5)	✓				
		Was DOC conducted consistent with NELAC Chapter 5? Is documentation of the analyst's competency up-to-date and on file? Verification/validation documentation for methods (NELAC Chapter 5) Are all the methods used to generate the data documented, verified, and validated,					
		Was DOC conducted consistent with NELAC Chapter 5? Is documentation of the analyst's competency up-to-date and on file? Verification/validation documentation for methods (NELAC Chapter 5)	✓				

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

NA = Not applicable;

NR = Not reviewed;

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Laboratory Name: Eurofins Houston	LRC Date: 05/17/2022						
Project Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-26203-1						
Reviewer Name: Bethany McDaniel							
ER#1 Description	R#1 Description						
1 Method 8260C: The following samples were diluted due to the abund	Method 8260C: The following samples were diluted due to the abundance of non-target analytes: SB01-03-051322 (860-26203-4) and						
SB01-02-051322 (860-26203-5). Elevated reporting limits (RLs) are	SB01-02-051322 (860-26203-5). Elevated reporting limits (RLs) are provided.						
1. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).							

Ω

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26203-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Detector: MSD/0 Column: DB-624

	Spike							
Analyte	Added	Result (Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1-Dichloroethane	0.00100	0.00483		mg/L	0.00100	0.000244	03/03/2022	860-43530
1,2-Dichloroethane	0.00100	0.00498		mg/L	0.00100	0.000285	03/03/2022	860-43530
1,1-Dichloroethene	0.00100	0.00411		mg/L	0.00100	0.000216	03/03/2022	860-43530
cis-1,2-Dichloroethene	0.00100	0.00499		mg/L	0.00100	0.000174	03/03/2022	860-43530
Tetrachloroethene	0.00100	0.00463		mg/L	0.00100	0.000500	03/03/2022	860-43530
Trichloroethene	0.00100	0.00503		mg/L	0.00500	0.000424	03/03/2022	860-43530
Vinyl chloride	0.00100	0.00381		ma/l	0.00200	0.000234	03/03/2022	860-43530

5

6

Q

10

12

1 1

10

17

Ver 01/16/2019

17

Camer Tracking No(s)

Chain of Custody Record

Eurofins Xenco, Stafford

4145 Greenbriar Dr

Stafford, TX 77477 Phone (281) 240-4200

None
AsNaO2
Na2O4S
Na2SO3
Na2SO3
H2SO4
TSP Dodecahydrate
Acetone Special Instructions/Note: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont IR ID:HOU-332 み 7 数 7 COC No: 860-6507-2299.1 C Zn Acetate
D Nitric Acid
E NaHSO4
E MeOH
G Amchlor
H Ascorbic Acid
Lee
J DI Water
K EDTA
L EDA Corrected Temp: 3 2 Preservation Ontr Page: | |Page | Total Number of contail, Temp: **4.1** C/F:-09 7/*p*1/*S* Date/Time: Method of Shipment State of Origin: 860-26203 Chain of Custody **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements Lab PM: McDaniel, Bethany A E-Maii Bethany McDaniel@Eurofinset.com Received by: Received by Custom List (7) 8260B र(लग्नीकारककार्य)एक थिए थिए थि। एक राज्य होते Field Filtered Sample (Yes of No.) (Winwater Sinsolld, Onwaste/oll Preservation Code: Water Matrix Water Company ompany Radiological (C=comp, Sample G=grab) Type WO #: D3542628.C CS.TPE.SIL,22-01-02 \mathcal{L} TAT Requested (days): 1 day RUSH Compliance Project: △ Yes △ No PO# Sample Time 072 0735 786 155 Date: Unknown Due Date Requested: Sample Date 2/13/25 5113/22 ZIISIIS INAI13 SIBBL 2/12/1/5 Date/Time: Poison B TRRP Phone: Skin Irritant Deliverable Requested: | | | | | V Other (specify) Custody Seal No. Project Name: STC Silber Road Pre-Design Investigation -02130-2D-755/50- 15/505 1301-03 -05/1322 122150 -357-03-05132 -01-05 1322 4701 St Mary's Lane Suite 300 Sompany: Jacobs Engineering Group, Inc. lohn. Ynfante@jacobs.com Custody Seals Intact: △ Yes △ No Client Information Sample Identification 51301-0A Non-Hazard Empty Kit Relingu Client Contact John Ynfanfe elinquished by: 1303 elinquished by: linquished by State, Zip: TX, 77079 Olty: Houston hone:

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-26203-1

Login Number: 26203 List Source: Eurofins Houston

List Number: 1

Creator: Palmar, Pedro

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	N/A	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

2

4

6

0

40

. .

13

15

17

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-26253-1

Client Project/Site: STC Silber Rd Pre-Design Investigation

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 5/17/2022 6:33:56 PM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

..... LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	9
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
State Forms	20
TRRP Checklist	20
DCS Report	24
Chain of Custody	25
Receipt Checklists	26

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Job ID: 860-26253-1

5

7

ŏ

10

11

12

14

16

17

Eurofins Houston

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26253-1

Job ID: 860-26253-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-26253-1

Receipt

The samples were received on 5/16/2022 2:13 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.6°C

6

4

7

8

3

11

13

14

16

17

Detection Summary

Client: Jacobs Engineering Group, Inc.

Client Sample ID: SB10-03-051622

Project/Site: STC Silber Rd Pre-Design Investigation

sugation	
	Lab Sample ID: 860-26253-1

No Detections.

Client Sample ID: SB10-02-051622	Lab Sample ID: 860-26253-2
----------------------------------	----------------------------

No Detections.

Client Sample ID: SB05-03-051622 Lab Sample ID: 860-26253-3

No Detections.

Client Sample ID: SB05-02-051622 Lab Sample ID: 860-26253-4

Analyte	Result Qu	ualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethene	0.000505 J		0.00100	0.000216	mg/L	1		8260C	 Total/NA

Client Sample ID: SB05-01-051622 Lab Sample ID: 860-26253-5

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethene	0.00106	0.00100	0.000216 mg/L	1	8260C	Total/NA

Client Sample ID: TB-01-051622 Lab Sample ID: 860-26253-6

No Detections.

This Detection Summary does not include radiochemical test results.

Job ID: 860-26253-1

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB10-03-051622

Date Collected: 05/16/22 08:10 Date Received: 05/16/22 14:13 Lab Sample ID: 860-26253-1

Matrix: Water

Job ID: 860-26253-1

Method: 8260C - Volatile (Analyte	•	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/17/22 11:18	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/17/22 11:18	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/17/22 11:18	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/17/22 11:18	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/17/22 11:18	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/17/22 11:18	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/17/22 11:18	1

S	urrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
D	ibromofluoromethane (Surr)	104		75 - 131		05/17/22 11:18	1
To	oluene-d8 (Surr)	101		80 - 117		05/17/22 11:18	1
4-	Bromofluorobenzene (Surr)	100		74 - 124		05/17/22 11:18	1
1,	2-Dichloroethane-d4 (Surr)	102		63 - 144		05/17/22 11:18	1

Client Sample ID: SB10-02-051622

Date Collected: 05/16/22 08:20

Date Received: 05/16/22 14:13

Lab Sample ID: 860-26253-2

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Wethou. 02000 - Volatile	organic compounds by	CONVIC						
Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244 U	0.00100	0.000244	mg/L			05/17/22 11:39	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			05/17/22 11:39	1
1,1-Dichloroethene	0.000216 U	0.00100	0.000216	mg/L			05/17/22 11:39	1
cis-1,2-Dichloroethene	0.000174 U	0.00100	0.000174	mg/L			05/17/22 11:39	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			05/17/22 11:39	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			05/17/22 11:39	1
Vinyl chloride	0.000234 U	0.00200	0.000234	mg/L			05/17/22 11:39	1

Surrogate	%Recovery Qualifie	r Limits	Prepared Analyzed	Dil Fac
Dibromofluoromethane (Surr)	104	75 - 131	05/17/22 11:3	9 1
Toluene-d8 (Surr)	100	80 - 117	05/17/22 11:3	9 1
4-Bromofluorobenzene (Surr)	102	74 - 124	05/17/22 11:3	9 1
1,2-Dichloroethane-d4 (Surr)	101	63 - 144	05/17/22 11:3	9 1

Client Sample ID: SB05-03-051622

Date Collected: 05/16/22 12:20

Date Received: 05/16/22 14:13

Lab	Samp	le	ID:	860	-26	253-3	

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/17/22 11:59	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/17/22 11:59	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/17/22 11:59	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/17/22 11:59	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/17/22 11:59	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/17/22 11:59	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/17/22 11:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		75 - 131					05/17/22 11:59	1
Toluene-d8 (Surr)	102		80 - 117					05/17/22 11:59	1

Eurofins Houston

Page 6 of 26

5

3

5

7

9

11

13

14

16

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB05-03-051622

Date Collected: 05/16/22 12:20

Date Received: 05/16/22 14:13

Lab Sample ID: 860-26253-3

Matrix: Water

Job ID: 860-26253-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		74 - 124		05/17/22 11:59	1
1,2-Dichloroethane-d4 (Surr)	104		63 - 144		05/17/22 11:59	1

Client Sample ID: SB05-02-051622

Date Collected: 05/16/22 12:45 Date Received: 05/16/22 14:13 Lab Sample ID: 860-26253-4

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/17/22 12:20	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/17/22 12:20	1
1,1-Dichloroethene	0.000505	J	0.00100	0.000216	mg/L			05/17/22 12:20	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/17/22 12:20	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/17/22 12:20	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/17/22 12:20	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/17/22 12:20	1
viiiyi oilionao	0.000201	Ü	0.00200	0.000201	g/ <u>_</u>			00/11/22 12:20	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103	75 - 131		05/17/22 12:20	1
Toluene-d8 (Surr)	102	80 - 117		05/17/22 12:20	1
4-Bromofluorobenzene (Surr)	100	74 - 124		05/17/22 12:20	1
1,2-Dichloroethane-d4 (Surr)	102	63 - 144		05/17/22 12:20	1

Client Sample ID: SB05-01-051622

Date Collected: 05/16/22 13:00 Date Received: 05/16/22 14:13 Lab Sample ID: 860-26253-5

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

method. ozoo - volutile	iction. 02000 - volutile organic compounds by comic											
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac			
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/17/22 12:40	1			
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/17/22 12:40	1			
1,1-Dichloroethene	0.00106		0.00100	0.000216	mg/L			05/17/22 12:40	1			
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/17/22 12:40	1			
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/17/22 12:40	1			
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/17/22 12:40	1			
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/17/22 12:40	1			

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103	75 - 13	<u></u>	05/17/22 12:40	1
Toluene-d8 (Surr)	102	80 - 11	7	05/17/22 12:40	1
4-Bromofluorobenzene (Surr)	103	74 - 12	4	05/17/22 12:40	1
1,2-Dichloroethane-d4 (Surr)	103	63 - 14	4	05/17/22 12:40	1

Client Sample ID: TB-01-051622

Date Collected: 05/16/22 07:30 Date Received: 05/16/22 14:13

Lab Sample ID: 860-26253-6

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

metriod. 02000 - volatile Organic Compounds by Como									
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/16/22 17:38	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/16/22 17:38	1

Eurofins Houston

Page 7 of 26 5/17/2022

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: TB-01-051622

Date Collected: 05/16/22 07:30 Date Received: 05/16/22 14:13 Lab Sample ID: 860-26253-6

Matrix: Water

Job ID: 860-26253-1

Method: 8260C - Volatile O	rganic Compo	unds by G	SC/MS (Cont	inued)					
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/16/22 17:38	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/16/22 17:38	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/16/22 17:38	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/16/22 17:38	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/16/22 17:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99		75 - 131					05/16/22 17:38	1
Toluene-d8 (Surr)	99		80 - 117					05/16/22 17:38	1
4-Bromofluorobenzene (Surr)	97		74 - 124					05/16/22 17:38	1
1,2-Dichloroethane-d4 (Surr)	101		63 - 144					05/16/22 17:38	1

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26253-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

2

4

6

Ė

9

4 4

12

15

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26253-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DBFM	TOL	BFB	DCA
Lab Sample ID	Client Sample ID	(75-131)	(80-117)	(74-124)	(63-144)
860-26190-A-3 MS	Matrix Spike	99	97	96	94
860-26253-1	SB10-03-051622	104	101	100	102
860-26253-1 MS	SB10-03-051622	105	100	98	101
860-26253-2	SB10-02-051622	104	100	102	101
860-26253-3	SB05-03-051622	102	102	102	104
860-26253-4	SB05-02-051622	103	102	100	102
860-26253-5	SB05-01-051622	103	102	103	103
860-26253-6	TB-01-051622	99	99	97	101
LCS 860-53050/3	Lab Control Sample	98	99	97	95
LCS 860-53084/3	Lab Control Sample	105	102	101	100
LCSD 860-53050/4	Lab Control Sample Dup	97	97	96	95
LCSD 860-53084/4	Lab Control Sample Dup	106	100	100	103
MB 860-53050/10	Method Blank	100	99	98	99
MB 860-53084/9	Method Blank	103	102	101	102

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

Eurofins Houston

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-53050/10

Matrix: Water

Analysis Batch: 53050

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 860-26253-1

MB MB

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/16/22 10:28	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/16/22 10:28	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/16/22 10:28	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/16/22 10:28	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/16/22 10:28	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/16/22 10:28	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/16/22 10:28	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Dibromofluoromethane (Surr)	100		75 - 131	05/16/22 10:28	1
Toluene-d8 (Surr)	99		80 - 117	05/16/22 10:28	1
4-Bromofluorobenzene (Surr)	98		74 - 124	05/16/22 10:28	1
1,2-Dichloroethane-d4 (Surr)	99		63 - 144	05/16/22 10:28	1

Lab Sample ID: LCS 860-53050/3

Matrix: Water

Vinyl chloride

Analysis Batch: 53050

Client Sample ID: Lab Control Sample Prep Type: Total/NA

60 - 140

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 0.0500 1,1-Dichloroethane 0.04570 mg/L 91 72 - 125 1,2-Dichloroethane 0.0500 0.04745 95 68 - 127 mg/L 0.0500 1,1-Dichloroethene 0.04890 mg/L 98 59 - 172 cis-1,2-Dichloroethene 0.0500 0.04718 mg/L 94 75 - 125 Tetrachloroethene 0.05048 0.0500 mg/L 101 71 - 125 Trichloroethene 0.0500 0.05036 mg/L 101 62 - 137

0.04758

0.0500

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	98		75 - 131
Toluene-d8 (Surr)	99		80 - 117
4-Bromofluorobenzene (Surr)	97		74 - 124
1,2-Dichloroethane-d4 (Surr)	95		63 - 144

Lab Sample ID: LCSD 860-53050/4

Matrix: Water

Analysis Batch: 53050

Client Sample	ID: Lab Control Sample Dup
	Prep Type: Total/NA

95

mg/L

	Spike	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.04607	mg/L		92	72 - 125	1	25
1,2-Dichloroethane	0.0500	0.04865	mg/L		97	68 - 127	2	25
1,1-Dichloroethene	0.0500	0.04884	mg/L		98	59 - 172	0	25
cis-1,2-Dichloroethene	0.0500	0.04845	mg/L		97	75 - 125	3	25
Tetrachloroethene	0.0500	0.05250	mg/L		105	71 - 125	4	25
Trichloroethene	0.0500	0.05141	mg/L		103	62 - 137	2	25
Vinyl chloride	0.0500	0.04937	mg/L		99	60 - 140	4	25

Page 11 of 26

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26253-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-53050/4

Matrix: Water

Analysis Batch: 53050

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 97 75 - 131 Toluene-d8 (Surr) 97 80 - 117 4-Bromofluorobenzene (Surr) 74 - 124 96

Lab Sample ID: 860-26190-A-3 MS

Matrix: Water

Analysis Batch: 53050

1,2-Dichloroethane-d4 (Surr)

Client Sample ID: Matrix Spike

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.000244	U	0.0500	0.04707		mg/L		94	72 - 125	
1,2-Dichloroethane	0.000285	U	0.0500	0.04912		mg/L		98	68 - 127	
1,1-Dichloroethene	0.000216	U	0.0500	0.05041		mg/L		101	59 - 172	
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.05049		mg/L		101	75 - 125	
Tetrachloroethene	0.000500	U	0.0500	0.05414		mg/L		108	71 - 125	
Trichloroethene	0.000424	U	0.0500	0.05318		mg/L		106	62 - 137	
Vinyl chloride	0.000234	U	0.0500	0.04876		mg/L		98	60 - 140	

63 - 144

MS MS

95

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	99		75 - 131
Toluene-d8 (Surr)	97		80 - 117
4-Bromofluorobenzene (Surr)	96		74 - 124
1,2-Dichloroethane-d4 (Surr)	94		63 - 144

Lab Sample ID: MB 860-53084/9

Matrix: Water

Analysis Batch: 53084

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/17/22 10:58	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/17/22 10:58	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/17/22 10:58	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/17/22 10:58	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/17/22 10:58	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/17/22 10:58	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/17/22 10:58	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepa	red Analyzed	Dil Fac
Dibromofluoromethane (Surr)	103	75 - 131		05/17/22 10:58	1
Toluene-d8 (Surr)	102	80 - 117		05/17/22 10:58	1
4-Bromofluorobenzene (Surr)	101	74 - 124		05/17/22 10:58	1
1,2-Dichloroethane-d4 (Surr)	102	63 - 144		05/17/22 10:58	1

Eurofins Houston

Page 12 of 26

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26253-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 860-53084/3

Matrix: Water

Analysis Batch: 53084

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits Analyte 1,1-Dichloroethane 0.0500 0.05226 mg/L 105 72 - 125 1,2-Dichloroethane 0.0500 0.05088 mg/L 102 68 - 127 1,1-Dichloroethene 0.0500 0.05088 mg/L 102 59 - 172 cis-1,2-Dichloroethene 0.0500 0.05055 101 75 - 125 mg/L Tetrachloroethene 0.0500 0.05247 mg/L 105 71 - 125 Trichloroethene 0.0500 0.05127 mg/L 103 62 - 137 Vinyl chloride 0.0500 109 0.05441 60 - 140 mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	105		75 - 131
Toluene-d8 (Surr)	102		80 - 117
4-Bromofluorobenzene (Surr)	101		74 - 124
1,2-Dichloroethane-d4 (Surr)	100		63 - 144

Lab Sample ID: LCSD 860-53084/4

Matrix: Water

Analysis Batch: 53084

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.05103		mg/L		102	72 - 125	2	25
1,2-Dichloroethane	0.0500	0.05054		mg/L		101	68 - 127	1	25
1,1-Dichloroethene	0.0500	0.04872		mg/L		97	59 - 172	4	25
cis-1,2-Dichloroethene	0.0500	0.04991		mg/L		100	75 - 125	1	25
Tetrachloroethene	0.0500	0.05056		mg/L		101	71 - 125	4	25
Trichloroethene	0.0500	0.04952		mg/L		99	62 - 137	3	25
Vinyl chloride	0.0500	0.04856		mg/L		97	60 - 140	11	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	106		75 - 131
Toluene-d8 (Surr)	100		80 - 117
4-Bromofluorobenzene (Surr)	100		74 - 124
1,2-Dichloroethane-d4 (Surr)	103		63 - 144

Lab Sample ID: 860-26253-1 MS

Matrix: Water

Analysis Batch: 53084

Client Sample ID:	SB10-03-051622
Dro	n Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	0.000244	U	0.0500	0.05043		mg/L		101	72 - 125	
1,2-Dichloroethane	0.000285	U	0.0500	0.05274		mg/L		105	68 - 127	
1,1-Dichloroethene	0.000216	U	0.0500	0.04597		mg/L		92	59 - 172	
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.05037		mg/L		101	75 - 125	
Tetrachloroethene	0.000500	U	0.0500	0.04797		mg/L		96	71 - 125	
Trichloroethene	0.000424	U	0.0500	0.04852		mg/L		97	62 - 137	
Vinyl chloride	0.000234	U	0.0500	0.05152		mg/L		103	60 - 140	

Eurofins Houston

Page 13 of 26

Client: Jacobs Engineering Group, Inc. Job ID: 860-26253-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 860-26253-1 MS

Matrix: Water

Analysis Batch: 53084

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	105		75 - 131
Toluene-d8 (Surr)	100		80 - 117
4-Bromofluorobenzene (Surr)	98		74 - 124
1,2-Dichloroethane-d4 (Surr)	101		63 - 144

Client Sample ID: SB10-03-051622 Prep Type: Total/NA

QC Association Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26253-1

GC/MS VOA

Analysis Batch: 53050

Lab Sample ID 860-26253-6	Client Sample ID TB-01-051622	Prep Type Total/NA	Matrix Water	Method 8260C	Prep Batch
MB 860-53050/10	Method Blank	Total/NA	Water	8260C	
LCS 860-53050/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-53050/4	Lab Control Sample Dup	Total/NA	Water	8260C	
860-26190-A-3 MS	Matrix Spike	Total/NA	Water	8260C	

Analysis Batch: 53084

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26253-1	SB10-03-051622	Total/NA	Water	8260C	
860-26253-2	SB10-02-051622	Total/NA	Water	8260C	
860-26253-3	SB05-03-051622	Total/NA	Water	8260C	
860-26253-4	SB05-02-051622	Total/NA	Water	8260C	
860-26253-5	SB05-01-051622	Total/NA	Water	8260C	
MB 860-53084/9	Method Blank	Total/NA	Water	8260C	
LCS 860-53084/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-53084/4	Lab Control Sample Dup	Total/NA	Water	8260C	
860-26253-1 MS	SB10-03-051622	Total/NA	Water	8260C	

Eurofins Houston

5/17/2022

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID: 860-26253-1 Client Sample ID: SB10-03-051622

Date Collected: 05/16/22 08:10 **Matrix: Water**

Date Received: 05/16/22 14:13

Dil Batch Batch Initial Final Batch Prepared Method **Factor Prep Type** Type Run **Amount** Amount Number or Analyzed Analyst Lab Total/NA 53084 05/17/22 11:18 TTD XEN STF Analysis 8260C 5 mL 5 mL

Client Sample ID: SB10-02-051622

Lab Sample ID: 860-26253-2 Date Collected: 05/16/22 08:20 **Matrix: Water**

Date Received: 05/16/22 14:13

Batch Batch Dil Initial Final **Batch Prepared Prep Type** Type Method Run Factor **Amount** Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260C 5 mL 5 mL 53084 05/17/22 11:39 TTD XEN STF

Client Sample ID: SB05-03-051622

Lab Sample ID: 860-26253-3 Date Collected: 05/16/22 12:20 **Matrix: Water**

Date Received: 05/16/22 14:13

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Method **Factor** Number or Analyzed Type Run Amount Amount **Analyst** Lab Total/NA Analysis 8260C 5 mL 53084 05/17/22 11:59 TTD XEN STF 5 mL

Client Sample ID: SB05-02-051622

Lab Sample ID: 860-26253-4 Date Collected: 05/16/22 12:45 **Matrix: Water**

Date Received: 05/16/22 14:13

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Method Factor **Amount** Amount Number or Analyzed Type Run Analyst Lab Analysis 8260C 53084 05/17/22 12:20 TTD XEN STF Total/NA 5 mL 5 mL

Client Sample ID: SB05-01-051622

Lab Sample ID: 860-26253-5 Date Collected: 05/16/22 13:00 **Matrix: Water**

Date Received: 05/16/22 14:13

Batch Batch Dil Initial Final Batch Prepared Amount Method Factor **Amount** Number or Analyzed **Prep Type** Type Run Analyst Lab TTD Total/NA Analysis 8260C 5 mL 5 mL 53084 05/17/22 12:40 XEN STF

Client Sample ID: TB-01-051622

Lab Sample ID: 860-26253-6 Date Collected: 05/16/22 07:30 **Matrix: Water**

Date Received: 05/16/22 14:13

Dil Initial Final Batch Batch Batch Prepared Type Method Factor **Amount** Amount Number or Analyzed **Analyst Prep Type** Run Lab Total/NA Analysis 8260C 5 mL 5 mL 53050 05/16/22 17:38 NA XEN STF

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

5/17/2022

Job ID: 860-26253-1

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26253-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

4

6

Q

9

11

13

14

16

4 C

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation Job ID: 860-26253-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	XEN STF
5030C	Purge and Trap	SW846	XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-26253-1	SB10-03-051622	Water	05/16/22 08:10	05/16/22 14:13
860-26253-2	SB10-02-051622	Water	05/16/22 08:20	05/16/22 14:13
860-26253-3	SB05-03-051622	Water	05/16/22 12:20	05/16/22 14:13
860-26253-4	SB05-02-051622	Water	05/16/22 12:45	05/16/22 14:13
860-26253-5	SB05-01-051622	Water	05/16/22 13:00	05/16/22 14:13
860-26253-6	TB-01-051622	Water	05/16/22 07:30	05/16/22 14:13

Job ID: 860-26253-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-26253-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/_/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	8th moil	Senior Project Manager	05/17/2022

3

4

5

7

9

11

13

15

17

Laboratory Data Package Cover Page - Page 2 of 4

		lame: Eurofins Houston	LRC Date: 05/17/202					
		e: STC Silber Rd Pre-Design Investigation	Laboratory Job Numb	er: 860-	26253-1			
		ame: Bethany McDaniel						
# ¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵
R1	OI	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of	sample acceptability upon	✓				
		receipt?						
		Were all departures from standard conditions described in		✓				
R2	OI	Sample and quality control (QC) identificat	ion					
		Are all field sample ID numbers cross-referenced to the la		✓				
		Are all laboratory ID numbers cross-referenced to the cor	responding QC data?	✓				
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding ti		✓				
		Other than those results < MQL, were all other raw values	s bracketed by calibration	✓				
		standards?						
		Were calculations checked by a peer or supervisor?		√				
		Were all analyte identifications checked by a peer or super		✓				
		Were sample detection limits reported for all analytes not		✓		1		
		Were all results for soil and sediment samples reported o				√		
		Were % moisture (or solids) reported for all soil and sedin	· · · · · · · · · · · · · · · · · · ·			/		
		Were bulk soils/solids samples for volatile analysis extrac	ted with methanol per			✓		
		SW846 Method 5035?				 		
<u> </u>		If required for the project, are TICs reported?				*		
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?	00 5-34	√				
		Were surrogate percent recoveries in all samples within the	<u>-</u>	✓				
R5	OI							
		Were appropriate type(s) of blanks analyzed?		√				
		Were blanks analyzed at the appropriate frequency?		√				
		Were method blanks taken through the entire analytical p	rocess, including preparation	✓				
		and, if applicable, cleanup procedures?		✓				
D		Were blank concentrations < MQL?		V				
R6	OI	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		√				
		Was each LCS taken through the entire analytical proced	ure, including prep and	✓				
		cleanup steps?		✓				
		Were LCSs analyzed at the required frequency? Were LCS (and LCSD, if applicable) %Rs within the labor	estant OC limita?	V /				
				✓				
		Does the detectability check sample data document the la		•				
		detect the COCs at the MDL used to calculate the SDLs? Was the LCSD RPD within QC limits?		✓				
R7	OI	Matrix spike (MS) and matrix spike duplica	to (MCD) data	•				
N/	Oi	Were the project/method specified analytes included in the		✓				
		Were MS/MSD analyzed at the appropriate frequency?	C IVIO AIIU IVIOD!	V /		-		
		Were MS (and MSD, if applicable) %Rs within the laborate	ory OC limits?	V /				
		Were MS/MSD RPDs within laboratory QC limits?	ory so mino:	1		/		
R8	OI	Analytical duplicate data						
10	U	Were appropriate analytical duplicates analyzed for each	matrix?			 		
		Were analytical duplicates analyzed at the appropriate fre				\ \ \ \		
		Were RPDs or relative standard deviations within the laborations				▼		
R9	OI	Method quantitation limits (MQLs):	ratery do mino:					
13	U	Are the MQLs for each method analyte included in the lab	oratory data nackage?	✓				
		Do the MQLs correspond to the concentration of the lower		✓		+		
		standard?	St HOH-ZEIU CAIIDIAUUH					
		Are unadjusted MQLs and DCSs included in the laborator	v data package?	✓		+		
R10	OI	Other problems/anomalies	, and paonago:					
N I U	U	Are all known problems/anomalies/special conditions note	ad in this LRC and ED2	✓				
		·		V ✓		+		
		Was applicable and available technology used to lower th	e טעב נופ matrix	Y				
		interference effects on the sample results?	protony Approditation Program	✓		+		
		Is the laboratory NELAC-accredited under the Texas Laboratory network and methods associated with the						
		for the analytes, matrices and methods associated with the	iis iaboratory uata package?	1	1	1	1	

Page 21 of 26 5/17/2022

Ē

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 05/17/2022
Project Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-26253-1
Reviewer Name: Bethany McDaniel	•

		ne: STC Silber Rd Pre-Design Investigation Laboratory Job Nu	ımber: 860-	26253-1			
Revie	wer Na	ame: Bethany McDaniel					
# ¹	A ²	Description	Yes	No	NA ³	NR⁴	ER#
S1	OI	Initial calibration (ICAL)					
	_	Were response factors and/or relative response factors for each analyte within QC	✓				
		limits?					
		Were percent RSDs or correlation coefficient criteria met?	✓				
		Was the number of standards recommended in the method used for all analytes?	✓				
		Were all points generated between the lowest and highest standard used to calculate	, 1				
		the curve?					
		Are ICAL data available for all instruments used?	✓				
		Has the initial calibration curve been verified using an appropriate second source	✓				
		standard?					
S2	OI	Initial and continuing calibration verification (ICCV and CCV) ar	nd				
		continuing calibration blank (CCB):					
	1	Was the CCV analyzed at the method-required frequency?	✓				
		Were percent differences for each analyte within the method-required QC limits?	✓				
		Was the ICAL curve verified for each analyte?	✓				
		Was the absolute value of the analyte concentration in the inorganic CCB < MDL?			✓		
S3	0	Mass spectral tuning					
		Was the appropriate compound for the method used for tuning?	✓				
		Were ion abundance data within the method-required QC limits?	✓				
S4	0	Internal standards (IS)					
•		Were IS area counts and retention times within the method-required QC limits?	✓				
S5	OI	Raw data (NELAC Section 5.5.10)					
00	Oi	Were the raw data (for example, chromatograms, spectral data) reviewed by an	✓				
		analyst?					
		Were data associated with manual integrations flagged on the raw data?	✓				
S6	0	Dual column confirmation					
30		Did dual column confirmation Did dual column confirmation results meet the method-required QC?			✓		
S7	0	·			,		
31	0	Tentatively identified compounds (TICs)			✓		
		If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			'		
S8	1	Interference Check Sample (ICS) results					
30	1	Were percent recoveries within method QC limits?			 		
60	1	·			,		
S9	ı	Serial dilutions, post digestion spikes, and method of standard					
		additions					
		Were percent differences, recoveries, and the linearity within the QC limits specified			✓		
040		in the method?					
S10	OI	Method detection limit (MDL) studies					
		Was a MDL study performed for each reported analyte?	√				
		Is the MDL either adjusted or supported by the analysis of DCSs?	✓				
S11	OI	Proficiency test reports					
		Was the laboratory's performance acceptable on the applicable proficiency tests or	✓				
		evaluation studies?					
S12	OI	Standards documentation					
		Are all standards used in the analyses NIST-traceable or obtained from other	✓				
		appropriate sources?					
S13	OI	Compound/analyte identification procedures	✓				
		Are the procedures for compound/analyte identification documented?					
S14	OI	Demonstration of analyst competency (DOC)					
		Was DOC conducted consistent with NELAC Chapter 5?	✓				
		Is documentation of the analyst's competency up-to-date and on file?	✓				
S15	OI	Verification/validation documentation for methods (NELAC					
313 UI		Chapter 5)					
	1		✓				
	1	Are all the methods used to generate the data documented, verified, and validated.					1
		Are all the methods used to generate the data documented, verified, and validated,					
S16	OI	Are all the methods used to generate the data documented, verified, and validated, where applicable? Laboratory standard operating procedures (SOPs)					

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

Page 22 of 26

2

3

4

7

9

11 12

13

15

17

10

5/17/2022

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

^{3.} NA = Not applicable;

NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Labora	tory Name: Eurofins Houston	LRC Date: 05/17/2022				
Project	: Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-26253-1				
Review	ver Name: Bethany McDaniel					
ER#1	Description					
	No Exceptions					
1. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).						

9

Ę

6

Ω

9

44

12

4 4

15

17

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26253-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A292 Column: DB-624 **Detector: MSD/0**

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1-Dichloroethane	0.00500	0.00501		mg/L	0.00100	0.000244	01/07/2022	860-36806
1,2-Dichloroethane	0.00500	0.00493		mg/L	0.00100	0.000285	01/07/2022	860-36806
1,1-Dichloroethene	0.00500	0.00500		mg/L	0.00100	0.000216	01/07/2022	860-36806
cis-1,2-Dichloroethene	0.00500	0.00502		mg/L	0.00100	0.000174	01/07/2022	860-36806
Tetrachloroethene	0.00500	0.00523		mg/L	0.00100	0.000500	01/07/2022	860-36806
Trichloroethene	0.00500	0.00484	J	mg/L	0.00500	0.000424	01/07/2022	860-36806
Vinyl chloride	0.00500	0.00496		mg/L	0.00200	0.000234	01/07/2022	860-36806

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Column: DB-624

mstrument. A323	Det	ector. Mad/u					Colullii. DB-024
	Spike						
Analyte	Added	Result Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1-Dichloroethane	0.00100	0.00483	mg/L	0.00100	0.000244	03/03/2022	860-43530
1,2-Dichloroethane	0.00100	0.00498	mg/L	0.00100	0.000285	03/03/2022	860-43530
1,1-Dichloroethene	0.00100	0.00411	mg/L	0.00100	0.000216	03/03/2022	860-43530
cis-1,2-Dichloroethene	0.00100	0.00499	mg/L	0.00100	0.000174	03/03/2022	860-43530
Tetrachloroethene	0.00100	0.00463	mg/L	0.00100	0.000500	03/03/2022	860-43530
Trichloroethene	0.00100	0.00503	mg/L	0.00500	0.000424	03/03/2022	860-43530
Vinyl chloride	0.00100	0.00381	mg/L	0.00200	0.000234	03/03/2022	860-43530

Eurofins Xenco, Stafford 4145 Greenbriar Dr Stafford, TX 77477 Phone (281) 240-4200	Chain of Custody Record	dy Record		💸 eurofins Environment Testing	딸
Client Information	Sampler	Lab Рм: McDaniel Bethany A	Carrier Tracking No(s).	COC No: 860-6507-2299.1	
Client Contact. John Ynfante	Phone;	E-Mail: Bethany McDaniel@Eurofinset.com	State of Origin:	Page of	
Company Jacobs Engineering Group, Inc.	PWSID:	۰.	Requested		
Address: 14701 St. Mary's Lane Suite 300	Due Date Requested:			eservation Codes:	
City Houston	TAT Requested (days): 1 day RUSH			A TOL M REXARE B NaOH N None C Zn Acetate O AsNaO2	
.p: 7079	Compliance Project: A Yes A No		-	Nitric Acid NaHSO4	
Phone:	PO#	ş N.		MeCH Amehlor S Ascorbic Acid	-
	WO#; D3542628.C CS.TPE.SIL.22-01-02		91	i ice U	
Project Name STC Silber Road Pre-Design Investigation	Project #: 86002024	deret	enietr		
	SSOW#:	(3) (6) ₁ (Other	
	Sample Type Sample (C=comp,	Matrix (Warner (WOD)) Grand Filtered (MOD) Grand Filtered (MOD)	ţāl γnmpet		
Sample Identification	Sample Date Time G=grab) BT-msse, A-A. Preservation Code:		» 1 X	Special Instructions/Note:	Т
\$ \$120-63-05 422	5/16/21 08/0 6				Γ
229150-10-01805 25	S	Water	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
59-525	S	Water	M		
[CX	9	Water	<u>~</u>		
21305-01-051622	6	Water X	3		
113-01-05/62	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Water	7		
	^	Water			
	>	1			
		Water Temp. 2.5 IR ID:HOU-332	DU-332		
REG. 26253 Chain of Custody	>	Water C/F-0.9 Corrected Temp: 6			
	^	Water			
Possible Hazard Identification Non-Hazard — Flammable — Skin Initant — Pois	Poison B 🔲 Unknown 🗀 Radiological	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For	assessed if samples are retain Disposal By Lab	tained longer than 1 month) Archive For Months	
		Special Instructions/QC Requirements	ints:		
Empty Kit Relinquished by:	Date:	Time:	Method of Shipment:		П
Relinquished by	5/14/12 1335		Date/Ting	6 122 (Rangeny	
Relinquished by Relinquished by Relinquished by	Date/Time: Soll Death Com	Company Received by Commany Received by	Sylfine.	2 1413 CompanyEx	
Custody Seals Intact: Custody Seal No.				A policy	T
Δ Yes Δ No				01116/1010	\neg

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-26253-1

Login Number: 26253 List Source: Eurofins Houston

List Number: 1

Creator: Palmar, Pedro

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	N/A	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

2

Δ

5

10

12

4 4

15

17

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-26450-1

Client Project/Site: STC Silber Rd Pre-Design Investigation

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 5/20/2022 5:18:02 PM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

5

7

_

10

11

13

14

15

10

17

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	9
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
State Forms	18
TRRP Checklist	18
DCS Report	22
Chain of Custody	23
Receipt Checklists	24

3

4

8

10

12

10

15

17

Definitions/Glossary

Client: Jacobs Engineering Group, Inc. Job ID: 860-26450-1

Project/Site: STC Silber Rd Pre-Design Investigation

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description** Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

N1 MS, MSD: Spike recovery exceeds upper or lower control limits.

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Houston

Page 3 of 24 5/20/2022

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26450-1

Job ID: 860-26450-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-26450-1

Receipt

The samples were received on 5/19/2022 12:37 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3° C

4

7

8

9

11

1 4

14

13

17

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB17-03-051822 Lab Sample ID: 860-26450-1

No Detections.

Client Sample ID: SB17-02-051822 Lab Sample ID: 860-26450-2

No Detections.

Client Sample ID: MW-181-051922 Lab Sample ID: 860-26450-3

No Detections.

Client Sample ID: MW-182-051922 Lab Sample ID: 860-26450-4

No Detections.

Client Sample ID: MW-163-051922 Lab Sample ID: 860-26450-5

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.0189	0.00100	0.000244	mg/L	1	_	8260C	Total/NA
cis-1,2-Dichloroethene	0.00453	0.00100	0.000174	mg/L	1		8260C	Total/NA
Tetrachloroethene	0.00390	0.00100	0.000500	mg/L	1		8260C	Total/NA
Trichloroethene	0.00234 J	0.00500	0.000424	mg/L	1		8260C	Total/NA
Vinyl chloride	0.00227	0.00200	0.000234	mg/L	1		8260C	Total/NA

Client Sample ID: FD-01-051922 Lab Sample ID: 860-26450-6

No Detections.

Client Sample ID: TB-01-051822 Lab Sample ID: 860-26450-7

No Detections.

This Detection Summary does not include radiochemical test results.

5/20/2022

Job ID: 860-26450-1

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: SB17-03-051822

Date Collected: 05/18/22 13:40 Date Received: 05/19/22 12:37

Lab Sample ID: 860-26450-1

Matrix: Water

Job ID: 860-26450-1

Method: 8260C - Volatile	Organic Compou	ınds by	GC/MS
Analyte	Result	Qualifier	MQL

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/19/22 17:51	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/19/22 17:51	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/19/22 17:51	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/19/22 17:51	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/19/22 17:51	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/19/22 17:51	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/19/22 17:51	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Dibromofluoromethane (Surr)	94	75 - 131	05/19/22 17:5	1 1
Toluene-d8 (Surr)	99	80 - 117	05/19/22 17:5	51 1
4-Bromofluorobenzene (Surr)	99	74 - 124	05/19/22 17:5	51 1
1,2-Dichloroethane-d4 (Surr)	100	63 - 144	05/19/22 17:5	1 1

Client Sample ID: SB17-02-051822

Date Collected: 05/18/22 14:30

Date Received: 05/19/22 12:37

Lab Sample ID: 860-26450-2

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

	welliou. 62600 - volalile Organ	ne compo	unus by G	C/IVIS						
	Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/19/22 18:09	1
	1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/19/22 18:09	1
	1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/19/22 18:09	1
İ	cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/19/22 18:09	1
	Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/19/22 18:09	1
	Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/19/22 18:09	1
ı	Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/19/22 18:09	1

Surrogate	%Recovery G	Qualifier Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	97	75 - 131	05	/19/22 18:09	1
Toluene-d8 (Surr)	99	80 - 117	05	/19/22 18:09	1
4-Bromofluorobenzene (Surr)	101	74 - 124	05.	/19/22 18:09	1
1,2-Dichloroethane-d4 (Surr)	99	63 - 144	05	/19/22 18:09	1

Client Sample ID: MW-181-051922

Date Collected: 05/19/22 09:05

Date Received: 05/19/22 12:37

Toluene-d8 (Surr)

Matrix: Water

Method: 8260C - Volatile Organic	Compounds by GC/MS
A. a. lt.	Desuit Ouslities MOI

101

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/19/22 16:54	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/19/22 16:54	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/19/22 16:54	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/19/22 16:54	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/19/22 16:54	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/19/22 16:54	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/19/22 16:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	97		75 - 131					05/19/22 16:54	1

80 - 117

Eurofins Houston

05/19/22 16:54

Page 6 of 24 5/20/2022

Client Sample ID: MW-181-051922

Date Collected: 05/19/22 09:05

Lab Sample ID: 860-26450-3

Matrix: Water

Date Collected: 05/19/22 09:05 Date Received: 05/19/22 12:37

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		74 - 124		05/19/22 16:54	1
1,2-Dichloroethane-d4 (Surr)	101		63 - 144		05/19/22 16:54	1

Client Sample ID: MW-182-051922

Date Collected: 05/19/22 09:55 Date Received: 05/19/22 12:37 Lab Sample ID: 860-26450-4 Matrix: Water

Job ID: 860-26450-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244 U	0.00100	0.000244	mg/L			05/19/22 17:13	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			05/19/22 17:13	1
1,1-Dichloroethene	0.000216 U	0.00100	0.000216	mg/L			05/19/22 17:13	1
cis-1,2-Dichloroethene	0.000174 U	0.00100	0.000174	mg/L			05/19/22 17:13	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			05/19/22 17:13	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			05/19/22 17:13	1
Vinyl chloride	0.000234 U	0.00200	0.000234	mg/L			05/19/22 17:13	1

1						
	Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
	Dibromofluoromethane (Surr)	95	75 - 131		05/19/22 17:13	1
	Toluene-d8 (Surr)	101	80 - 117		05/19/22 17:13	1
	4-Bromofluorobenzene (Surr)	100	74 - 124		05/19/22 17:13	1
	1,2-Dichloroethane-d4 (Surr)	101	63 - 144		05/19/22 17:13	1

Client Sample ID: MW-163-051922

Date Collected: 05/19/22 10:55 Date Received: 05/19/22 12:37 Lab Sample ID: 860-26450-5

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	•	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0189		0.00100	0.000244	mg/L			05/19/22 17:32	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/19/22 17:32	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/19/22 17:32	1
cis-1,2-Dichloroethene	0.00453		0.00100	0.000174	mg/L			05/19/22 17:32	1
Tetrachloroethene	0.00390		0.00100	0.000500	mg/L			05/19/22 17:32	1
Trichloroethene	0.00234	J	0.00500	0.000424	mg/L			05/19/22 17:32	1
Vinyl chloride	0.00227		0.00200	0.000234	mg/L			05/19/22 17:32	1

Surrogate	%Recovery	Qualifier Limit	S Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	96	75 - 1	31	05/19/22 17:32	1
Toluene-d8 (Surr)	101	80 - 1	17	05/19/22 17:32	1
4-Bromofluorobenzene (Surr)	99	74 - 1	24	05/19/22 17:32	1
1,2-Dichloroethane-d4 (Surr)	100	63 - 1	14	05/19/22 17:32	1

Client Sample ID: FD-01-051922

Date Collected: 05/19/22 00:00 Date Received: 05/19/22 12:37 Lab Sample ID: 860-26450-6

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Method. 02000 - Volatile Organ	ic compo	unus by G	Crivio						
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/19/22 16:35	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/19/22 16:35	1

Eurofins Houston

Page 7 of 24 5/20/2022

3

4

6

9

11 12

13

15

17

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Client Sample ID: FD-01-051922

Date Collected: 05/19/22 00:00

Date Received: 05/19/22 12:37

Lab Sample ID: 860-26450-6

Lab Sample ID: 860-26450-7

05/19/22 16:16

Matrix: Water

Matrix: Water

Job ID: 860-26450-1

Method: 8260C - Volatile O	rganic Compo	unds by G	SC/MS (Cont	inued)					
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/19/22 16:35	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/19/22 16:35	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/19/22 16:35	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/19/22 16:35	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/19/22 16:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	95		75 - 131					05/19/22 16:35	1
Toluene-d8 (Surr)	101		80 - 117					05/19/22 16:35	1
4-Bromofluorobenzene (Surr)	99		74 - 124					05/19/22 16:35	1
1.2-Dichloroethane-d4 (Surr)	101		63 - 144					05/19/22 16:35	1

Client Sample ID: TB-01-051822

Date Collected: 05/18/22 10:00

Date Received: 05/19/22 12:37

1,2-Dichloroethane-d4 (Surr)

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/19/22 16:16	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/19/22 16:16	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/19/22 16:16	1
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			05/19/22 16:16	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			05/19/22 16:16	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			05/19/22 16:16	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			05/19/22 16:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99		75 - 131			•		05/19/22 16:16	1
Toluene-d8 (Surr)	103		80 - 117					05/19/22 16:16	1
4-Bromofluorobenzene (Surr)	101		74 - 124					05/19/22 16:16	1

63 - 144

103

Eurofins Houston

Page 8 of 24

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26450-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

4

9

7

8

10

11

13

15

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	gate Recov
		DBFM	TOL	BFB	DCA
Lab Sample ID	Client Sample ID	(75-131)	(80-117)	(74-124)	(63-144)
860-26450-1	SB17-03-051822	94	99	99	100
860-26450-2	SB17-02-051822	97	99	101	99
860-26450-3	MW-181-051922	97	101	99	101
860-26450-4	MW-182-051922	95	101	100	101
860-26450-5	MW-163-051922	96	101	99	100
860-26450-5 MS	MW-163-051922	100	98	95	98
860-26450-5 MSD	MW-163-051922	102	99	101	104
860-26450-6	FD-01-051922	95	101	99	101
860-26450-7	TB-01-051822	99	103	101	103
LCS 860-53551/1010	Lab Control Sample	100	101	99	101
LCSD 860-53551/11	Lab Control Sample Dup	104	101	100	102
MB 860-53551/15	Method Blank	94	101	96	101

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

Job ID: 860-26450-1

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-53551/15

Matrix: Water

Analyte

Vinyl chloride

Analysis Batch: 53551

Client Sample ID: Method Blank Prep Type: Total/NA

05/19/22 13:54

Job ID: 860-26450-1

MB MB Result Qualifier SDL Unit Dil Fac MQL (Adj) D Prepared Analyzed 1,1-Dichloroethane 0.000244 U 0.00100 0.000244 mg/L 05/19/22 13:54 1,2-Dichloroethane 0.000285 U 0.00100 0.000285 mg/L 05/19/22 13:54 1 1,1-Dichloroethene 0.000216 U 0.00100 0.000216 mg/L 05/19/22 13:54 0.000174 U 0.00100 0.000174 mg/L cis-1,2-Dichloroethene 05/19/22 13:54 Tetrachloroethene 0.000500 U 0.00100 0.000500 mg/L 05/19/22 13:54 Trichloroethene 0.000424 U 0.00500 0.000424 mg/L 05/19/22 13:54

0.000234 mg/L

MB MB

0.000234 U

	100	W.D						
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
Dibromofluoromethane (Surr)	94		75 - 131	•		05/19/22 13:54	1	
Toluene-d8 (Surr)	101		80 - 117			05/19/22 13:54	1	
4-Bromofluorobenzene (Surr)	96		74 - 124			05/19/22 13:54	1	
1,2-Dichloroethane-d4 (Surr)	101		63 - 144			05/19/22 13:54	1	

0.00200

Lab Sample ID: LCS 860-53551/1010

Matrix: Water

Analysis Batch: 53551

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 1,1-Dichloroethane 0.0500 114 72 - 125 0.05676 mg/L 1,2-Dichloroethane 0.0500 113 0.05635 mg/L 68 - 1271.1-Dichloroethene 0.0500 0.05416 mg/L 108 59 - 172 cis-1,2-Dichloroethene 0.0500 0.05407 108 75 - 125 mg/L Tetrachloroethene 0.0500 0.05075 mg/L 102 71 - 125Trichloroethene 0.0500 0.05505 mg/L 110 62 - 137 Vinyl chloride 0.0500 0.05043 101 60 - 140 mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	100		75 - 131
Toluene-d8 (Surr)	101		80 - 117
4-Bromofluorobenzene (Surr)	99		74 - 124
1,2-Dichloroethane-d4 (Surr)	101		63 - 144

Lab Sample ID: LCSD 860-53551/11

Matrix: Water

Analysis Batch: 53551

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0500	0.05632		mg/L		113	72 - 125	1	25
1,2-Dichloroethane	0.0500	0.05764		mg/L		115	68 - 127	2	25
1,1-Dichloroethene	0.0500	0.05712		mg/L		114	59 - 172	5	25
cis-1,2-Dichloroethene	0.0500	0.05660		mg/L		113	75 - 125	5	25
Tetrachloroethene	0.0500	0.05226		mg/L		105	71 - 125	3	25
Trichloroethene	0.0500	0.05518		mg/L		110	62 - 137	0	25
Vinyl chloride	0.0500	0.05323		mg/L		106	60 - 140	5	25

Eurofins Houston

Page 11 of 24

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26450-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-53551/11

Matrix: Water

Analysis Batch: 53551

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Recovery Qualifier Limits Surrogate Dibromofluoromethane (Surr) 104 75 - 131 Toluene-d8 (Surr) 101 80 - 117 100 4-Bromofluorobenzene (Surr) 74 - 124 1,2-Dichloroethane-d4 (Surr) 102 63 - 144

Lab Sample ID: 860-26450-5 MS

Matrix: Water

Analysis Batch: 53551

Client Sample ID: MW-163-051922

Prep Type: Total/NA

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 1.1-Dichloroethane 0.0189 0.0500 0.07817 72 - 125 mg/L 119 1,2-Dichloroethane 0.000285 U 0.0500 0.05579 mg/L 112 68 - 127 1,1-Dichloroethene 0.000216 U 0.0500 0.09627 N1 mg/L 193 59 - 172 cis-1,2-Dichloroethene 0.00453 0.0500 0.06266 mg/L 116 75 - 125 Tetrachloroethene 100 0.00390 0.0500 0.05402 mg/L 71 - 125 Trichloroethene 0.00234 0.0500 0.05983 mg/L 115 62 - 137Vinyl chloride 0.00227 0.0500 0.05384 103 60 - 140 mg/L

MS MS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	100		75 - 131
Toluene-d8 (Surr)	98		80 - 117
4-Bromofluorobenzene (Surr)	95		74 - 124
1,2-Dichloroethane-d4 (Surr)	98		63 - 144

Lab Sample ID: 860-26450-5 MSD

Matrix: Water

Analysis Batch: 53551

Client Sample ID: MW-163-051922

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	0.0189		0.0500	0.07732		mg/L		117	72 - 125	1	25
1,2-Dichloroethane	0.000285	U	0.0500	0.05814		mg/L		116	68 - 127	4	25
1,1-Dichloroethene	0.000216	U	0.0500	0.09434	N1	mg/L		189	59 - 172	2	25
cis-1,2-Dichloroethene	0.00453		0.0500	0.06265		mg/L		116	75 - 125	0	25
Tetrachloroethene	0.00390		0.0500	0.05721		mg/L		107	71 - 125	6	25
Trichloroethene	0.00234	J	0.0500	0.05825		mg/L		112	62 - 137	3	25
Vinyl chloride	0.00227		0.0500	0.05257		mg/L		101	60 - 140	2	25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	102		75 - 131
Toluene-d8 (Surr)	99		80 - 117
4-Bromofluorobenzene (Surr)	101		74 - 124
1.2-Dichloroethane-d4 (Surr)	104		63 - 144

Eurofins Houston

Page 12 of 24

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26450-1

GC/MS VOA

Analysis Batch: 53551

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26450-1	SB17-03-051822	Total/NA	Water	8260C	
860-26450-2	SB17-02-051822	Total/NA	Water	8260C	
860-26450-3	MW-181-051922	Total/NA	Water	8260C	
860-26450-4	MW-182-051922	Total/NA	Water	8260C	
860-26450-5	MW-163-051922	Total/NA	Water	8260C	
860-26450-6	FD-01-051922	Total/NA	Water	8260C	
860-26450-7	TB-01-051822	Total/NA	Water	8260C	
MB 860-53551/15	Method Blank	Total/NA	Water	8260C	
LCS 860-53551/1010	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-53551/11	Lab Control Sample Dup	Total/NA	Water	8260C	
860-26450-5 MS	MW-163-051922	Total/NA	Water	8260C	
860-26450-5 MSD	MW-163-051922	Total/NA	Water	8260C	

A

5

6

8

. .

15

13

15

17

Job ID: 860-26450-1

Client Sample ID: SB17-03-051822

Date Collected: 05/18/22 13:40 Date Received: 05/19/22 12:37 Lab Sample ID: 860-26450-1 **Matrix: Water**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	53551	05/19/22 17:51	NA	XEN STF

Client Sample ID: SB17-02-051822

Lab Sample ID: 860-26450-2 Date Collected: 05/18/22 14:30 **Matrix: Water**

Date Received: 05/19/22 12:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	53551	05/19/22 18:09	NA	XEN STF

Client Sample ID: MW-181-051922

Lab Sample ID: 860-26450-3 Date Collected: 05/19/22 09:05 **Matrix: Water**

Date Received: 05/19/22 12:37

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	53551	05/19/22 16:54	NA	XEN STF

Client Sample ID: MW-182-051922

Lab Sample ID: 860-26450-4

Date Collected: 05/19/22 09:55 **Matrix: Water**

Date Received: 05/19/22 12:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	53551	05/19/22 17:13	NA	XEN STF

Client Sample ID: MW-163-051922

Lab Sample ID: 860-26450-5 Date Collected: 05/19/22 10:55 **Matrix: Water**

Date Received: 05/19/22 12:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	53551	05/19/22 17:32	NA	XEN STF

Client Sample ID: FD-01-051922

Lab Sample ID: 860-26450-6 Date Collected: 05/19/22 00:00 **Matrix: Water**

Date Received: 05/19/22 12:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	53551	05/19/22 16:35	NA	XEN STF

Client Sample ID: TB-01-051822

Lab Sample ID: 860-26450-7 Date Collected: 05/18/22 10:00 **Matrix: Water**

Date Received: 05/19/22 12:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			5 mL	5 mL	53551	05/19/22 16:16	NA	XEN STF	

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

5/20/2022

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation

Job ID: 860-26450-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

-5

4

5

8

10

11

13

15

17

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

MethodMethod DescriptionProtocolLaboratory8260CVolatile Organic Compounds by GC/MSSW846XEN STF5030CPurge and TrapSW846XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-26450-1

2

Λ

_

6

Q

3

11

12

14

16

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-26450-1	SB17-03-051822	Water	05/18/22 13:40	05/19/22 12:37
860-26450-2	SB17-02-051822	Water	05/18/22 14:30	05/19/22 12:37
860-26450-3	MW-181-051922	Water	05/19/22 09:05	05/19/22 12:37
860-26450-4	MW-182-051922	Water	05/19/22 09:55	05/19/22 12:37
860-26450-5	MW-163-051922	Water	05/19/22 10:55	05/19/22 12:37
860-26450-6	FD-01-051922	Water	05/19/22 00:00	05/19/22 12:37
860-26450-7	TB-01-051822	Water	05/18/22 10:00	05/19/22 12:37

Job ID: 860-26450-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-26450-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	05/20/2022

2

4

5

7

9

10

12

14

15

17

Laboratory Data Package Cover Page - Page 2 of 4

Labor	atory N	lame: Eurofins Houston	LRC Date: 05/20/2022					
		e: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-26450-1					
Revie	wer Na	me: Bethany McDaniel						
#¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵
R1	OI	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of sa	mple acceptability upon	✓				
		receipt?	10					
		Were all departures from standard conditions described in a		✓				
R2	OI	Sample and quality control (QC) identification	1					
		Are all field sample ID numbers cross-referenced to the labo		✓ ✓			-	
D2		Are all laboratory ID numbers cross-referenced to the corres	ponding QC data?	V				
R3	OI	Test reports Were all samples prepared and analyzed within holding time	s?	✓				
		Other than those results < MQL, were all other raw values be		· ·				
		standards?						
		Were calculations checked by a peer or supervisor?	✓					
		Were all analyte identifications checked by a peer or supervi	√					
		Were sample detection limits reported for all analytes not de	✓					
		Were all results for soil and sediment samples reported on a			✓	1		
		Were % moisture (or solids) reported for all soil and sedimer			✓			
		Were bulk soils/solids samples for volatile analysis extracted				✓		
		SW846 Method 5035?						
		If required for the project, are TICs reported?			✓			
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?	✓					
		Were surrogate percent recoveries in all samples within the	✓					
R5	OI	Test reports/summary forms for blank sample	es					
		Were appropriate type(s) of blanks analyzed?		√				
		Were blanks analyzed at the appropriate frequency?		√				
		Were method blanks taken through the entire analytical proc	✓					
		and, if applicable, cleanup procedures? Were blank concentrations < MQL?	✓					
DC				V				
R6	OI	Laboratory control samples (LCS): Were all COCs included in the LCS?		✓				
			induding prop and	→ ✓				
		Was each LCS taken through the entire analytical procedure cleanup steps?	, including prep and	,				
		Were LCSs analyzed at the required frequency?		✓				
		Were LCS (and LCSD, if applicable) %Rs within the laborate	orv QC limits?	√				
		Does the detectability check sample data document the laborate		✓				
		detect the COCs at the MDL used to calculate the SDLs?	, , ,					
		Was the LCSD RPD within QC limits?		✓				
R7	OI	Matrix spike (MS) and matrix spike duplicate	(MSD) data					
		Were the project/method specified analytes included in the M		✓				
		Were MS/MSD analyzed at the appropriate frequency?		✓				
		Were MS (and MSD, if applicable) %Rs within the laboratory	QC limits?		✓			1
		Were MS/MSD RPDs within laboratory QC limits?		✓				
R8	OI	Analytical duplicate data						
		Were appropriate analytical duplicates analyzed for each ma				✓		
		Were analytical duplicates analyzed at the appropriate frequ				✓		
		Were RPDs or relative standard deviations within the laborat	tory QC limits?			✓		
R9	OI	Method quantitation limits (MQLs):						
		Are the MQLs for each method analyte included in the labora		✓ ✓		1	1	
		Do the MQLs correspond to the concentration of the lowest i	non-zero calibration	'				
		standard? Are unadjusted MQLs and DCSs included in the laboratory of	lata nackane?	✓				
D40			ана раскаде?	V				
R10	OI	Other problems/anomalies	in this LDC and ED2	✓				
		Are all known problems/anomalies/special conditions noted in		✓			+	
		Was applicable and available technology used to lower the S	DL to minimize the matrix	•				
		interference effects on the sample results? Is the laboratory NELAC-accredited under the Texas Laborat	tory Accreditation Program	✓			-	

Page 19 of 24 5/20/2022

q

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 05/20/2022
Project Name: STC Silber Rd Pre-Design Investigation	Laboratory Job Number: 860-26450-1
Reviewer Name: Bethany McDaniel	•

			Laboratory Job Number: 860-26450-1					
		ame: Bethany McDaniel		1				
# ¹	A ²	Description	Yes	No	NA ³	NR⁴	ER#	
S1	OI	Initial calibration (ICAL)						
		Were response factors and/or relative response factors for each analyte within QC	✓					
		limits?	✓					
		Were percent RSDs or correlation coefficient criteria met? Was the number of standards recommended in the method used for all analytes?	▼					
		•						
		Were all points generated between the lowest and highest standard used to calcula the curve?	ate ,					
		Are ICAL data available for all instruments used?	✓					
		Has the initial calibration curve been verified using an appropriate second source	√					
		standard?						
S2	OI	Initial and continuing calibration verification (ICCV and CCV) a	and					
		continuing calibration blank (CCB):						
		Was the CCV analyzed at the method-required frequency?			✓			
		Were percent differences for each analyte within the method-required QC limits?			✓			
		Was the ICAL curve verified for each analyte?	✓					
		Was the absolute value of the analyte concentration in the inorganic CCB < MDL?			✓			
S3	0	Mass spectral tuning						
		Was the appropriate compound for the method used for tuning?	✓					
		Were ion abundance data within the method-required QC limits?	✓					
S4	0	Internal standards (IS)						
<u> </u>		Were IS area counts and retention times within the method-required QC limits?	✓					
S5 OI		Raw data (NELAC Section 5.5.10)						
30 3.		Were the raw data (for example, chromatograms, spectral data) reviewed by an	✓					
		analyst?						
		Were data associated with manual integrations flagged on the raw data?	✓					
S6	0	Dual column confirmation						
-		Did dual column confirmation results meet the method-required QC?			✓			
S7	0	Tentatively identified compounds (TICs)						
<u> </u>		If TICs were requested, were the mass spectra and TIC data subject to appropriate	,		✓			
		checks?						
S8		Interference Check Sample (ICS) results						
-		Were percent recoveries within method QC limits?			✓			
S9	I	Serial dilutions, post digestion spikes, and method of standar	·d					
•		additions	4					
		Were percent differences, recoveries, and the linearity within the QC limits specified	d		√			
		in the method?	u					
S10	OI	Method detection limit (MDL) studies						
010	_ OI	Was a MDL study performed for each reported analyte?	✓					
		Is the MDL either adjusted or supported by the analysis of DCSs?	✓					
S11	OI	Proficiency test reports						
	<u> </u>	Was the laboratory's performance acceptable on the applicable proficiency tests or	· /					
		evaluation studies?						
S12	OI	Standards documentation						
		Are all standards used in the analyses NIST-traceable or obtained from other	√					
		appropriate sources?						
S13	OI	Compound/analyte identification procedures						
		Are the procedures for compound/analyte identification documented?	✓					
S14	OI	Demonstration of analyst competency (DOC)						
J.7		Was DOC conducted consistent with NELAC Chapter 5?	✓					
		Is documentation of the analyst's competency up-to-date and on file?	√	1	+			
S15	OI	Verification/validation documentation for methods (NELAC						
5.5	"	•						
		Chapter 5) Are all the methods used to generate the data documented, verified, and validated,	─					
			'					
S16	OI	where applicable?						
310	U	Laboratory standard operating procedures (SOPs) Are laboratory SOPs current and on file for each method performed?						
		Are laboratory our sourcent and on the for each method performed?	•					

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

Page 20 of 24

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

NA = Not applicable;

NR = Not reviewed;

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Labora	boratory Name: Eurofins Houston LRC Date: 05/20/2022						
Project Name: STC Silber Rd Pre-Design Investigation Laboratory Job Number: 860-26450-1							
Reviewer Name: Bethany McDaniel							
ER#1	ER#¹ Description						
1	Method 8260C: The matrix spike / matrix spike duplicate (MS/MSD) re	ecoveries for analytical batch 860-53551 were outside control limits. Sample					
matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within							
acceptance limits.							
ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).							

IR

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26450-1

Project/Site: STC Silber Rd Pre-Design Investigation

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A294 Detector: MSD/0 Column: DB-624

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1-Dichloroethane	0.00500	0.00501		mg/L	0.00100	0.000244	02/23/2022	860-42516
1,2-Dichloroethane	0.00500	0.00495		mg/L	0.00100	0.000285	02/23/2022	860-42516
1,1-Dichloroethene	0.00500	0.00478		mg/L	0.00100	0.000216	02/23/2022	860-42516
cis-1,2-Dichloroethene	0.00500	0.00494		mg/L	0.00100	0.000174	02/23/2022	860-42516
Tetrachloroethene	0.00500	0.00496		mg/L	0.00100	0.000500	02/23/2022	860-42516
Trichloroethene	0.00500	0.00510		mg/L	0.00500	0.000424	02/23/2022	860-42516
Vinyl chloride	0.00500	0.00494		mg/L	0.00200	0.000234	02/23/2022	860-42516

_

5

7

8

10

12

13

15

4145 Greenbriar Dr Stafford, TX 77477 Temp.		Chain of Custody Record	cord		Envi	Environment Testing America
	U.323	Lab PM:	Potham, A	Carrier Tracking No(s):	COC No:	
	őj	E-Mail Rethan	E-Mail Bethanv McDaniel@Furoficet com	State of Origin:	Page: of Page	
Company: Jacobs Engineering Group, Inc.	GISMd		Analysis Requested	equested	4	
Address: 14701 St. Mary's Lane Suite 300	Due Date Requested:				eservation Codes.	
Offy Houston	TAT Requested (days): 1 day RUSH				ΣZO	Hexane None AsNaO2
State, Zip: TX, 77079	Compliance Project: A Yes A No		-		Nitric Acid P NaHSO4 Q	a204S la2503
Phorie:	1	(0			MeOH Amchior S Assorbic Acid T	Na2S2O3 H2SO4 TSP Dodecabydrate
Emai John. Ynfante@jacobs.com	WO#: D3542628.C CS.TPE.SIL.22-01-02			81	I Ice U	Acetone MCAA
Project Name: STC Silber Road Pre-Design Investigation	Project #: 86002024	6 人) e	Harry	enleir	K EDTA W	pH 4-5 other (specify)
Site:	SSOW#:	duss	89) (a [.]		Other.	
Sample Identification	Sample Date Time G=	Sample Matrix of Chrwats Caronp. Caron	Mithiamasa		Special Instructions Note	fione/Note
	X	ation Code:	X			ions/note.
51317-03-051822	5/18/22 1340 6	G Water	X			
51317-02-051822	22 1430	G Water	X		0.00	
MW-181-051922	5/14/22 0905	G Water	×	٥٥٥	000	
MW-187-051922		G Water	y	_		
726150-291-MW		Gy Water	X	0 09#	Gentley 6	
FD-01-05-1922	-	G Water	X	92-0	^.	
1B-01-051822	S/18/22 10:00	Water	Y	98		
		Water				
		Water				
		Water				
		Water				
Possible Hazard Identification Non-Hazard Flammable Skin Irritant P	Poison B	Radiological	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	assessed if samples are retain	tained longer than 1 mon Archive For	nth) Months
ested: I II IV Other (specify)	<u>م</u>		Special Instructions/QC Requirements			
Empty Kit Refinduished by	Date:	Time:		Method of Shipment:		
Relinquished by:	-521 22/1/S	Company	Recafwed by:	19	22 (237 Company	John
Relinquished by.	Date/Time:	Сопрапу	Received by:	Дайе/Літле:	Company	afrik.
Refinquished by:	Date/Time;	Company	Received by:	Date/Time:	Сотрану	any
Custody Seals Intact: Custody Seal No.	-		Cooler Temperature(s) °C and Other Remarks	Remarks:		
					Ver	Ver 01/16/2019

Seurofins | Environment Testing | America

Chain of Custody Record

Eurofins Xenco, Stafford
4145 Greenbriar Dr
Stafford, TX 77477
Phone (281) 240-4200
CF-0.

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-26450-1

Login Number: 26450 List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

3

4

46

11

13

15

17

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-28301-1

Client Project/Site: STC Silber Rd Pre-Design Inv Part 2

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 6/22/2022 10:41:27 PM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

Links

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

5

7

0

10

12

13

15

16

1/

T -	I. I	_	_ C	^ -	4 _	4
ı a	n		O t		nte	nts
I G	v		VI.	V		1113

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Default Detection Limits	11
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
State Forms	23
TRRP Checklist	23
DCS Report	27
Chain of Custody	28
Receipt Checklists	29

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28301-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation These commonly used abbreviations may or n	ay not be present in this report.
---	-----------------------------------

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Houston

6/22/2022

Page 3 of 29

3

4

Ę

G

7

0

10

12

19

17

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28301-1

Job ID: 860-28301-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-28301-1

Receipt

The samples were received on 6/21/2022 4:48 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.9°C

4

4

7

8

9

11

16

14

4.6

17

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: SB44-03-062022 Lab Sample ID: 860-28301-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00770		0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.0245		0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.000898	J	0.00100	0.000216	mg/L	1		8260D	Total/NA
Vinyl chloride	0.00352		0.00200	0.000234	mg/L	1		8260D	Total/NA

Client Sample ID: SB44-02-062022	Lab Sample ID: 860-28301-2
	_

Analyte	Result Qual	lifier MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00333	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.0308	0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.00188	0.00100	0.000216	mg/L	1		8260D	Total/NA
Vinyl chloride	0.00563	0.00200	0.000234	mg/L	1		8260D	Total/NA

Client Sample ID: FD-01-062022	Lab Sample ID: 860-28301-3

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00776		0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.0219		0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.000832	J	0.00100	0.000216	mg/L	1		8260D	Total/NA
Vinyl chloride	0.00349		0.00200	0.000234	mg/L	1		8260D	Total/NA

Client Sample ID: TB-01-062022

Lab Sample ID: 860-28301-4

No Detections.

Lab Sample ID: 860-28301-5 **Client Sample ID: SB43-03-062022**

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D I	Method	Prep Type
cis-1,2-Dichloroethene	0.0205	0.00100	0.000174	mg/L	1	_ 8	8260D	Total/NA
1,1-Dichloroethane	0.0136	0.00100	0.000244	mg/L	1	8	8260D	Total/NA
1,1-Dichloroethene	0.00351	0.00100	0.000216	mg/L	1	8	8260D	Total/NA
Tetrachloroethene	0.0143	0.00100	0.000500	mg/L	1	8	8260D	Total/NA
Trichloroethene	0.0339	0.00500	0.000424	mg/L	1	8	8260D	Total/NA
Vinvl chloride	0.00857	0.00200	0.000234	ma/L	1	8	8260D	Total/NA

Client Sample ID: SB43-02-062022	Lab Sample ID: 860-28301-6

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00873	0.00100	0.000244	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethene	0.00628	0.00100	0.000216	mg/L	1		8260D	Total/NA
Vinyl chloride	0.142	0.00200	0.000234	mg/L	1		8260D	Total/NA
cis-1,2-Dichloroethene - DL	1.20	0.100	0.0174	mg/L	100		8260D	Total/NA
Tetrachloroethene - DL	5.60	0.100	0.0500	mg/L	100		8260D	Total/NA
Trichloroethene - DL	2.85	0.500	0.0424	mg/L	100		8260D	Total/NA

Client Sample ID: SB42-03-062022 Lab Sample ID: 860-28301-7

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	0.00111	0.00100	0.000174	mg/L	1	8260D	Total/NA
1,1-Dichloroethane	0.0111	0.00100	0.000244	mg/L	1	8260D	Total/NA
1,1-Dichloroethene	0.00487	0.00100	0.000216	mg/L	1	8260D	Total/NA
Trichloroethene	0.000611 J	0.00500	0.000424	mg/L	1	8260D	Total/NA
Vinyl chloride	0.00465	0.00200	0.000234	mg/L	1	8260D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Houston

Job ID: 860-28301-1

Page 5 of 29 6/22/2022

Detection Summary

Client: Jacobs Engineering Group, Inc.

Client Sample ID: SB42-02-062022

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Lab Sample ID: 860-28301-8

Job ID: 860-28301-1

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D Me	ethod	Prep Type
cis-1,2-Dichloroethene	0.0100	0.00100	0.000174	mg/L	1	82	60D	Total/NA
1,1-Dichloroethane	0.0129	0.00100	0.000244	mg/L	1	82	60D	Total/NA
1,1-Dichloroethene	0.00922	0.00100	0.000216	mg/L	1	82	60D	Total/NA
Tetrachloroethene	0.00200	0.00100	0.000500	mg/L	1	82	60D	Total/NA
Trichloroethene	0.00585	0.00500	0.000424	mg/L	1	82	60D	Total/NA
Vinyl chloride	0.00204	0.00200	0.000234	mg/L	1	82	60D	Total/NA

Client Sample ID: SB42-01-062022

Lab Sample	ID: 86	0-28301-9
------------	--------	-----------

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00421	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.0195	0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.0125	0.00100	0.000216	mg/L	1		8260D	Total/NA
Trichloroethene	0.00129 J	0.00500	0.000424	mg/L	1		8260D	Total/NA
Vinyl chloride	0.00425	0.00200	0.000234	mg/L	1		8260D	Total/NA

9

44

12

4 4

15

17

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: SB44-03-062022

Date Collected: 06/20/22 12:40 Date Received: 06/21/22 16:48 Lab Sample ID: 860-28301-1

Matrix: Water

Job ID: 860-28301-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00770		0.00100	0.000174	mg/L			06/22/22 03:49	1
1,1-Dichloroethane	0.0245		0.00100	0.000244	mg/L			06/22/22 03:49	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/22/22 03:49	1
1,1-Dichloroethene	0.000898	J	0.00100	0.000216	mg/L			06/22/22 03:49	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/22/22 03:49	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/22/22 03:49	1
Vinyl chloride	0.00352		0.00200	0.000234	mg/L			06/22/22 03:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		74 - 124			-		06/22/22 03:49	1
Dibromofluoromethane (Surr)	103		75 - 131					06/22/22 03:49	1
1,2-Dichloroethane-d4 (Surr)	114		63 - 144					06/22/22 03:49	1
Toluene-d8 (Surr)	96		80 - 117					06/22/22 03:49	1

Client Sample ID: SB44-02-062022

Date Collected: 06/20/22 13:30

Date Received: 06/21/22 16:48

Lab Sample ID: 860-28301-2

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00333		0.00100	0.000174	mg/L			06/22/22 04:08	1
1,1-Dichloroethane	0.0308		0.00100	0.000244	mg/L			06/22/22 04:08	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/22/22 04:08	1
1,1-Dichloroethene	0.00188		0.00100	0.000216	mg/L			06/22/22 04:08	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/22/22 04:08	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/22/22 04:08	1
Vinyl chloride	0.00563		0.00200	0.000234	mg/L			06/22/22 04:08	1

Surrogate	%Recovery Qu	ualifier Limits	Prepared Analyz	ed Dil Fac
4-Bromofluorobenzene (Surr)	97	74 - 124	06/22/22	04:08 1
Dibromofluoromethane (Surr)	101	75 - 131	06/22/22	04:08 1
1,2-Dichloroethane-d4 (Surr)	114	63 - 144	06/22/22	04:08 1
Toluene-d8 (Surr)	99	80 - 117	06/22/22	04:08 1

Client Sample ID: FD-01-062022

Date Collected: 06/20/22 00:00

Date Received: 06/21/22 16:48

Lab Sample ID: 860-283	01-3
------------------------	------

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00776		0.00100	0.000174	mg/L			06/22/22 04:27	1
1,1-Dichloroethane	0.0219		0.00100	0.000244	mg/L			06/22/22 04:27	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/22/22 04:27	1
1,1-Dichloroethene	0.000832	J	0.00100	0.000216	mg/L			06/22/22 04:27	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/22/22 04:27	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/22/22 04:27	1
Vinyl chloride	0.00349		0.00200	0.000234	mg/L			06/22/22 04:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		74 - 124			•		06/22/22 04:27	1
Dibromofluoromethane (Surr)	99		75 ₋ 131					06/22/22 04:27	1

Eurofins Houston

Page 7 of 29

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: FD-01-062022

Date Collected: 06/20/22 00:00 Date Received: 06/21/22 16:48

Lab Sample ID: 860-28301-3

Matrix: Water

Job ID: 860-28301-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		63 - 144		06/22/22 04:27	1
Toluene-d8 (Surr)	96		80 - 117		06/22/22 04:27	1

Client Sample ID: TB-01-062022

Date Collected: 06/20/22 07:30 Date Received: 06/21/22 16:48

Lab Sample ID: 860-28301-4

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174 U	0.00100	0.000174	mg/L			06/22/22 03:12	1
1,1-Dichloroethane	0.000244 U	0.00100	0.000244	mg/L			06/22/22 03:12	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			06/22/22 03:12	1
1,1-Dichloroethene	0.000216 U	0.00100	0.000216	mg/L			06/22/22 03:12	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			06/22/22 03:12	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			06/22/22 03:12	1
Vinyl chloride	0.000234 U	0.00200	0.000234	mg/L			06/22/22 03:12	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99	74 - 124		06/22/22 03:12	1
Dibromofluoromethane (Surr)	105	75 - 131		06/22/22 03:12	1
1,2-Dichloroethane-d4 (Surr)	111	63 - 144		06/22/22 03:12	1
Toluene-d8 (Surr)	101	80 - 117		06/22/22 03:12	1

Client Sample ID: SB43-03-062022

Date Collected: 06/21/22 08:15

Date Received: 06/21/22 16:48

Lab Sample ID: 860-28301-5

Matrix: Water

Mathadi 9260D Valatila Organia Campaunda by CC/MS

Method: 8260D - Volatile O	rganic Compour	nas by G	3/IVIS						
Analyte	Result C	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.0205		0.00100	0.000174	mg/L			06/22/22 13:16	1
1,1-Dichloroethane	0.0136		0.00100	0.000244	mg/L			06/22/22 06:02	1
1,2-Dichloroethane	0.000285 L	J	0.00100	0.000285	mg/L			06/22/22 06:02	1
1,1-Dichloroethene	0.00351		0.00100	0.000216	mg/L			06/22/22 06:02	1
Tetrachloroethene	0.0143		0.00100	0.000500	mg/L			06/22/22 13:16	1
Trichloroethene	0.0339		0.00500	0.000424	mg/L			06/22/22 13:16	1
Vinyl chloride	0.00857		0.00200	0.000234	mg/L			06/22/22 06:02	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99	74 - 124	06/22/22 06:02	1
4-Bromofluorobenzene (Surr)	107	74 - 124	06/22/22 13:16	1
Dibromofluoromethane (Surr)	106	75 - 131	06/22/22 06:02	1
Dibromofluoromethane (Surr)	105	75 - 131	06/22/22 13:16	1
1,2-Dichloroethane-d4 (Surr)	119	63 - 144	06/22/22 06:02	1
1,2-Dichloroethane-d4 (Surr)	113	63 - 144	06/22/22 13:16	1
Toluene-d8 (Surr)	100	80 - 117	06/22/22 06:02	1
Toluene-d8 (Surr)	100	80 - 117	06/22/22 13:16	1

Page 8 of 29

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: SB43-02-062022

Date Collected: 06/21/22 08:35 Date Received: 06/21/22 16:48 Lab Sample ID: 860-28301-6

06/22/22 10:11

06/22/22 10:11

Lab Sample ID: 860-28301-7

Matrix: Water

Job ID: 860-28301-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.00873		0.00100	0.000244	mg/L			06/22/22 04:46	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/22/22 04:46	1
1,1-Dichloroethene	0.00628		0.00100	0.000216	mg/L			06/22/22 04:46	1
Vinyl chloride	0.142		0.00200	0.000234	mg/L			06/22/22 04:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		74 - 124					06/22/22 04:46	1
Dibromofluoromethane (Surr)	101		75 - 131					06/22/22 04:46	1
1,2-Dichloroethane-d4 (Surr)	113		63 - 144					06/22/22 04:46	1
Toluene-d8 (Surr)	98		80 - 117					06/22/22 04:46	1

anic Compounds by	GC/MS - DL						
Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1.20	0.100	0.0174	mg/L			06/22/22 10:11	100
5.60	0.100	0.0500	mg/L			06/22/22 10:11	100
2.85	0.500	0.0424	mg/L			06/22/22 10:11	100
%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
102	74 - 124					06/22/22 10:11	100
100	75 - 131					06/22/22 10:11	100
	Result Qualifier	1.20 0.100 5.60 0.100 2.85 0.500 %Recovery Qualifier Limits 102 74-124	Result 1.20 Qualifier MQL (Adj) 0.100 SDL 0.174 5.60 0.100 0.0500 2.85 0.500 0.0424 %Recovery Qualifier 102 Limits 74 - 124	Result 1.20 MQL (Adj) 0.100 SDL mit mg/L mg/L mg/L 0.100 MQL (Adj) 0.0174 MQL (Adj) mg/L mg/L mg/L mg/L mg/L mg/L mg/L 5.60 0.100 0.0500 mg/L mg/L mg/L mg/L 2.85 0.500 0.0424 mg/L	Result 1.20 Qualifier MQL (Adj) SDL mit mg/L mg/L mg/L D 5.60 0.100 0.0500 mg/L 2.85 0.500 0.0424 mg/L %Recovery 102 Qualifier Limits mg/L 102 74 - 124	Result 1.20 Qualifier MQL (Adj) SDL Unit mg/L mg/L mg/L D may be prepared 5.60 0.100 0.0500 mg/L mg/L 0.0424 mg/L 2.85 0.500 0.0424 mg/L Prepared %Recovery 102 Qualifier Limits mg/L Prepared	Result 1.20 MQL (Adj) SDL mg/L Unit mg/L D mepared Analyzed 06/22/22 10:11 5.60 0.100 0.0500 mg/L 06/22/22 10:11 2.85 0.500 0.0424 mg/L 06/22/22 10:11 %Recovery Qualifier Limits 102 Limits 74 - 124 Prepared Analyzed 06/22/22 10:11

63 - 144

80 - 117

Client Sample ID: SB42-03-062022

107

101

Date Collected: 06/21/22 12:20

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Date Received: 06/21/22 16:48

Date Received: 06/21/22 16:	48								
Method: 8260D - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00111		0.00100	0.000174	mg/L			06/22/22 12:56	1
1,1-Dichloroethane	0.0111		0.00100	0.000244	mg/L			06/22/22 05:05	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/22/22 05:05	1
1,1-Dichloroethene	0.00487		0.00100	0.000216	mg/L			06/22/22 05:05	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/22/22 12:56	1
Trichloroethene	0.000611	J	0.00500	0.000424	mg/L			06/22/22 12:56	1
Vinyl chloride	0.00465		0.00200	0.000234	mg/L			06/22/22 05:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		74 - 124			-		06/22/22 05:05	1
4-Bromofluorobenzene (Surr)	106		74 - 124					06/22/22 12:56	1
Dibromofluoromethane (Surr)	102		75 - 131					06/22/22 05:05	1

4-Bromofluorobenzene (Surr)	99	74 - 124	06/22/22 05:05	1
4-Bromofluorobenzene (Surr)	106	74 - 124	06/22/22 12:56	1
Dibromofluoromethane (Surr)	102	75 - 131	06/22/22 05:05	1
Dibromofluoromethane (Surr)	104	75 - 131	06/22/22 12:56	1
1,2-Dichloroethane-d4 (Surr)	110	63 - 144	06/22/22 05:05	1
1,2-Dichloroethane-d4 (Surr)	113	63 - 144	06/22/22 12:56	1
Toluene-d8 (Surr)	98	80 - 117	06/22/22 05:05	1
Toluene-d8 (Surr)	101	80 - 117	06/22/22 12:56	1

Eurofins Houston

Page 9 of 29

2

3

5

8

10

12

14

15

100

Matrix: Water

17

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: SB42-02-062022

Date Collected: 06/21/22 13:20 Date Received: 06/21/22 16:48 Lab Sample ID: 860-28301-8

Lab Sample ID: 860-28301-9

Matrix: Water

Matrix: Water

Job ID: 860-28301-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.0100		0.00100	0.000174	mg/L			06/22/22 12:15	1
1,1-Dichloroethane	0.0129		0.00100	0.000244	mg/L			06/22/22 05:43	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/22/22 05:43	1
1,1-Dichloroethene	0.00922		0.00100	0.000216	mg/L			06/22/22 05:43	1
Tetrachloroethene	0.00200		0.00100	0.000500	mg/L			06/22/22 12:15	1
Trichloroethene	0.00585		0.00500	0.000424	mg/L			06/22/22 12:15	1
Vinyl chloride	0.00204		0.00200	0.000234	mg/L			06/22/22 05:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97	-	74 - 124			-		06/22/22 05:43	1
4-Bromofluorobenzene (Surr)	106		74 - 124					06/22/22 12:15	1
Dibromofluoromethane (Surr)	103		75 - 131					06/22/22 05:43	1
Dibromofluoromethane (Surr)	105		75 - 131					06/22/22 12:15	1
1,2-Dichloroethane-d4 (Surr)	115		63 - 144					06/22/22 05:43	1
1,2-Dichloroethane-d4 (Surr)	112		63 - 144					06/22/22 12:15	1
Toluene-d8 (Surr)	100		80 - 117					06/22/22 05:43	1
			80 - 117					06/22/22 12:15	

Client Sample ID: SB42-01-062022

Date Collected: 06/21/22 13:30

Date Received: 06/21/22 16:48

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00421		0.00100	0.000174	mg/L			06/22/22 12:35	1
1,1-Dichloroethane	0.0195		0.00100	0.000244	mg/L			06/22/22 05:24	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/22/22 05:24	1
1,1-Dichloroethene	0.0125		0.00100	0.000216	mg/L			06/22/22 05:24	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/22/22 12:35	1
Trichloroethene	0.00129	J	0.00500	0.000424	mg/L			06/22/22 12:35	1
Vinyl chloride	0.00425		0.00200	0.000234	mg/L			06/22/22 05:24	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		74 - 124	06/22/22 05:24	1
4-Bromofluorobenzene (Surr)	105		74 - 124	06/22/22 12:35	1
Dibromofluoromethane (Surr)	101		75 - 131	06/22/22 05:24	1
Dibromofluoromethane (Surr)	106		75 - 131	06/22/22 12:35	1
1,2-Dichloroethane-d4 (Surr)	117		63 - 144	06/22/22 05:24	1
1,2-Dichloroethane-d4 (Surr)	113		63 - 144	06/22/22 12:35	1
Toluene-d8 (Surr)	98		80 - 117	06/22/22 05:24	1
Toluene-d8 (Surr)	100		80 - 117	06/22/22 12:35	1

Eurofins Houston

Page 10 of 29

2

3

5

8

10

12

14

16

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28301-1

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

4

6

0

9

11

40

14

16

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

					ogate Recovery (Accept	ance Limits)
		BFB	DBFM	DCA	TOL	
ab Sample ID	Client Sample ID	(74-124)	(75-131)	(63-144)	(80-117)	
320-4668-C-1 MS	Matrix Spike	100	105	109	98	
860-28101-B-7 MS	Matrix Spike	100	98	97	99	
860-28301-1	SB44-03-062022	96	103	114	96	
860-28301-2	SB44-02-062022	97	101	114	99	
860-28301-3	FD-01-062022	101	99	108	96	
860-28301-4	TB-01-062022	99	105	111	101	
860-28301-5	SB43-03-062022	99	106	119	100	
860-28301-5	SB43-03-062022	107	105	113	100	
860-28301-6	SB43-02-062022	100	101	113	98	
360-28301-6 - DL	SB43-02-062022	102	100	107	101	
860-28301-7	SB42-03-062022	99	102	110	98	
860-28301-7	SB42-03-062022	106	104	113	101	
360-28301-8	SB42-02-062022	97	103	115	100	
360-28301-8	SB42-02-062022	106	105	112	99	
860-28301-9	SB42-01-062022	99	101	117	98	
860-28301-9	SB42-01-062022	105	106	113	100	
.CS 860-57931/3	Lab Control Sample	100	101	102	97	
.CS 860-57943/3	Lab Control Sample	99	105	109	99	
CSD 860-57931/4	Lab Control Sample Dup	99	103	99	100	
.CSD 860-57943/5	Lab Control Sample Dup	99	106	110	99	
ИВ 860-57931/9	Method Blank	98	97	107	100	
MB 860-57943/12	Method Blank	103	103	112	101	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Eurofins Houston

Page 12 of 29

2

Job ID: 860-28301-1

3

4

6

8

10

12

13

15

10

11/

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-57931/9

Matrix: Water

Analysis Batch: 57931

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 860-28301-1

MB MB

Analyte	Result Qua	alifier MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174 U	0.00100	0.000174	mg/L			06/22/22 02:15	1
1,1-Dichloroethane	0.000244 U	0.00100	0.000244	mg/L			06/22/22 02:15	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			06/22/22 02:15	1
1,1-Dichloroethene	0.000216 U	0.00100	0.000216	mg/L			06/22/22 02:15	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			06/22/22 02:15	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			06/22/22 02:15	1
Vinyl chloride	0.000234 U	0.00200	0.000234	mg/L			06/22/22 02:15	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	98		74 - 124		06/22/22 02:15	1	
Dibromofluoromethane (Surr)	97		75 - 131		06/22/22 02:15	1	
1,2-Dichloroethane-d4 (Surr)	107		63 - 144		06/22/22 02:15	1	
Toluene-d8 (Surr)	100		80 - 117		06/22/22 02:15	1	

Lab Sample ID: LCS 860-57931/3

Matrix: Water

Analysis Batch: 57931

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS %Rec Spike Added Result Qualifier Unit D %Rec Limits Analyte 0.0500 112 75 - 125 cis-1,2-Dichloroethene 0.05581 mg/L 1,1-Dichloroethane 0.0500 0.05505 110 mg/L 72 - 125 1.2-Dichloroethane 0.0500 0.05835 mg/L 117 68 - 127 1,1-Dichloroethene 0.0500 0.05695 114 59 - 172 mg/L Tetrachloroethene 0.0500 0.05480 mg/L 110 71 - 125 Trichloroethene 0.0500 0.05596 mg/L 112 62 - 137 Vinyl chloride 0.0500 0.04731 95 60 - 140 mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		74 - 124
Dibromofluoromethane (Surr)	101		75 - 131
1,2-Dichloroethane-d4 (Surr)	102		63 - 144
Toluene-d8 (Surr)	97		80 - 117

Lab Sample ID: LCSD 860-57931/4

Matrix: Water

Analysis Batch: 57931

Client Sample ID: Lab	Control	Sample D)up
	Prep Ty	pe: Total	NA

RPD Spike LCSD LCSD %Rec Result Qualifier Analyte Added Unit D %Rec Limits **RPD** Limit cis-1,2-Dichloroethene 0.0500 0.05484 mg/L 110 75 - 125 2 25 1,1-Dichloroethane 0.0500 0.05586 mg/L 112 72 - 125 25 1,2-Dichloroethane 0.0500 0.05597 112 68 - 127 25 mg/L 1,1-Dichloroethene 0.0500 0.05458 109 59 - 172 25 mg/L 0.0500 25 Tetrachloroethene 0.05553 111 71 - 125 mg/L Trichloroethene 0.0500 0.05660 mg/L 113 62 - 13725 Vinyl chloride 60 - 140 0.0500 0.04670 93 25 mg/L

Eurofins Houston

Page 13 of 29

Client: Jacobs Engineering Group, Inc.

Lab Sample ID: 860-28101-B-7 MS

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 860-28301-1

Lab Sample ID: LCSD 860-57931/4 **Matrix: Water**

Analysis Batch: 57931

LCSD LCSD %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 99 74 - 124 Dibromofluoromethane (Surr) 103 75 - 131 99 1,2-Dichloroethane-d4 (Surr) 63 - 144 Toluene-d8 (Surr) 100 80 - 117

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Matrix: Water Analysis Batch: 57931

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits cis-1.2-Dichloroethene 0.000174 U 75 - 125 0.0500 0.05416 mg/L 108 1,1-Dichloroethane 0.000244 U 0.0500 0.05466 mg/L 109 72 - 125 1,2-Dichloroethane 0.0127 0.0500 0.06663 mg/L 108 68 - 127 1,1-Dichloroethene 0.0500 104 0.000216 U 0.05187 mg/L 59 - 172 Tetrachloroethene 0.000500 U 0.0500 109 0.05473 mg/L 71 - 125 Trichloroethene 0.000424 U 0.0500 0.05515 mg/L 110 62 - 137Vinyl chloride 0.000234 U 0.0500 0.04705 94 60 - 140 mg/L

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		74 - 124
Dibromofluoromethane (Surr)	98		75 - 131
1,2-Dichloroethane-d4 (Surr)	97		63 - 144
Toluene-d8 (Surr)	99		80 - 117

Lab Sample ID: MB 860-57943/12 **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 57943

Prep Type: Total/NA

MB MB

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/22/22 10:32	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/22/22 10:32	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/22/22 10:32	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/22/22 10:32	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/22/22 10:32	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/22/22 10:32	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/22/22 10:32	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103	74 - 124		06/22/22 10:32	1
Dibromofluoromethane (Surr)	103	75 - 131		06/22/22 10:32	1
1,2-Dichloroethane-d4 (Surr)	112	63 - 144		06/22/22 10:32	1
Toluene-d8 (Surr)	101	80 - 117		06/22/22 10:32	1

Eurofins Houston

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 860-57943/3

Matrix: Water

Analysis Batch: 57943

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 860-28301-1

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits Analyte cis-1,2-Dichloroethene 0.0500 0.05204 mg/L 104 75 - 125 1,1-Dichloroethane 0.0500 0.05193 mg/L 104 72 - 125 111 1,2-Dichloroethane 0.0500 0.05553 mg/L 68 - 127 0.0500 0.05103 59 - 172 1,1-Dichloroethene mg/L 102 Tetrachloroethene 0.0500 0.04973 mg/L 99 71 - 125 Trichloroethene 0.0500 0.05014 mg/L 100 62 - 137 0.0500 Vinyl chloride 0.05429 109 60 - 140 mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	105		75 - 131
1,2-Dichloroethane-d4 (Surr)	109		63 - 144
Toluene-d8 (Surr)	99		80 - 117

Lab Sample ID: LCSD 860-57943/5

Matrix: Water

Analysis Batch: 57943

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte cis-1,2-Dichloroethene 0.0500 0.05257 105 75 - 125 25 mg/L 1 1,1-Dichloroethane 0.0500 0.05192 104 72 - 125 25 mg/L 0 1.2-Dichloroethane 0.0500 0.05460 mg/L 109 68 - 127 2 25 1,1-Dichloroethene 0.0500 0.05032 101 59 - 172 25 mg/L 25 Tetrachloroethene 0.0500 0.05051 mg/L 101 71 - 125 Trichloroethene 0.0500 0.05089 mg/L 102 62 - 137 25 Vinyl chloride 0.0500 0.05239 105 60 - 140 25 mg/L

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	106		75 - 131
1,2-Dichloroethane-d4 (Surr)	110		63 - 144
Toluene-d8 (Surr)	99		80 - 117

Lab Sample ID: 820-4668-C-1 MS

Matrix: Water

Analysis Batch: 57943

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.05025		mg/L		101	75 - 125	-
1,1-Dichloroethane	0.000244	U	0.0500	0.04918		mg/L		98	72 - 125	
1,2-Dichloroethane	0.000285	U	0.0500	0.05200		mg/L		104	68 - 127	
1,1-Dichloroethene	0.000216	U	0.0500	0.04892		mg/L		98	59 - 172	
Tetrachloroethene	0.000500	U	0.0500	0.04882		mg/L		98	71 - 125	
Trichloroethene	0.000424	U	0.0500	0.04890		mg/L		98	62 - 137	
Vinyl chloride	0.000234	U	0.0500	0.05538		mg/L		111	60 - 140	

Eurofins Houston

Page 15 of 29

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28301-1

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 820-4668-C-1 MS

Matrix: Water

Analysis Batch: 57943

Client San	nple ID:	Matri	x Spike
	Prep T	vpe: T	otal/NA

Prep Type: Total/N/

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		74 - 124
Dibromofluoromethane (Surr)	105		75 - 131
1,2-Dichloroethane-d4 (Surr)	109		63 - 144
Toluene-d8 (Surr)	98		80 - 117

č

10

12

14

16

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28301-1

GC/MS VOA

Analysis Batch: 57931

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-28301-1	SB44-03-062022	Total/NA	Water	8260D	
860-28301-2	SB44-02-062022	Total/NA	Water	8260D	
860-28301-3	FD-01-062022	Total/NA	Water	8260D	
860-28301-4	TB-01-062022	Total/NA	Water	8260D	
860-28301-5	SB43-03-062022	Total/NA	Water	8260D	
860-28301-6	SB43-02-062022	Total/NA	Water	8260D	
860-28301-6 - DL	SB43-02-062022	Total/NA	Water	8260D	
860-28301-7	SB42-03-062022	Total/NA	Water	8260D	
860-28301-8	SB42-02-062022	Total/NA	Water	8260D	
860-28301-9	SB42-01-062022	Total/NA	Water	8260D	
MB 860-57931/9	Method Blank	Total/NA	Water	8260D	
LCS 860-57931/3	Lab Control Sample	Total/NA	Water	8260D	
LCSD 860-57931/4	Lab Control Sample Dup	Total/NA	Water	8260D	
860-28101-B-7 MS	Matrix Spike	Total/NA	Water	8260D	

Analysis Batch: 57943

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-28301-5	SB43-03-062022	Total/NA	Water	8260D	_
860-28301-7	SB42-03-062022	Total/NA	Water	8260D	
860-28301-8	SB42-02-062022	Total/NA	Water	8260D	
860-28301-9	SB42-01-062022	Total/NA	Water	8260D	
MB 860-57943/12	Method Blank	Total/NA	Water	8260D	
LCS 860-57943/3	Lab Control Sample	Total/NA	Water	8260D	
LCSD 860-57943/5	Lab Control Sample Dup	Total/NA	Water	8260D	
820-4668-C-1 MS	Matrix Snike	Total/NA	\Mater	8260D	

Eurofins Houston

Л

5

R

10

11

13

14

16

17

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: SB44-03-062022

Lab Sample ID: 860-28301-1

Date Collected: 06/20/22 12:40 Date Received: 06/21/22 16:48

Dil Batch Batch Initial Final Batch Prepared Method Factor or Analyzed **Prep Type** Type Run **Amount** Amount Number Analyst Lab Total/NA 57931 06/22/22 03:49 A1S XEN STF Analysis 8260D 5 mL 5 mL

Client Sample ID: SB44-02-062022

Date Collected: 06/20/22 13:30

Date Received: 06/21/22 16:48 Batch Batch Dil Initial Final Batch **Prepared**

Prep Type Type Method Run **Factor** Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260D 5 mL 5 mL 57931 06/22/22 04:08 A1S XEN STF

Client Sample ID: FD-01-062022

Date Collected: 06/20/22 00:00 Date Received: 06/21/22 16:48

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Method **Factor** Number or Analyzed Type Run Amount Amount **Analyst** Lab Total/NA Analysis 8260D 5 mL 57931 06/22/22 04:27 A1S XEN STF 5 mL

Client Sample ID: TB-01-062022

Date Collected: 06/20/22 07:30

Date Received: 06/21/22 16:48

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method **Factor** Amount Amount Number or Analyzed Type Run Analyst Lab Analysis 8260D 57931 06/22/22 03:12 A1S XEN STF Total/NA 5 mL 5 mL

Client Sample ID: SB43-03-062022

Date Collected: 06/21/22 08:15

Date Received: 06/21/22 16:48

Batch Batch Dil Initial Final Batch Prepared Method Run Factor **Amount** Amount Number or Analyzed **Prep Type** Type Analyst Lab Total/NA Analysis 8260D 5 mL 5 mL 57931 06/22/22 06:02 A1S XEN STF Total/NA Analysis 8260D 5 mL 5 mL 57943 06/22/22 13:16 TTD XEN STF 1

Client Sample ID: SB43-02-062022

Date Collected: 06/21/22 08:35

Date Received: 06/21/22 16:48

Batch Batch Dil Initial Final Batch Prepared Type Method Amount Amount Number or Analyzed **Prep Type** Run Factor **Analyst** Lab 8260D 06/22/22 04:46 Total/NA Analysis 5 mL 5 mL 57931 A1S XEN STF 1 Total/NA Analysis 8260D DL 100 57931 06/22/22 10:11 A1S XEN STF 5 mL 5 ml

Client Sample ID: SB42-03-062022

Date Collected: 06/21/22 12:20 Date Received: 06/21/22 16:48

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	57931	06/22/22 05:05	A1S	XEN STF
Total/NA	Analysis	8260D		1	5 mL	5 mL	57943	06/22/22 12:56	TTD	XEN STF

Eurofins Houston

Job ID: 860-28301-1

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 860-28301-2

Lab Sample ID: 860-28301-3

Lab Sample ID: 860-28301-4

Lab Sample ID: 860-28301-5

Lab Sample ID: 860-28301-6

Lab Sample ID: 860-28301-7

Matrix: Water

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: SB42-02-062022 Lab Sample ID: 860-28301-8 **Matrix: Water**

Date Collected: 06/21/22 13:20

Date Received: 06/21/22 16:48

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	57931	06/22/22 05:43	A1S	XEN STF
Total/NA	Analysis	8260D		1	5 mL	5 mL	57943	06/22/22 12:15	TTD	XEN STF

Client Sample ID: SB42-01-062022

Date Collected: 06/21/22 13:30 Date Received: 06/21/22 16:48 Lab Sample ID: 860-28301-9 **Matrix: Water**

_	Batch	Batch		Dil	Initial	Final	Final Batch Prepare			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	57931	06/22/22 05:24	A1S	XEN STF
Total/NA	Analysis	8260D		1	5 mL	5 mL	57943	06/22/22 12:35	TTD	XEN STF

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-28301-1

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28301-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

3

4

5

0

8

9

11

12

14

4.0

1 /

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Inv Part 2

MethodMethod DescriptionProtocolLaboratory8260DVolatile Organic Compounds by GC/MSSW846XEN STF5030CPurge and TrapSW846XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-28301-1

4

5

6

0

9

11

13

14

16

1/

Sample Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-28301-1	SB44-03-062022	Water	06/20/22 12:40	06/21/22 16:48
860-28301-2	SB44-02-062022	Water	06/20/22 13:30	06/21/22 16:48
860-28301-3	FD-01-062022	Water	06/20/22 00:00	06/21/22 16:48
860-28301-4	TB-01-062022	Water	06/20/22 07:30	06/21/22 16:48
860-28301-5	SB43-03-062022	Water	06/21/22 08:15	06/21/22 16:48
860-28301-6	SB43-02-062022	Water	06/21/22 08:35	06/21/22 16:48
860-28301-7	SB42-03-062022	Water	06/21/22 12:20	06/21/22 16:48
860-28301-8	SB42-02-062022	Water	06/21/22 13:20	06/21/22 16:48
860-28301-9	SB42-01-062022	Water	06/21/22 13:30	06/21/22 16:48

1

Job ID: 860-28301-1

3

4

5

7

8

4.6

11

12

4 4

15

17

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-28301-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/_/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	06/22/2022

3

4

6

7

10

12

4 4

15

17

Laboratory Data Package Cover Page - Page 2 of 4

Labor	atory N	lame: Eurofins Houston LF	LRC Date: 06/22/2022					
			boratory Job Numbe	er: 860-2	28301-1			
Revie	wer Na	me: Bethany McDaniel						
#¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵
R1	OI	Chain-of-custody (C-O-C)						
Did samples meet the laboratory's standard conditions of			acceptability upon	✓				
		receipt?						
		Were all departures from standard conditions described in an exc	ception report?	✓				
R2	OI	Sample and quality control (QC) identification	ID					
		Are all field sample ID numbers cross-referenced to the laborator Are all laboratory ID numbers cross-referenced to the correspond		✓ ✓				
R3			aing QC data?	•				
KJ	OI	Test reports Were all samples prepared and analyzed within holding times?		√				
		Other than those results < MQL, were all other raw values bracket	atod by calibration	✓				
		standards?	sted by Calibration					
		Were calculations checked by a peer or supervisor?		✓				
		Were all analyte identifications checked by a peer or supervisor?		✓				
		Were sample detection limits reported for all analytes not detected		✓				
		Were all results for soil and sediment samples reported on a dry	weight basis?			✓		
		Were % moisture (or solids) reported for all soil and sediment sal	mples?			✓		
		Were bulk soils/solids samples for volatile analysis extracted with	n methanol per			✓		
		SW846 Method 5035?						
		If required for the project, are TICs reported?				✓		
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?		√				
		Were surrogate percent recoveries in all samples within the labor	ratory QC limits?	✓				
R5	OI	Test reports/summary forms for blank samples						
		Were appropriate type(s) of blanks analyzed?		✓				
		Were blanks analyzed at the appropriate frequency?		✓				
		Were method blanks taken through the entire analytical process,	•					
		and, if applicable, cleanup procedures? Were blank concentrations < MQL?		✓				
R6	OI	Laboratory control samples (LCS):		•				
110	Oi	Were all COCs included in the LCS?		√				
		Was each LCS taken through the entire analytical procedure, inc	luding prep and	√				
		cleanup steps?						
		Were LCSs analyzed at the required frequency?	✓					
		Were LCS (and LCSD, if applicable) %Rs within the laboratory Q	✓					
		Does the detectability check sample data document the laborator	✓					
		detect the COCs at the MDL used to calculate the SDLs?						
		Was the LCSD RPD within QC limits?		✓				
R7	OI	Matrix spike (MS) and matrix spike duplicate (MS						
		Were the project/method specified analytes included in the MS a	nd MSD?	✓				
		Were MS/MSD analyzed at the appropriate frequency?	P. 11 0	√				
		Were MS (and MSD, if applicable) %Rs within the laboratory QC	limits?	✓				
Б0		Were MS/MSD RPDs within laboratory QC limits?				✓		
R8	OI	Analytical duplicate data	,					
		Were appropriate analytical duplicates analyzed for each matrix?				✓ ✓		-
Were analytical duplicates analyzed at the appropriate f		Were RPDs or relative standard deviations within the laboratory (V /		
R9	OI	·				,		
		Are the MQLs for each method analyte included in the laboratory	data package?	✓				
		Do the MQLs correspond to the concentration of the lowest non-z		· ✓				
		standard?	LOTO GUIDIGUOTI					
	Are unadjusted MQLs and DCSs included in the labora		package?	✓				
R10	OI	Other problems/anomalies						
		Are all known problems/anomalies/special conditions noted in thi	s LRC and ER?	√				
		Was applicable and available technology used to lower the SDL t			✓			1
		interference effects on the sample results?						
		Is the laboratory NELAC-accredited under the Texas Laboratory	Accreditation Program	✓				
		for the analytes, matrices and methods associated with this labor						

Page 24 of 29 6/22/2022

1/

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 06/22/2022
Project Name: STC Silber Rd Pre-Design Inv Part 2	Laboratory Job Number: 860-28301-1
Reviewer Name Bethany McDaniel	

			ooratory Job Numb	Job Number: 860-28301-1					
Revie	wer Na	me: Bethany McDaniel							
#¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵	
S1	OI	Initial calibration (ICAL)							
		Were response factors and/or relative response factors for each a	nalyte within QC	√					
		limits?	•						
		Were percent RSDs or correlation coefficient criteria met?		✓					
		Was the number of standards recommended in the method used f	for all analytes?	✓					
		Were all points generated between the lowest and highest standa	rd used to calculate	✓					
		the curve?							
		Are ICAL data available for all instruments used?		✓					
		Has the initial calibration curve been verified using an appropriate	second source	✓					
		standard?							
S2	OI	Initial and continuing calibration verification (ICC	(V and CCV) and						
		continuing calibration blank (CCB):							
		Was the CCV analyzed at the method-required frequency?		√					
		Were percent differences for each analyte within the method-requ	ired QC limits?	✓ ✓					
		Was the ICAL curve verified for each analyte?	sia CCD < MDL 2	· ·		_			
00		Was the absolute value of the analyte concentration in the inorgan	IIC CCB < MDL?			· ·			
S3	0	Mass spectral tuning							
		Was the appropriate compound for the method used for tuning?		✓ ✓					
0.4		Were ion abundance data within the method-required QC limits?		· ·					
S4	0	Internal standards (IS)	1.00 1: 1:- 0	√					
0.5		Were IS area counts and retention times within the method-require	ed QC limits?	· ·					
S5	OI	Raw data (NELAC Section 5.5.10)							
		Were the raw data (for example, chromatograms, spectral data) re	eviewed by an	✓					
		analyst? Were data associated with manual integrations flagged on the raw	, doto?	√				+	
00			/ data <u>/</u>	•					
S6	0	Dual column confirmation				✓			
0-		Did dual column confirmation results meet the method-required QC?				· ·			
S7	0	Tentatively identified compounds (TICs)							
		If TICs were requested, were the mass spectra and TIC data subject.	ect to appropriate			✓			
S8	Ι.	checks?						_	
30	ı	Interference Check Sample (ICS) results Were percent recoveries within method QC limits?				/		_	
60	Ι.	·	- d - f - t - u d - u d			_		_	
S9	ı	Serial dilutions, post digestion spikes, and method	od of Standard						
		additions	2011 11 11 11			✓			
		Were percent differences, recoveries, and the linearity within the C	C limits specified			•			
640		in the method? Method detection limit (MDL) studies							
S10	OI	Was a MDL study performed for each reported analyte?		✓					
				V ✓				-	
044	OI	Is the MDL either adjusted or supported by the analysis of DCSs?		•					
S11	Oi	Proficiency test reports	raficianas, tanta ar	√					
		Was the laboratory's performance acceptable on the applicable prevaluation studies?	oliciency tests or						
S12	OI	Standards documentation							
512		Are all standards used in the analyses NIST-traceable or obtained	I from other	√					
		appropriate sources?	i non oule	_					
S13	OI	Compound/analyte identification procedures							
515	_ Oi	Are the procedures for compound/analyte identification documented?		✓					
S14	OI	Demonstration of analyst competency (DOC)							
314		Was DOC conducted consistent with NELAC Chapter 5?		✓					
		Is documentation of the analyst's competency up-to-date and on fi	ile?	✓				+	
S15	OI			•					
313		Verification/validation documentation for method	S (NELAC						
		Chapter 5)	ad and call to to t	√					
		Are all the methods used to generate the data documented, verific	ea, and validated,	•					
040		where applicable?	~\						
S16	OI	Laboratory standard operating procedures (SOPs							
J 10		Are laboratory SOPs current and on file for each method performe		√					

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

12

14

15

17

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

^{3.} NA = Not applicable;

NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Laboratory Name: Eurofins Houston	LRC Date: 06/22/2022				
Project Name: STC Silber Rd Pre-Design Inv Part 2	Laboratory Job Number: 860-28301-1				
Reviewer Name: Bethany McDaniel					
ER#1 Description					
1 Method 8260D: The following sample was diluted to bring the concentration of target analytes within the calibration range: SB43-02-062022					
(860-28301-6). Elevated reporting limits (RLs) are provided.					
1. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).					

Δ

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28301-1

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A294 Detector: MSD/0 Column: DB-624

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
Trichloroethene	0.00500	0.00510		mg/L	0.00500	0.000424	02/23/2022	860-42516
Vinyl chloride	0.00500	0.00494		mg/L	0.00200	0.000234	02/23/2022	860-42516
cis-1,2-Dichloroethene	0.00500	0.00494		mg/L	0.00100	0.000174	02/23/2022	860-42516
1,1-Dichloroethane	0.00500	0.00501		mg/L	0.00100	0.000244	02/23/2022	860-42516
1,2-Dichloroethane	0.00500	0.00495		mg/L	0.00100	0.000285	02/23/2022	860-42516
1,1-Dichloroethene	0.00500	0.00478		mg/L	0.00100	0.000216	02/23/2022	860-42516
Tetrachloroethene	0.00500	0.00496		mg/L	0.00100	0.000500	02/23/2022	860-42516

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Detector: MSD/0 Column: DB-624

Spike

Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
Trichloroethene	0.00100	0.00503		mg/L	0.00500	0.000424	03/03/2022	860-43530
cis-1,2-Dichloroethene	0.00100	0.00499		mg/L	0.00100	0.000174	03/03/2022	860-43530
Tetrachloroethene	0.00100	0.00463		ma/L	0.00100	0.000500	03/03/2022	860-43530

2

3

4

6

7

_

10

10

13

14

17

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477 Phone (281) 240-4200	Chain of Custody Record	dy Record		, r	Environment Testing America
Client Information	Sampler	Leb PM: McDaniel, Bethar			5.1
Client Contact John Ynfante	Phone:	E-Mail: Bethany.McDanie	E-Mail: Bethany McDaniel@et eurofinsus.com	Page: Page <u></u> of	!
Company . Jacobs Engineering Group, Inc.	PWSID:		Analysis Requested	;# q or <u>1</u>	
Address: 14701 St. Mary's Lane Suite 300	Due Dats Requested:			Preservation Codes	
Gity: Houston	TAT Requested (days): 1 day RUSH			B NaOH	N None O AsnaO2 P Na2O4S
State, Zp: TX, 77079	Compliance Project: A Yes A No			D NIMCAGO	
Phone:	PO #: D3542628.C.CS.TPE.SIL.22-01-02			G Amchlor H Ascorbic Acid	
Email: John.Ynfante@jacobs.com	WO#: D3542628.C.CS.TPE.SIL.22-01-02	М/8 ;	REAL 28301 Chain of Custody		
Project Name: STC Silber Rd Pre-Design Inv Part 2	Project #: 86002024	11.3			Y Trizma Z other (specify)
Site:	SSOW#;	as to		- E	
	Sample	S benefili-		XegWin k	
Sample Identification	ďΞ	S-solid, Characteriol Commercial			Special Instructions/Note:
	Preserva	Code: XXA		\ X	
51344-03-04202C	1-7 0451 12105/M	Water		M	
Sry4-02-062022		Water X		3	
FD-01-062022	100 100	Water		٤	
TB-01-062622		Water		7	
5B43-03-062122	5	Water		٤	
59 43 -02 -062122	0838 6	Water K		2	·
221270-60-2485	5 024	Water K		/ \0	
	6	Water		^	· ·
51342-01-662122	6/21/26 1330 6	Water		/M	
		Water	ø		
		Water	Corrected Temp: 19		
Possible Hazard Identification	Poison B Unknown Radiological	Sample.	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	mples are retained longer than b Archive For	1 month) Months
Deliverable Requested: I, II, III IV Other (specify)	TRRP	Special I	Special Instructions/QC Requirements:		
Empty Kit Relinquished by:	Date:	Time:	Method of Shipment	Shipment	
Relinquished	(PhS) 22/12/-	ompany Received k	ved by Well	Date-Time 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Company
	0.21 20-16Kg		Received by:	6/21/122 164	S Company
	Date/Time: Uore	Company Recei	Received by:	Date/Time:	Сотралу
Custody Seals Intact: Custody Seal No.		Coole	Cooler Temperature(s) °C and Other Remarks:		
J					Ver 01/16/2019

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc. Job Number: 860-28301-1

Login Number: 28301 **List Source: Eurofins Houston**

List Number: 1

Creator: Palmar, Pedro

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Eurofins Houston

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-28374-1

Client Project/Site: STC Silber Rd Pre-Design Inv Part 2

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany Mc Daniel

Authorized for release by: 6/23/2022 4:39:46 PM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

.....LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Default Detection Limits	10
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	14
Lab Chronicle	15
Certification Summary	17
Method Summary	18
Sample Summary	19
State Forms	20
TRRP Checklist	20
DCS Report	24
Chain of Custody	25
Receipt Checklists	26

Table of Contents

Δ

6

0

10

12

11

15

17

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28374-1

Qualifiers

GC	/ R A		11		
GU	/ IVI	3	v	U	F

Qualifier	Qualifier Description
-----------	-----------------------

J Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

N1 MS, MSD: Spike recovery exceeds upper or lower control limits.

U Analyte was not detected at or above the SDL.

Glossary

Appreviation	These commonly used appreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Houston

Page 3 of 26

6/23/2022

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28374-1

Job ID: 860-28374-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-28374-1

Receipt

The samples were received on 6/22/2022~3:32~PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was $2.5^{\circ}C$

4

5

6

9

10

12

13

15

17

Detection Summary

Client: Jacobs Engineering Group, Inc.

Client Sample ID: SB41-03-062222

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Lab Sample ID: 860-28374-1

Lab Sample ID: 860-28374-3

Lab Sample ID: 860-28374-4

Lab Sample ID: 860-28374-5

Lab Sample ID: 860-28374-6

Job ID: 860-28374-1

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00146	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.00382	0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.00177	0.00100	0.000216	mg/L	1		8260D	Total/NA
Trichloroethene	0.000426 J	0.00500	0.000424	mg/L	1		8260D	Total/NA

Client Sample ID: SB4	41-02-062222			Lab Sample ID:	860-28374-2
Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D Method	Prep Type

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00259		0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.00431		0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.00217		0.00100	0.000216	mg/L	1		8260D	Total/NA
Tetrachloroethene	0.000560	J	0.00100	0.000500	mg/L	1		8260D	Total/NA
Trichloroethene	0.00133	J	0.00500	0.000424	mg/L	1		8260D	Total/NA
Vinyl chloride	0.000714	J	0.00200	0.000234	mg/L	1		8260D	Total/NA

Client Sample ID: SB41-01-062222

_								
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	Method	Prep Type
cis-1,2-Dichloroethene	0.0147		0.00100	0.000174	mg/L		8260D	Total/NA
1,1-Dichloroethane	0.0122		0.00100	0.000244	mg/L	1	8260D	Total/NA
1,1-Dichloroethene	0.0142		0.00100	0.000216	mg/L	1	8260D	Total/NA
Trichloroethene	0.00168	J	0.00500	0.000424	mg/L	1	8260D	Total/NA
Vinyl chloride	0.00528		0.00200	0.000234	mg/L	1	8260D	Total/NA

Client Sample ID: FD-01-062222

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	0.0152	0.00100	0.000174 mg/L		8260D	Total/NA
1,1-Dichloroethane	0.0123	0.00100	0.000244 mg/L	1	8260D	Total/NA
1,1-Dichloroethene	0.0143	0.00100	0.000216 mg/L	1	8260D	Total/NA
Trichloroethene	0.00181 J	0.00500	0.000424 mg/L	1	8260D	Total/NA
Vinyl chloride	0.00523	0.00200	0.000234 mg/L	1	8260D	Total/NA

Client Sample ID: SB40-03-062222

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00346	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.0324	0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.0108	0.00100	0.000216	mg/L	1		8260D	Total/NA
Trichloroethene	0.000533 J	0.00500	0.000424	mg/L	1		8260D	Total/NA
Vinyl chloride	0.0155	0.00200	0.000234	mg/L	1		8260D	Total/NA

Client Sample ID: SB40-02-062222

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	0.0208		0.00100	0.000174	mg/L		8260D	Total/NA
1,1-Dichloroethane	0.0855		0.00100	0.000244	mg/L	1	8260D	Total/NA
1,2-Dichloroethane	0.000559	J	0.00100	0.000285	mg/L	1	8260D	Total/NA
1,1-Dichloroethene	0.0256		0.00100	0.000216	mg/L	1	8260D	Total/NA
Tetrachloroethene	0.00650		0.00100	0.000500	mg/L	1	8260D	Total/NA
Trichloroethene	0.00273	J	0.00500	0.000424	mg/L	1	8260D	Total/NA
Vinyl chloride	0.0349		0.00200	0.000234	mg/L	1	8260D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Houston

Page 5 of 26

Detection Summary

0.00500

0.00200

0.000424 mg/L

0.000234 mg/L

Client: Jacobs Engineering Group, Inc.

Client Sample ID: SB40-01-062222

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Lab Sample ID: 860-28374-7

Job ID: 860-28374-1

Prep Type
Total/NA
Total/NA
Total/NA

Total/NA

·							•
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac D	Method
cis-1,2-Dichloroethene	0.110		0.00100	0.000174	mg/L		8260D
1,1-Dichloroethane	0.0155		0.00100	0.000244	mg/L	1	8260D
1,1-Dichloroethene	0.00405		0.00100	0.000216	mg/L	1	8260D
Tetrachloroethene	0.0347		0.00100	0.000500	mg/L	1	8260D

0.0133

0.0195

1 8260D Total/NA 1 8260D Total/NA

Lab Sample ID: 860-28374-8

Client Sample ID: TB-01-062222

No Detections.

Trichloroethene

Vinyl chloride

7

q

44

12

14

16

1 /

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: SB41-03-062222

Date Collected: 06/22/22 08:10

Date Received: 06/22/22 15:32

Lab Sample ID: 860-28374-1

Matrix: Water

Job ID: 860-28374-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00146		0.00100	0.000174	mg/L			06/23/22 05:21	1
1,1-Dichloroethane	0.00382		0.00100	0.000244	mg/L			06/23/22 05:21	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/23/22 05:21	1
1,1-Dichloroethene	0.00177		0.00100	0.000216	mg/L			06/23/22 05:21	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/23/22 05:21	1
Trichloroethene	0.000426	J	0.00500	0.000424	mg/L			06/23/22 05:21	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/23/22 05:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		74 - 124					06/23/22 05:21	1
Dibromofluoromethane (Surr)	95		75 - 131					06/23/22 05:21	1
1,2-Dichloroethane-d4 (Surr)	104		63 - 144					06/23/22 05:21	1

80 - 117

Client Sample ID: SB41-02-062222

100

Date Collected: 06/22/22 08:25

Date Received: 06/22/22 15:32

Toluene-d8 (Surr)

Lab Sample ID: 860-28374-2

Matrix: Water

06/23/22 05:40

Matrix: Water

Lab Sample ID: 860-28374-3

06/23/22 05:21

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00259		0.00100	0.000174	mg/L			06/23/22 05:40	1
1,1-Dichloroethane	0.00431		0.00100	0.000244	mg/L			06/23/22 05:40	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/23/22 05:40	1
1,1-Dichloroethene	0.00217		0.00100	0.000216	mg/L			06/23/22 05:40	1
Tetrachloroethene	0.000560	J	0.00100	0.000500	mg/L			06/23/22 05:40	1
Trichloroethene	0.00133	J	0.00500	0.000424	mg/L			06/23/22 05:40	1
Vinyl chloride	0.000714	J	0.00200	0.000234	mg/L			06/23/22 05:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		74 - 124					06/23/22 05:40	1
Dibromofluoromethane (Surr)	98		75 - 131					06/23/22 05:40	1
1,2-Dichloroethane-d4 (Surr)	106		63 - 144					06/23/22 05:40	1

80 - 117

Client Sample ID: SB41-01-062222

Date Collected: 06/22/22 08:45

Toluene-d8 (Surr)

Date Received: 06/22/22 15:32

Analyte	•	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.0147		0.00100	0.000174	mg/L			06/23/22 05:59	1
1,1-Dichloroethane	0.0122		0.00100	0.000244	mg/L			06/23/22 05:59	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/23/22 05:59	1
1,1-Dichloroethene	0.0142		0.00100	0.000216	mg/L			06/23/22 05:59	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/23/22 05:59	1
Trichloroethene	0.00168	J	0.00500	0.000424	mg/L			06/23/22 05:59	1
Vinyl chloride	0.00528		0.00200	0.000234	mg/L			06/23/22 05:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		74 - 124					06/23/22 05:59	1
Dibromofluoromethane (Surr)	94		75 ₋ 131					06/23/22 05:59	1

Eurofins Houston

Page 7 of 26

Client Sample ID: SB41-01-062222

Date Collected: 06/22/22 08:45 Date Received: 06/22/22 15:32

Lab Sample ID: 860-28374-3

Matrix: Water

Job ID: 860-28374-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		63 - 144		06/23/22 05:59	1
Toluene-d8 (Surr)	97		80 - 117		06/23/22 05:59	1

Client Sample ID: FD-01-062222

Date Collected: 06/22/22 00:00

Date Received: 06/22/22 15:32

Lab Sample ID: 860-28374-4

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result Qualifie	r MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.0152	0.00100	0.000174	mg/L			06/23/22 06:18	1
1,1-Dichloroethane	0.0123	0.00100	0.000244	mg/L			06/23/22 06:18	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			06/23/22 06:18	1
1,1-Dichloroethene	0.0143	0.00100	0.000216	mg/L			06/23/22 06:18	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			06/23/22 06:18	1
Trichloroethene	0.00181 J	0.00500	0.000424	mg/L			06/23/22 06:18	1
Vinyl chloride	0.00523	0.00200	0.000234	mg/L			06/23/22 06:18	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		74 - 124	06/23/22 06:18	1
Dibromofluoromethane (Surr)	103		75 - 131	06/23/22 06:18	1
1,2-Dichloroethane-d4 (Surr)	110		63 - 144	06/23/22 06:18	1
Toluene-d8 (Surr)	100		80 - 117	06/23/22 06:18	1

Client Sample ID: SB40-03-062222

Date Collected: 06/22/22 11:35

Date Received: 06/22/22 15:32

Lab Sample ID: 860-28374-5

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00346		0.00100	0.000174	mg/L			06/23/22 05:02	1
1,1-Dichloroethane	0.0324		0.00100	0.000244	mg/L			06/23/22 05:02	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/23/22 05:02	1
1,1-Dichloroethene	0.0108		0.00100	0.000216	mg/L			06/23/22 05:02	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/23/22 05:02	1
Trichloroethene	0.000533	J	0.00500	0.000424	mg/L			06/23/22 05:02	1
Vinyl chloride	0.0155		0.00200	0.000234	mg/L			06/23/22 05:02	1

Surrogate	%Recovery (Qualifier Lin	nits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	74	- 124		06/23/22 05:02	1
Dibromofluoromethane (Surr)	98	75	- 131		06/23/22 05:02	1
1,2-Dichloroethane-d4 (Surr)	108	63	- 144		06/23/22 05:02	1
Toluene-d8 (Surr)	102	80	<u>- 117</u>		06/23/22 05:02	1

Client Sample ID: SB40-02-062222

Date Collected: 06/22/22 11:50

Date Received: 06/22/22 15:32

Lab Sample	ID: 860-28374-6
------------	-----------------

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS									
	Analyte	Result Qualifier	MQL (Adj)	SDL Unit	D	Prepared	Analyzed	Dil Fac	
	cis-1,2-Dichloroethene	0.0208	0.00100	0.000174 mg/L			06/23/22 06:37	1	
	1,1-Dichloroethane	0.0855	0.00100	0.000244 mg/L			06/23/22 06:37	1	

Eurofins Houston

6/23/2022

Page 8 of 26

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: SB40-02-062222

Date Collected: 06/22/22 11:50 Date Received: 06/22/22 15:32

Lab Sample ID: 860-28374-6

Matrix: Water

06/23/22 06:37

Matrix: Water

Job ID: 860-28374-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

101

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	0.000559	J	0.00100	0.000285	mg/L			06/23/22 06:37	1
1,1-Dichloroethene	0.0256		0.00100	0.000216	mg/L			06/23/22 06:37	1
Tetrachloroethene	0.00650		0.00100	0.000500	mg/L			06/23/22 06:37	1
Trichloroethene	0.00273	J	0.00500	0.000424	mg/L			06/23/22 06:37	1
Vinyl chloride	0.0349		0.00200	0.000234	mg/L			06/23/22 06:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		74 - 124			-		06/23/22 06:37	1

1,2-Dichloroethane-d4 (Surr) 107 63 - 144 06/23/22 06:37 Toluene-d8 (Surr) 80 - 117 06/23/22 06:37 98 Client Sample ID: SB40-01-062222 Lab Sample ID: 860-28374-7

75 - 131

Date Collected: 06/22/22 12:05 Date Received: 06/22/22 15:32

Dibromofluoromethane (Surr)

Method: 8260D - Volatile C	rganic Compounds by	GC/MS						
Analyte	Result Qualifier	r MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.110	0.00100	0.000174	mg/L			06/23/22 06:56	1
1,1-Dichloroethane	0.0155	0.00100	0.000244	mg/L			06/23/22 06:56	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			06/23/22 06:56	1
1,1-Dichloroethene	0.00405	0.00100	0.000216	mg/L			06/23/22 06:56	1
Tetrachloroethene	0.0347	0.00100	0.000500	mg/L			06/23/22 06:56	1
Trichloroethene	0.0133	0.00500	0.000424	mg/L			06/23/22 06:56	1
Vinyl chloride	0.0195	0.00200	0.000234	mg/L			06/23/22 06:56	1

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97	74 - 124		06/23/22 06:56	1
Dibromofluoromethane (Surr)	101	75 - 131		06/23/22 06:56	1
1,2-Dichloroethane-d4 (Surr)	108	63 - 144		06/23/22 06:56	1
Toluene-d8 (Surr)	98	80 - 117		06/23/22 06:56	1

Date Received: 06/22/22 15:32

Client Sample ID: TB-01-062222	Lab Sample ID: 860-28374-8
Pate Collected: 06/22/22 07:20	Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/23/22 04:43	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/23/22 04:43	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/23/22 04:43	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/23/22 04:43	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/23/22 04:43	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/23/22 04:43	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/23/22 04:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		74 - 124					06/23/22 04:43	1
Dibromofluoromethane (Surr)	99		75 - 131					06/23/22 04:43	1
1,2-Dichloroethane-d4 (Surr)	100		63 - 144					06/23/22 04:43	1
Toluene-d8 (Surr)	97		80 - 117					06/23/22 04:43	1

Eurofins Houston

Page 9 of 26 6/23/2022

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28374-1

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

6

9

11

40

14

16

11 /

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		BFB	DBFM	DCA	TOL
Lab Sample ID	Client Sample ID	(74-124)	(75-131)	(63-144)	(80-117)
860-28374-1	SB41-03-062222	98	95	104	100
860-28374-2	SB41-02-062222	99	98	106	97
860-28374-3	SB41-01-062222	98	94	108	97
860-28374-4	FD-01-062222	98	103	110	100
860-28374-5	SB40-03-062222	102	98	108	102
860-28374-5 MS	SB40-03-062222	97	99	97	99
860-28374-5 MSD	SB40-03-062222	99	95	94	101
860-28374-6	SB40-02-062222	98	101	107	98
860-28374-7	SB40-01-062222	97	101	108	98
860-28374-8	TB-01-062222	98	99	100	97
LCS 860-58090/3	Lab Control Sample	99	98	96	98
LCSD 860-58090/4	Lab Control Sample Dup	101	98	96	99
MB 860-58090/10	Method Blank	101	98	103	98

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Eurofins Houston

Job ID: 860-28374-1

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-58090/10

Matrix: Water

Analysis Batch: 58090

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 860-28374-1

MB MB

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/23/22 04:24	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/23/22 04:24	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/23/22 04:24	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/23/22 04:24	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/23/22 04:24	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/23/22 04:24	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/23/22 04:24	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 101 74 - 124 06/23/22 04:24 75 - 131 Dibromofluoromethane (Surr) 98 06/23/22 04:24 1,2-Dichloroethane-d4 (Surr) 103 63 - 144 06/23/22 04:24 Toluene-d8 (Surr) 98 80 - 117 06/23/22 04:24

Lab Sample ID: LCS 860-58090/3 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 58090

7 , 0.0 0000	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
cis-1,2-Dichloroethene	0.0500	0.05322		mg/L		106	75 - 125
1,1-Dichloroethane	0.0500	0.05207		mg/L		104	72 - 125
1,2-Dichloroethane	0.0500	0.05451		mg/L		109	68 - 127
1,1-Dichloroethene	0.0500	0.04938		mg/L		99	59 - 172
Tetrachloroethene	0.0500	0.05420		mg/L		108	71 - 125
Trichloroethene	0.0500	0.05366		mg/L		107	62 - 137
Vinyl chloride	0.0500	0.04531		mg/L		91	60 - 140

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	98		75 - 131
1,2-Dichloroethane-d4 (Surr)	96		63 - 144
Toluene-d8 (Surr)	08		80 117

Lab Sample ID: LCSD 860-58090/4 **Client Sample ID: Lab Control Sample Dup**

Matrix: Water

Analysis Batch: 58090

S	Spike LCSD	LCSD		%Rec		RPD
Analyte Ad	dded Result	Qualifier Unit D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene 0.	0500 0.05047	mg/L	101	75 - 125	5	25
1,1-Dichloroethane 0.	0500 0.04842	mg/L	97	72 - 125	7	25
1,2-Dichloroethane 0.4	0500 0.05326	mg/L	107	68 - 127	2	25
1,1-Dichloroethene 0.	0500 0.05121	mg/L	102	59 - 172	4	25
Tetrachloroethene 0.	0500 0.05316	mg/L	106	71 - 125	2	25
Trichloroethene 0.	0500 0.05400	mg/L	108	62 - 137	1	25
Vinyl chloride 0.	0500 0.04282	mg/L	86	60 - 140	6	25

Eurofins Houston

Prep Type: Total/NA

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-58090/4

Matrix: Water

Analysis Batch: 58090

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 101 74 - 124 Dibromofluoromethane (Surr) 98 75 - 131 1,2-Dichloroethane-d4 (Surr) 96 63 - 144 Toluene-d8 (Surr) 99 80 - 117

Lab Sample ID: 860-28374-5 MS

Matrix: Water

Analysis Batch: 58090

Client Sample ID: SB40-03-062222

Prep Type: Total/NA

Job ID: 860-28374-1

l		Sample	Sample	Spike	MS	MS				%Rec	
l	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
l	cis-1,2-Dichloroethene	0.00346		0.0500	0.05971		mg/L		113	75 - 125	
l	1,1-Dichloroethane	0.0324		0.0500	0.1280	N1	mg/L		191	72 - 125	
l	1,2-Dichloroethane	0.000285	U	0.0500	0.05415		mg/L		108	68 - 127	
l	1,1-Dichloroethene	0.0108		0.0500	0.07919		mg/L		137	59 - 172	
l	Tetrachloroethene	0.000500	U	0.0500	0.05399		mg/L		108	71 - 125	
l	Trichloroethene	0.000533	J	0.0500	0.05614		mg/L		111	62 - 137	
l	Vinyl chloride	0.0155		0.0500	0.08155		mg/L		132	60 - 140	
ı											

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		74 - 124
Dibromofluoromethane (Surr)	99		75 - 131
1,2-Dichloroethane-d4 (Surr)	97		63 - 144
Toluene-d8 (Surr)	99		80 - 117

Lab Sample ID: 860-28374-5 MSD

Matrix: Water

Analysis Batch: 58090

Client Sample ID: SB40-03-062222

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	0.00346		0.0500	0.05958		mg/L		112	75 - 125	0	25
1,1-Dichloroethane	0.0324		0.0500	0.1308	N1	mg/L		197	72 - 125	2	25
1,2-Dichloroethane	0.000285	U	0.0500	0.05329		mg/L		107	68 - 127	2	25
1,1-Dichloroethene	0.0108		0.0500	0.08029		mg/L		139	59 - 172	1	25
Tetrachloroethene	0.000500	U	0.0500	0.05582		mg/L		112	71 - 125	3	25
Trichloroethene	0.000533	J	0.0500	0.05470		mg/L		108	62 - 137	3	25
Vinyl chloride	0.0155		0.0500	0.08076		mg/L		131	60 - 140	1	25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	95		75 - 131
1,2-Dichloroethane-d4 (Surr)	94		63 ₋ 144
Toluene-d8 (Surr)	101		80 - 117

Eurofins Houston

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28374-1

GC/MS VOA

Analysis Batch: 58090

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-28374-1	SB41-03-062222	Total/NA	Water	8260D	
860-28374-2	SB41-02-062222	Total/NA	Water	8260D	
860-28374-3	SB41-01-062222	Total/NA	Water	8260D	
860-28374-4	FD-01-062222	Total/NA	Water	8260D	
860-28374-5	SB40-03-062222	Total/NA	Water	8260D	
860-28374-6	SB40-02-062222	Total/NA	Water	8260D	
860-28374-7	SB40-01-062222	Total/NA	Water	8260D	
860-28374-8	TB-01-062222	Total/NA	Water	8260D	
MB 860-58090/10	Method Blank	Total/NA	Water	8260D	
LCS 860-58090/3	Lab Control Sample	Total/NA	Water	8260D	
LCSD 860-58090/4	Lab Control Sample Dup	Total/NA	Water	8260D	
860-28374-5 MS	SB40-03-062222	Total/NA	Water	8260D	
860-28374-5 MSD	SB40-03-062222	Total/NA	Water	8260D	

6

9

TU

12

1 1

16

11/

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: SB41-03-062222

Lab Sample ID: 860-28374-1

Date Collected: 06/22/22 08:10 **Matrix: Water** Date Received: 06/22/22 15:32

Dil Batch Batch Initial Final Batch Prepared Method **Factor** or Analyzed **Prep Type** Type Run **Amount** Amount Number Analyst Lab Total/NA 58090 06/23/22 05:21 A1S XEN STF Analysis 8260D 5 mL 5 mL

Client Sample ID: SB41-02-062222

Lab Sample ID: 860-28374-2 Date Collected: 06/22/22 08:25 **Matrix: Water**

Date Received: 06/22/22 15:32

Batch Batch Dil Initial Final **Batch Prepared Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260D 5 mL 5 mL 58090 06/23/22 05:40 A1S XEN STF

Client Sample ID: SB41-01-062222

Lab Sample ID: 860-28374-3 Date Collected: 06/22/22 08:45 **Matrix: Water**

Date Received: 06/22/22 15:32

Batch Batch Dil Initial Final **Batch** Prepared Method **Factor** Number or Analyzed **Prep Type** Type Run Amount Amount **Analyst** Lab Total/NA Analysis 8260D 58090 06/23/22 05:59 A1S XEN STF 5 mL 5 mL

Lab Sample ID: 860-28374-4 Client Sample ID: FD-01-062222 **Matrix: Water**

Date Collected: 06/22/22 00:00

Date Received: 06/22/22 15:32

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method Factor Amount Amount Number or Analyzed Type Run Analyst Lab Analysis 8260D 58090 06/23/22 06:18 A1S XEN STF Total/NA 5 mL 5 mL

Client Sample ID: SB40-03-062222

Lab Sample ID: 860-28374-5 Date Collected: 06/22/22 11:35 **Matrix: Water**

Date Received: 06/22/22 15:32

Batch Batch Dil Initial Final Batch Prepared Amount Method Run Factor **Amount** Number or Analyzed **Prep Type** Type Analyst Lab Total/NA Analysis 8260D 5 mL 5 mL 58090 06/23/22 05:02 A1S XEN STF

Client Sample ID: SB40-02-062222

Lab Sample ID: 860-28374-6 Date Collected: 06/22/22 11:50 **Matrix: Water**

Date Received: 06/22/22 15:32

Dil Initial Final Batch Batch Batch **Prepared Prep Type** Type Method **Factor** Amount Amount Number or Analyzed **Analyst** Run Lab 06/23/22 06:37 Total/NA Analysis 8260D 5 mL 5 mL 58090 A1S XEN STF

Client Sample ID: SB40-01-062222

Lab Sample ID: 860-28374-7 Date Collected: 06/22/22 12:05 **Matrix: Water**

Date Received: 06/22/22 15:32

Batch Batch Dil Initial Final **Batch Prepared** Method Prep Type Type Run **Factor** Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260D 5 mL 5 mL 58090 06/23/22 06:56 A1S XEN STF

Eurofins Houston

Page 15 of 26

Job ID: 860-28374-1

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Lab Sample ID: 860-28374-8

Matrix: Water

Job ID: 860-28374-1

Client Sample ID: TB-01-062222 Date Collected: 06/22/22 07:20

Date Received: 06/22/22 15:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	58090	06/23/22 04:43	A1S	XEN STF

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28374-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority Program		Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

3

4

5

6

Я

9

11

12

14

16

1 /

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Inv Part 2

MethodMethod DescriptionProtocolLaboratory8260DVolatile Organic Compounds by GC/MSSW846XEN STF5030CPurge and TrapSW846XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-28374-1

4

5

6

0

9

11

12

14

16

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Inv Part 2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-28374-1	SB41-03-062222	Water	06/22/22 08:10	06/22/22 15:32
860-28374-2	SB41-02-062222	Water	06/22/22 08:25	06/22/22 15:32
860-28374-3	SB41-01-062222	Water	06/22/22 08:45	06/22/22 15:32
860-28374-4	FD-01-062222	Water	06/22/22 00:00	06/22/22 15:32
860-28374-5	SB40-03-062222	Water	06/22/22 11:35	06/22/22 15:32
860-28374-6	SB40-02-062222	Water	06/22/22 11:50	06/22/22 15:32
860-28374-7	SB40-01-062222	Water	06/22/22 12:05	06/22/22 15:32
860-28374-8	TB-01-062222	Water	06/22/22 07:20	06/22/22 15:32

Job ID: 860-28374-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-28374-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	06/23/2022

3

4

5

7

4 4

12

14

13

17

Laboratory Data Package Cover Page - Page 2 of 4

		lame: Eurofins Houston	LRC Date: 06/23/202					
		e: STC Silber Rd Pre-Design Inv Part 2	Laboratory Job Numb	er: 860-	28374-1			
		me Bethany McDaniel						_
# ¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵
R1	OI	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of san	nple acceptability upon	✓				
		receipt?						
		Were all departures from standard conditions described in an		✓				
R2	OI	Sample and quality control (QC) identification	1					
		Are all field sample ID numbers cross-referenced to the labor		✓				
		Are all laboratory ID numbers cross-referenced to the corresp	onding QC data?	✓				
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding times		✓				
		Other than those results < MQL, were all other raw values bra	acketed by calibration	✓				
		standards?						
		Were calculations checked by a peer or supervisor?		√				
		Were all analyte identifications checked by a peer or supervision		√				
		Were sample detection limits reported for all analytes not det		✓				
		Were all results for soil and sediment samples reported on a				√		1
		Were % moisture (or solids) reported for all soil and sediment	•			✓ ✓		
		Were bulk soils/solids samples for volatile analysis extracted	with methanol per					
		SW846 Method 5035? If required for the project, are TICs reported?				✓	1	
D4						V		
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction? Were surrogate percent recoveries in all samples within the la	phorotony OC limito?	✓ ✓				
D.E.			<u> </u>	V				
R5	OI	Test reports/summary forms for blank sample	<u>!S</u>					
		Were appropriate type(s) of blanks analyzed?		√				
		Were blanks analyzed at the appropriate frequency?		✓				
		Were method blanks taken through the entire analytical proce	ess, including preparation	v				
		and, if applicable, cleanup procedures? Were blank concentrations < MQL?		✓				
DC		· ·		V				
R6	OI	Laboratory control samples (LCS): Were all COCs included in the LCS?		✓				
				✓				
		Was each LCS taken through the entire analytical procedure,	including prep and	•				
		cleanup steps? Were LCSs analyzed at the required frequency?		✓				
		Were LCS (and LCSD, if applicable) %Rs within the laborator	ry OC limits?	✓				
		Does the detectability check sample data document the labor	-	✓				
		detect the COCs at the MDL used to calculate the SDLs?	atory 3 capability to					
		Was the LCSD RPD within QC limits?		✓				
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data					
1 \ 1	<u> </u>	Were the project/method specified analytes included in the M		√				
		Were MS/MSD analyzed at the appropriate frequency?	e unu meb.	✓				
		Were MS (and MSD, if applicable) %Rs within the laboratory	QC limits?		✓			1
		Were MS/MSD RPDs within laboratory QC limits?		✓			1	
R8	OI	Analytical duplicate data						
	, <u> </u>	Were appropriate analytical duplicates analyzed for each material	trix?			√		
		Were analytical duplicates analyzed at the appropriate freque				✓		1
		Were RPDs or relative standard deviations within the laborate				✓		
R9	OI	Method quantitation limits (MQLs):						
		Are the MQLs for each method analyte included in the labora	tory data package?	✓				
		Do the MQLs correspond to the concentration of the lowest n		✓				
		standard?						
		Are unadjusted MQLs and DCSs included in the laboratory da	ata package?	✓				1
R10	OI	Other problems/anomalies						
	1	Are all known problems/anomalies/special conditions noted in	n this LRC and ER?	✓				
		Was applicable and available technology used to lower the S		✓				
		interference effects on the sample results?	· · · · · · · · · · · · · · · · · · ·					
		Is the laboratory NELAC-accredited under the Texas Laborate	ory Accreditation Program	✓				
		for the analytes, matrices and methods associated with this la	-	1	1		1	1

Page 21 of 26 6/23/2022

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 06/23/2022
Project Name: STC Silber Rd Pre-Design Inv Part 2	Laboratory Job Number: 860-28374-1
Reviewer Name Bethany McDaniel	•

		<u> </u>	ob Number: 860	-28374-1			
		ame: Bethany McDaniel					
#¹	A ²	Description	Yes	No	NA ³	NR⁴	ER#⁵
S1	OI	Initial calibration (ICAL)					
	<u>'</u>	Were response factors and/or relative response factors for each analyte within	QC 🗸				
		limits?					
		Were percent RSDs or correlation coefficient criteria met?	✓				
		Was the number of standards recommended in the method used for all analyte	s? ✓				
		Were all points generated between the lowest and highest standard used to ca	lculate ✓				
		the curve?					
		Are ICAL data available for all instruments used?	✓				
		Has the initial calibration curve been verified using an appropriate second sour	rce ✓				
		standard?					
S2	OI	Initial and continuing calibration verification (ICCV and CC	V) and				
		continuing calibration blank (CCB):	,				
		Was the CCV analyzed at the method-required frequency?	✓				
		Were percent differences for each analyte within the method-required QC limits	s? ✓				
		Was the ICAL curve verified for each analyte?	✓				+
		Was the absolute value of the analyte concentration in the inorganic CCB < MI	DL?		✓		
S3	0	Mass spectral tuning					
00		Was the appropriate compound for the method used for tuning?	✓				
		Were ion abundance data within the method-required QC limits?	· ·			_	+
64	0	, , , , , , , , , , , , , , , , , , ,	·				
S4	U	Internal standards (IS)	>				
~=		Were IS area counts and retention times within the method-required QC limits?	· ·				
S5	OI	Raw data (NELAC Section 5.5.10)					
		Were the raw data (for example, chromatograms, spectral data) reviewed by a	n 🗸				
		analyst?					
	1	Were data associated with manual integrations flagged on the raw data?	✓				
S6	0	Dual column confirmation					
		Did dual column confirmation results meet the method-required QC?			✓		
S7	0	Tentatively identified compounds (TICs)					
		If TICs were requested, were the mass spectra and TIC data subject to approp	riate		✓		
		checks?					
S8	ı	Interference Check Sample (ICS) results					
		Were percent recoveries within method QC limits?			√		
S9		Serial dilutions, post digestion spikes, and method of stan	dard				
	-	additions	uu. u				
		Were percent differences, recoveries, and the linearity within the QC limits specified by the second	cified		√		
		in the method?	Cilica				
S10	OI	Method detection limit (MDL) studies					
310	Oi	Was a MDL study performed for each reported analyte?	√				
		Is the MDL either adjusted or supported by the analysis of DCSs?	· ·			_	+
S11	OI	7 11 7 7					
311	Oi	Proficiency test reports	ts or 🗸				
		Was the laboratory's performance acceptable on the applicable proficiency test	IS OF				
040		evaluation studies?					
S12	OI	Standards documentation					
		Are all standards used in the analyses NIST-traceable or obtained from other	✓				
		appropriate sources?					
S13	OI	Compound/analyte identification procedures					
		Are the procedures for compound/analyte identification documented?	✓				
S14	OI	Demonstration of analyst competency (DOC)					
		Was DOC conducted consistent with NELAC Chapter 5?	✓				
		Is documentation of the analyst's competency up-to-date and on file?	✓				
S15	OI	Verification/validation documentation for methods (NELAC					
-		Chapter 5)					
	1	Are all the methods used to generate the data documented, verified, and validate	ated 🗸				
		where applicable?					
S16	OI	Laboratory standard operating procedures (SOPs)					
310	l Oi	Are laboratory SOPs current and on file for each method performed?	✓				
		Are laboratory our a current and on the for each method performed?	v			1	

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

2

3

_

7

9

10

12

14

15

17

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

^{3.} NA = Not applicable;

^{4.} NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Labora	aboratory Name: Eurofins Houston LRC Date: 06/23/2022									
Project	Name: STC Silber Rd Pre-Design Inv Part 2	Laboratory Job Number: 860-28374-1								
Review	Reviewer Name: Bethany McDaniel									
ER#1	,									
1	Method 8260D: The matrix spike / matrix spike duplicate (MS/MSD) re	ecoveries for analytical batch 860-58090 were outside control limits. Sample								
	matrix interference and/or non-homogeneity are suspected because the	he associated laboratory control sample (LCS) recovery was within								
	acceptance limits.									
1. ER:	ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).									

- 5

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28374-1

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A294 Detector: MSD/0 Column: DB-624

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
Trichloroethene	0.00500	0.00510		mg/L	0.00500	0.000424	02/23/2022	860-42516
Vinyl chloride	0.00500	0.00494		mg/L	0.00200	0.000234	02/23/2022	860-42516
cis-1,2-Dichloroethene	0.00500	0.00494		mg/L	0.00100	0.000174	02/23/2022	860-42516
1,1-Dichloroethane	0.00500	0.00501		mg/L	0.00100	0.000244	02/23/2022	860-42516
1,2-Dichloroethane	0.00500	0.00495		mg/L	0.00100	0.000285	02/23/2022	860-42516
1,1-Dichloroethene	0.00500	0.00478		mg/L	0.00100	0.000216	02/23/2022	860-42516
Tetrachloroethene	0.00500	0.00496		mg/L	0.00100	0.000500	02/23/2022	860-42516

6/23/2022

Eurofins Houston 4.445 Greenbriar Dr Stafford TX 7777 Phone (281) 240-4200 Client Information General Contact Jacobs Engineering Group, Inc. Jacobs E	Chain of Chair of Cha	Sample Matrix E-Mail: Bethany.My Water Wat	Note and the second state of the second state	ipment:	COC No. Securofins En Page Of Jub #: B Nadol B Nado	ca c
inquished by: Date/Time		Company	Received by:			Company
Jerry	139.30 B	Company	Received by:	57.22(2.7.2) Date/Time:		ompany X
	W So book	Company	Received by	Ų.	1001	Allenan
	i	Company	Receivedby	(GC L	Tritol	отралу
			1	Method of Shipment:	4	
III, IV Umer (specify)	ĺ	<u>8</u>	cial Instructions/QC Requireme	ents:		
aut aut	Unknown		Return To Client]	chive For	Months
			nple Disposal (A fee may be	assessed if samples are retai	ned longer than 1 mo	onth)
		Water	Corrected Temp:	2.5	- dear-	
		vedice	C/F0.9	1		
		Water	2.7	ID HOU-332		
		Water			Berr	
1-56222	<u>)</u> &	Water	Z		n I	
7777 90 10-	(0) Y	water	X		\ <u>\</u>	
21 2000	2	Metor	↓			
-32 -0(,2222;**	n211 tt/	Water	X		1	
5-53-06727	22 1135	Water			DWISW 6	
01-062222 61-062222	12/ VG	Water			Ave	
0 -01-00-10-	Sh80 22	Water	×		N.	
7 - 04-04-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-	(1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	Water	X		Na	
1, (1777	200000					
3 - 06,222	0180 22	Water	 			
	X	tion Code.	X			
	затріе Тіте	O=wastevoll, © BT=Tissue, A=Air) (LE	82600			uctions/Note:
		(Waywalls,			wnii.	
		S pe.			0 100	
	a.·		500s			
	#. 024		Jen D		L EDA Z	Trizma other (specify)
	8				J DI Water W	/ pH4-5
	CO NO CO IIO TOT GO O GOA			- -		Acetone MCAA
#Od D360	528.C.CS.TPE.SIL.22-01-02	k é((ain of Custody	Amehlor T	H2SO4 TSP Dodecahydrate
	y Yes				NaHSO4	
		1632			Zn Acetate Nitric Acid	
	quested (days): 1 day RUSH	124			NaOH 72 Acetet	
	te Requestad:	8.60		2017 T T T] [Preservation Codes:	
			Analysis Re	duested		
	:DMSID:	war di parinari	real legice en oll legic en oll		₩.	ð
		E-Mail: Bethany.Mo	Daniel@et eurofinsus.com	State of Origin:	_	
mation		McDaniel, I	sethany A		860-11069-3875.1	
		Lab PM:		Cerner Tracking No(s):	COC Ne:	
1 TX 77477	Chain of cus	tody Keco	2			Environment testing America
reenbriar Dr		, 10 mm			_	,
fine Houston						

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-28374-1

Login Number: 28374 List Source: Eurofins Houston

List Number: 1

Creator: Palmar, Pedro

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

_

4

5

0

8

10

15

13

15

17

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-28484-1

Client Project/Site: STC Silber Rd Pre-Design Inv Part 2

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 6/24/2022 4:14:16 PM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

..... Links

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

40

13

14

16

17

I

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	8
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
State Forms	17
TRRP Checklist	17
DCS Report	21
Chain of Custody	22
Receipt Checklists	23

2

4

6

8

10

12

14

15

17

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28484-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation	These commonly	y used abbreviations may	y or may not be	present in this report.
--------------	----------------	--------------------------	-----------------	-------------------------

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Houston

6/24/2022

Page 3 of 23

3

4

Ę

6

9

10

12

4 /

4.0

17

Ш

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28484-1

Job ID: 860-28484-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-28484-1

Receipt

The samples were received on 6/23/2022 1:40 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.2°C

4

4

J

6

0

9

10

12

4 4

15

17

Detection Summary

Client: Jacobs Engineering Group, Inc.

Client Sample ID: SB37-02-062222

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Lab Sample ID: 860-28484-1

No Detections.

Client Sample ID: SB37-01-062222 Lab Sample ID: 860-28484-2

No Detections.

Client Sample ID: TB-02-062222 Lab Sample ID: 860-28484-3

No Detections.

Client Sample ID: SB38-03-062222 Lab Sample ID: 860-28484-4

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00397	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.00335	0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.00103	0.00100	0.000216	mg/L	1		8260D	Total/NA
Vinyl chloride	0.00248	0.00200	0.000234	mg/L	1		8260D	Total/NA

Client Sample ID: SB38-02-062222 Lab Sample ID: 860-28484-5

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	0.0116	0.00100	0.000174	mg/L		8260D	Total/NA
1,1-Dichloroethane	0.00830	0.00100	0.000244	mg/L	1	8260D	Total/NA
1,1-Dichloroethene	0.00759	0.00100	0.000216	mg/L	1	8260D	Total/NA
Tetrachloroethene	0.000907 J	0.00100	0.000500	mg/L	1	8260D	Total/NA
Trichloroethene	0.00196 J	0.00500	0.000424	mg/L	1	8260D	Total/NA
Vinyl chloride	0.00871	0.00200	0.000234	mg/L	1	8260D	Total/NA

This Detection Summary does not include radiochemical test results.

6/24/2022

Page 5 of 23

Job ID: 860-28484-1

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: SB37-02-062222

Date Collected: 06/22/22 15:40 Date Received: 06/23/22 13:40 Lab Sample ID: 860-28484-1

Matrix: Water

Job ID: 860-28484-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/24/22 07:10	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/24/22 07:10	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/24/22 07:10	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/24/22 07:10	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/24/22 07:10	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/24/22 07:10	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/24/22 07:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

4-Bromofluorobenzene (Surr) 104 74 - 124 06/24/22 07:10 06/24/22 07:10 Dibromofluoromethane (Surr) 105 75 - 131 1,2-Dichloroethane-d4 (Surr) 116 63 - 144 06/24/22 07:10 Toluene-d8 (Surr) 100 80 - 117 06/24/22 07:10

Client Sample ID: SB37-01-062222

Date Collected: 06/22/22 15:55

Date Received: 06/23/22 13:40

Lab Sample ID: 860-28484-2

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS

Welliou. 6260D - Volalile	Organic Compounds by (3C/IVI3						
Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174 U	0.00100	0.000174	mg/L			06/24/22 07:31	1
1,1-Dichloroethane	0.000244 U	0.00100	0.000244	mg/L			06/24/22 07:31	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			06/24/22 07:31	1
1,1-Dichloroethene	0.000216 U	0.00100	0.000216	mg/L			06/24/22 07:31	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			06/24/22 07:31	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			06/24/22 07:31	1
Vinyl chloride	0.000234 U	0.00200	0.000234	mg/L			06/24/22 07:31	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	106		74 - 124		06/24/22 07:31	1	
Dibromofluoromethane (Surr)	106		75 - 131		06/24/22 07:31	1	
1,2-Dichloroethane-d4 (Surr)	117		63 - 144		06/24/22 07:31	1	
Toluene-d8 (Surr)	101		80 - 117		06/24/22 07:31	1	

Client Sample ID: TB-02-062222

Date Collected: 06/22/22 13:00

Date Received: 06/23/22 13:40

Lab	Sample	e ID:	860-2	8484-3

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/24/22 06:50	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/24/22 06:50	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/24/22 06:50	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/24/22 06:50	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/24/22 06:50	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/24/22 06:50	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/24/22 06:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		74 - 124			•		06/24/22 06:50	1
Dibromofluoromethane (Surr)	106		75 - 131					06/24/22 06:50	1

Eurofins Houston

Page 6 of 23 6/24/2022

3

0

8

10

12

13

15

17

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: TB-02-062222

Date Collected: 06/22/22 13:00

Date Received: 06/23/22 13:40

Lab Sample ID: 860-28484-3

Matrix: Water

Job ID: 860-28484-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		63 - 144		06/24/22 06:50	1
Toluene-d8 (Surr)	100		80 - 117		06/24/22 06:50	1

Client Sample ID: SB38-03-062222

Date Collected: 06/23/22 11:00 Date Received: 06/23/22 13:40

Lab Sample ID: 860-28484-4

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result Q	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00397		0.00100	0.000174	mg/L			06/24/22 08:14	1
1,1-Dichloroethane	0.00335		0.00100	0.000244	mg/L			06/24/22 08:14	1
1,2-Dichloroethane	0.000285 U	J	0.00100	0.000285	mg/L			06/24/22 08:14	1
1,1-Dichloroethene	0.00103		0.00100	0.000216	mg/L			06/24/22 08:14	1
Tetrachloroethene	0.000500 U	J	0.00100	0.000500	mg/L			06/24/22 08:14	1
Trichloroethene	0.000424 U	J	0.00500	0.000424	mg/L			06/24/22 08:14	1
Vinyl chloride	0.00248		0.00200	0.000234	mg/L			06/24/22 08:14	1

Surrogate	%Recovery	Qualifier Limit	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107	74 - 1.	24	06/24/22 08:14	1
Dibromofluoromethane (Surr)	106	75 - 1	31	06/24/22 08:14	1
1,2-Dichloroethane-d4 (Surr)	118	63 - 1-	14	06/24/22 08:14	1
Toluene-d8 (Surr)	100	80 - 1	7	06/24/22 08:14	1

Client Sample ID: SB38-02-062222

Date Collected: 06/23/22 11:20 Date Received: 06/23/22 13:40

Lab Sample ID: 860-28484-5

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.0116		0.00100	0.000174	mg/L			06/24/22 08:35	1
1,1-Dichloroethane	0.00830		0.00100	0.000244	mg/L			06/24/22 08:35	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/24/22 08:35	1
1,1-Dichloroethene	0.00759		0.00100	0.000216	mg/L			06/24/22 08:35	1
Tetrachloroethene	0.000907	J	0.00100	0.000500	mg/L			06/24/22 08:35	1
Trichloroethene	0.00196	J	0.00500	0.000424	mg/L			06/24/22 08:35	1
Vinyl chloride	0.00871		0.00200	0.000234	mg/L			06/24/22 08:35	1

Surrogate	%Recovery 0	Qualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107	74 - 124		06/24/22 08:35	1
Dibromofluoromethane (Surr)	108	75 - 131		06/24/22 08:35	1
1,2-Dichloroethane-d4 (Surr)	115	63 - 144		06/24/22 08:35	1
Toluene-d8 (Surr)	100	80 - 117		06/24/22 08:35	1

Page 7 of 23

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28484-1

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

4

6

9

4 4

12

. .

15

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco
		BFB	DBFM	DCA	TOL
Lab Sample ID	Client Sample ID	(74-124)	(75-131)	(63-144)	(80-117)
860-28318-C-1 MS	Matrix Spike	101	108	111	99
860-28318-C-1 MSD	Matrix Spike Duplicate	103	107	113	101
860-28484-1	SB37-02-062222	104	105	116	100
860-28484-2	SB37-01-062222	106	106	117	101
860-28484-3	TB-02-062222	105	106	116	100
860-28484-4	SB38-03-062222	107	106	118	100
860-28484-5	SB38-02-062222	107	108	115	100
LCS 860-58333/31	Lab Control Sample	99	107	113	99
LCSD 860-58333/32	Lab Control Sample Dup	101	108	110	99
MB 860-58333/10	Method Blank	105	105	113	100

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Page 9 of 23

Job ID: 860-28484-1

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-58333/10

Matrix: Water

Analysis Batch: 58333

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 860-28484-1

MB MB

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/24/22 01:21	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/24/22 01:21	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/24/22 01:21	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/24/22 01:21	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/24/22 01:21	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/24/22 01:21	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/24/22 01:21	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 105 74 - 124 06/24/22 01:21 Dibromofluoromethane (Surr) 105 75 - 131 06/24/22 01:21 1,2-Dichloroethane-d4 (Surr) 113 63 - 144 06/24/22 01:21 Toluene-d8 (Surr) 100 80 - 117 06/24/22 01:21

Lab Sample ID: LCS 860-58333/31

Matrix: Water

Analysis Batch: 58333

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits Analyte cis-1,2-Dichloroethene 0.0500 0.05032 101 75 - 125 mg/L 1,1-Dichloroethane 0.0500 0.04997 100 mg/L 72 - 125 1.2-Dichloroethane 0.0500 0.05447 mg/L 109 68 - 127 1,1-Dichloroethene 0.0500 0.04644 93 59 - 172 mg/L Tetrachloroethene 0.0500 0.04702 mg/L 94 71 - 125 Trichloroethene 0.0500 0.04796 mg/L 96 62 - 137 Vinyl chloride 0.0500 0.04938 99 60 - 140 mg/L

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 99 74 - 124 107 75 - 131 Dibromofluoromethane (Surr) 1,2-Dichloroethane-d4 (Surr) 113 63 - 144 Toluene-d8 (Surr) 99 80 - 117

Lab Sample ID: LCSD 860-58333/32

Matrix: Water

Analysis Batch: 58333

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD L	LCSD				%Rec		RPD
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	0.0500	0.05034		mg/L		101	75 - 125	0	25
1,1-Dichloroethane	0.0500	0.05015		mg/L		100	72 - 125	0	25
1,2-Dichloroethane	0.0500	0.05353		mg/L		107	68 - 127	2	25
1,1-Dichloroethene	0.0500	0.04611		mg/L		92	59 - 172	1	25
Tetrachloroethene	0.0500	0.04634		mg/L		93	71 - 125	1	25
Trichloroethene	0.0500	0.04793		mg/L		96	62 - 137	0	25
Vinyl chloride	0.0500	0.05020		mg/L		100	60 - 140	2	25

Eurofins Houston

2

4

6

9

11

12

14

16

11

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-58333/32

Matrix: Water

Analysis Batch: 58333

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 101 74 - 124 Dibromofluoromethane (Surr) 108 75 - 131 1,2-Dichloroethane-d4 (Surr) 110 63 - 144 Toluene-d8 (Surr) 99 80 - 117

Lab Sample ID: 860-28318-C-1 MS

Matrix: Water

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Job ID: 860-28484-1

Analysis Batch: 58333

S	ample	Sample	Spike	MS	MS				%Rec	
Analyte F	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene 0.	00103		0.0500	0.05050		mg/L		99	75 - 125	
1,1-Dichloroethane 0.0	00244	U	0.0500	0.04909		mg/L		98	72 - 125	
1,2-Dichloroethane 0.0	00285	U	0.0500	0.05290		mg/L		106	68 - 127	
1,1-Dichloroethene 0.0	00216	U	0.0500	0.04757		mg/L		95	59 - 172	
Tetrachloroethene 0.0	00500	U	0.0500	0.04615		mg/L		92	71 - 125	
Trichloroethene 0.0	00424	U	0.0500	0.04794		mg/L		96	62 - 137	
Vinyl chloride 0.0	00234	U	0.0500	0.05354		mg/L		107	60 - 140	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		74 - 124
Dibromofluoromethane (Surr)	108		75 - 131
1,2-Dichloroethane-d4 (Surr)	111		63 - 144
Toluene-d8 (Surr)	99		80 - 117

Lab Sample ID: 860-28318-C-1 MSD

Matrix: Water

Analysis Batch: 58333

Client Sample I	ID:	Matrix	S	pike Duplicate
		Pre	n '	Type: Total/NA

Spike **RPD** MSD MSD %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit cis-1,2-Dichloroethene 0.00103 0.0500 0.04802 94 75 - 125 5 25 mg/L 1,1-Dichloroethane 0.000244 U 0.0500 0.04708 mg/L 94 72 - 125 4 25 1,2-Dichloroethane 0.000285 U 0.0500 0.05108 mg/L 102 68 - 127 25 25 1,1-Dichloroethene 0.000216 U 0.0500 0.04604 92 59 - 172 mg/L Tetrachloroethene 0.000500 U 0.0500 0.04602 92 71 - 125 25 mg/L Trichloroethene 62 - 137 0.000424 U 0.0500 0.04582 92 25 mg/L Vinyl chloride 0.000234 U 0.0500 0.05165 mg/L 103 60 - 140 25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		74 - 124
Dibromofluoromethane (Surr)	107		75 ₋ 131
1,2-Dichloroethane-d4 (Surr)	113		63 - 144
Toluene-d8 (Surr)	101		80 - 117

Eurofins Houston

QC Association Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28484-1

GC/MS VOA

Analysis Batch: 58333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-28484-1	SB37-02-062222	Total/NA	Water	8260D	
860-28484-2	SB37-01-062222	Total/NA	Water	8260D	
860-28484-3	TB-02-062222	Total/NA	Water	8260D	
860-28484-4	SB38-03-062222	Total/NA	Water	8260D	
860-28484-5	SB38-02-062222	Total/NA	Water	8260D	
MB 860-58333/10	Method Blank	Total/NA	Water	8260D	
LCS 860-58333/31	Lab Control Sample	Total/NA	Water	8260D	
LCSD 860-58333/32	Lab Control Sample Dup	Total/NA	Water	8260D	
860-28318-C-1 MS	Matrix Spike	Total/NA	Water	8260D	
860-28318-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260D	

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: SB37-02-062222

Lab Sample ID: 860-28484-1

Date Collected: 06/22/22 15:40 **Matrix: Water** Date Received: 06/23/22 13:40

Batch Dil Batch Batch Initial Final Prepared or Analyzed Method **Factor Prep Type** Type Run **Amount** Amount Number **Analyst** Lab Total/NA 8260D 58333 06/24/22 07:10 TTD XEN STF Analysis 5 mL 5 mL

Client Sample ID: SB37-01-062222

Lab Sample ID: 860-28484-2 Date Collected: 06/22/22 15:55 **Matrix: Water**

Date Received: 06/23/22 13:40

Batch Batch Dil Initial Final **Batch Prepared Prep Type** Type Method Run **Factor Amount** Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260D 5 mL 5 mL 58333 06/24/22 07:31 TTD XEN STF

Client Sample ID: TB-02-062222

Lab Sample ID: 860-28484-3 Date Collected: 06/22/22 13:00 **Matrix: Water**

Date Received: 06/23/22 13:40

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method **Factor** Number or Analyzed Type Run **Amount** Amount **Analyst** Lab Total/NA Analysis 8260D 5 mL 58333 06/24/22 06:50 TTD XEN STF 5 mL

Client Sample ID: SB38-03-062222

Lab Sample ID: 860-28484-4 Date Collected: 06/23/22 11:00 **Matrix: Water**

Date Received: 06/23/22 13:40

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Method Factor **Amount** Amount Number or Analyzed Type Run **Analyst** Lab Analysis 8260D 5 mL 58333 06/24/22 08:14 TTD XEN STF Total/NA 5 mL

Client Sample ID: SB38-02-062222

Lab Sample ID: 860-28484-5 Date Collected: 06/23/22 11:20 **Matrix: Water**

Date Received: 06/23/22 13:40

Batch Batch Dil Initial Final Batch **Prepared** Method Run **Factor Amount** Number or Analyzed **Prep Type** Type **Amount** Analyst Lab XEN STF Total/NA Analysis 8260D 5 mL 5 mL 58333 06/24/22 08:35 TTD

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

Job ID: 860-28484-1

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28484-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

16

4

5

7

9

10

12

14

10

17

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Inv Part 2

MethodMethod DescriptionProtocolLaboratory8260DVolatile Organic Compounds by GC/MSSW846XEN STF5030CPurge and TrapSW846XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-28484-1

4

5

6

8

9

11

40

14

16

. .

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Inv Part 2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-28484-1	SB37-02-062222	Water	06/22/22 15:40	06/23/22 13:40
860-28484-2	SB37-01-062222	Water	06/22/22 15:55	06/23/22 13:40
860-28484-3	TB-02-062222	Water	06/22/22 13:00	06/23/22 13:40
860-28484-4	SB38-03-062222	Water	06/23/22 11:00	06/23/22 13:40
860-28484-5	SB38-02-062222	Water	06/23/22 11:20	06/23/22 13:40

Job ID: 860-28484-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-28484-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	06/24/2022

2

4

7

10

12

11

15

17

R

Laboratory Data Package Cover Page - Page 2 of 4

		lame: Eurofins Houston	LRC Date: 06/24/202					
		e: STC Silber Rd Pre-Design Inv Part 2	Laboratory Job Numb	er: 860-	28484-1			
		me Bethany McDaniel						
#¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵
R1	OI	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of sar	nple acceptability upon	✓				
		receipt?						
		Were all departures from standard conditions described in ar		✓				
R2	OI	Sample and quality control (QC) identification						
		Are all field sample ID numbers cross-referenced to the labor		✓				
		Are all laboratory ID numbers cross-referenced to the corresponding	onding QC data?	✓				
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding times	s?	✓				
		Other than those results < MQL, were all other raw values br	acketed by calibration	✓				
		standards?						
		Were calculations checked by a peer or supervisor?		✓				
		Were all analyte identifications checked by a peer or supervision		✓				
		Were sample detection limits reported for all analytes not det		✓		1		1
		Were all results for soil and sediment samples reported on a				√	1	
		Were % moisture (or solids) reported for all soil and sedimen	•	1		✓	1	1
		Were bulk soils/solids samples for volatile analysis extracted	with methanol per			✓		
		SW846 Method 5035?				/	-	
		If required for the project, are TICs reported?				V		
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?		/				
		Were surrogate percent recoveries in all samples within the la	<u> </u>	✓				
R5 OI		Test reports/summary forms for blank sample	S					
		Were appropriate type(s) of blanks analyzed?	√					
		Were blanks analyzed at the appropriate frequency?		✓				
		Were method blanks taken through the entire analytical proce	ess, including preparation	✓				
		and, if applicable, cleanup procedures?		✓				
D.C.		Were blank concentrations < MQL?		· ·				
R6	OI	Laboratory control samples (LCS):						
		Were all COCs included in the LCS?		✓ ✓				
		Was each LCS taken through the entire analytical procedure,	including prep and	•				
		cleanup steps? Were LCSs analyzed at the required frequency?		✓				
		Were LCS and LCSD, if applicable) %Rs within the laborato	ov OC limite?	V				
		Does the detectability check sample data document the laborator	-	· ·				
		detect the COCs at the MDL used to calculate the SDLs?	atory's capability to					
		Was the LCSD RPD within QC limits?		✓				
R7	OI	Matrix spike (MS) and matrix spike duplicate	MSD) data					
111		Were the project/method specified analytes included in the M		✓				
		Were MS/MSD analyzed at the appropriate frequency?	a mob .	· ·			+	
		Were MS (and MSD, if applicable) %Rs within the laboratory	QC limits?	· ·				1
		Were MS/MSD RPDs within laboratory QC limits?		✓			1	
R8	OI	Analytical duplicate data						
	<u> </u>	Were appropriate analytical duplicates analyzed for each ma	trix?			√		
		Were analytical duplicates analyzed at the appropriate freque				√	+	
		Were RPDs or relative standard deviations within the laborate				✓		1
R9	OI	Method quantitation limits (MQLs):	•					
		Are the MQLs for each method analyte included in the labora	tory data package?	✓				
		Do the MQLs correspond to the concentration of the lowest n		✓				1
		standard?						
		Are unadjusted MQLs and DCSs included in the laboratory d	ata package?	✓			1	
R10	OI	Other problems/anomalies	· · ·					
	<u>, J.</u>	Are all known problems/anomalies/special conditions noted in	n this LRC and ER?	✓				
		Was applicable and available technology used to lower the S		✓			+	
		interference effects on the sample results?	DE 13 HIIIIIIIIZO UIC HIGUIX					
		Is the laboratory NELAC-accredited under the Texas Laborat	ory Accreditation Program	✓			1	1
		for the analytes, matrices and methods associated with this la	-	1				1

Page 18 of 23

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 06/24/2022
Project Name: STC Silber Rd Pre-Design Inv Part 2	Laboratory Job Number: 860-28484-1
Reviewer Name Bethany McDaniel	

			Job Number: 860)-28484-1			
Revie	wer Na	ame: Bethany McDaniel					
# ¹	A ²	Description	Yes	No	NA ³	NR⁴	ER#
S1	OI	Initial calibration (ICAL)					
	1	Were response factors and/or relative response factors for each analyte with	in QC ✓				
		limits?					
		Were percent RSDs or correlation coefficient criteria met?	✓				
		Was the number of standards recommended in the method used for all analy	/tes? ✓				
	Were all points generated between the lowest and highest standard used to calculate						
	the curve?						
		Are ICAL data available for all instruments used?	✓				
		Has the initial calibration curve been verified using an appropriate second so	ource ✓				
		standard?					
S2 OI		Initial and continuing calibration verification (ICCV and C	CV) and				
		continuing calibration blank (CCB):					
		Was the CCV analyzed at the method-required frequency?	✓				
		Were percent differences for each analyte within the method-required QC lin					
		Was the ICAL curve verified for each analyte?	✓				
		Was the absolute value of the analyte concentration in the inorganic CCB <	MDL?		✓		
S3	0	Mass spectral tuning					
		Was the appropriate compound for the method used for tuning?	√				
		Were ion abundance data within the method-required QC limits?	✓				
S4	0	Internal standards (IS)					
		Were IS area counts and retention times within the method-required QC limit	ts? ✓				
S5	OI	Raw data (NELAC Section 5.5.10)					
		Were the raw data (for example, chromatograms, spectral data) reviewed by	ran ✓				
		analyst?	✓				
		Were data associated with manual integrations flagged on the raw data?					
S6	0	Dual column confirmation					
		Did dual column confirmation results meet the method-required QC?			✓		
S7	0	Tentatively identified compounds (TICs)					
		If TICs were requested, were the mass spectra and TIC data subject to appr	opriate		✓		
		checks?					
S8	l	Interference Check Sample (ICS) results					
		Were percent recoveries within method QC limits?			✓		
S9	l I	Serial dilutions, post digestion spikes, and method of sta	ndard				
		additions					
		Were percent differences, recoveries, and the linearity within the QC limits s	pecified		✓		
		in the method?					
S10	OI	Method detection limit (MDL) studies					
		Was a MDL study performed for each reported analyte?	✓				
		Is the MDL either adjusted or supported by the analysis of DCSs?	✓				
S11	OI	Proficiency test reports					
		Was the laboratory's performance acceptable on the applicable proficiency to	ests or ✓				
		evaluation studies?					
S12	OI	Standards documentation					
		Are all standards used in the analyses NIST-traceable or obtained from other	r ✓				
		appropriate sources?					
S13	OI	Compound/analyte identification procedures					
		Are the procedures for compound/analyte identification documented?	✓				
S14	OI	Demonstration of analyst competency (DOC)					
		Was DOC conducted consistent with NELAC Chapter 5?	✓				
		Is documentation of the analyst's competency up-to-date and on file?	✓				
S15	OI	Verification/validation documentation for methods (NELA	VC				
		Chapter 5)					
		Are all the methods used to generate the data documented, verified, and val	idated, ✓				
		,	*		1	1	1
		where applicable?					
S16	OI	where applicable? Laboratory standard operating procedures (SOPs)					

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

2

3

4

7

9

11

13

15

17

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

^{3.} NA = Not applicable;

^{4.} NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Labora	tory Name: Eurofins Houston	LRC Date: 06/24/2022				
Project Name: STC Silber Rd Pre-Design Inv Part 2 Laboratory Job Number: 860-28484-1						
Review	ver Name: Bethany McDaniel					
ER#1	Description					
	No Exceptions					
1. ER	# = Exception Report identification number (an Exception Report shoul	ld be completed for an item if "NR" or "No" is checked).				

E

I

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28484-1

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Detector: MSD/0 Column: DB-624

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
Trichloroethene	0.00100	0.00503		mg/L	0.00500	0.000424	03/03/2022	860-43530
Vinyl chloride	0.00100	0.00381		mg/L	0.00200	0.000234	03/03/2022	860-43530
cis-1,2-Dichloroethene	0.00100	0.00499		mg/L	0.00100	0.000174	03/03/2022	860-43530
1,1-Dichloroethane	0.00100	0.00483		mg/L	0.00100	0.000244	03/03/2022	860-43530
1,2-Dichloroethane	0.00100	0.00498		mg/L	0.00100	0.000285	03/03/2022	860-43530
1,1-Dichloroethene	0.00100	0.00411		mg/L	0.00100	0.000216	03/03/2022	860-43530
Tetrachloroethene	0.00100	0.00463		mg/L	0.00100	0.000500	03/03/2022	860-43530

3

4

6

9

11

13

14

16

17

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Phone (281) 240-4200	Chain of Custody Record	ody Record	·	Seurofins Environment Testing America
Client Information	Sampler	Lab PM: McDaniel, Bethany A	Carrier Tracking No(s):	COC No. 860-11069-3875.1
Client Contact: John Ynfante	Phone:	E-Mail: Bethany, McDaniel@et eurofinsus.com	State of Origin:	Page: ∫ of
Company: Jacobs Engineering Group, Inc.	PWSID:	Analysis Requested	quested	4 do.
Address: 14701 St. Many's Lane Suite 300	Due Data Requested:			Preservation Cor
City. Houston	TAT Requested (days): 1 day RUSH			A HCL N None B NaOH O AsNaO2 C Zn Acetate P NaOAS
State, Zp: TX, 77079	Compliance Project: A Yes A No	1		D Nittic Acid E NaHSO4
Phone:	PO#: D3542628.C.CS.TPE.SIL.22-01-02			Amchlor Ascorbic Acid
Email: John. Ynfante@jacobs.com	WO# D3542628.C.CS.TPE.SIL.22-01-02			ice J Di Water Zng.
Project Name: STC Silber Rd Pre-Design Inv Part 2	Project #: 86002024	t - 3	eli (e)	L EDA
Site:	SSOW#:	426 3.1	ngo to	Other
	Sample Type	Matrix ed. (Wowster, Ed. (MOD)) V	red my Vill	
Sample Identification	G=grab)	9260	, and the same	Special Instructions/Nofe:
(on Code		
<u>\</u>	3	Water		
5537-61-062222	1585	Water		
5 TB-02-0beer	130C	Water X		
573	6/23/22 1100 67	Water X	/\s	,
255590-40-85555	6/23/22 1120 67	Water X		AMY SIME
		Water	:	
		Water		
		Water	2 00	* · · · · ·
		Water		Temp. G. IR ID HOU-323
מטי-בסיים לטיים מיים מיים מיים מיים מיים מיים מיים	1	Water)	Corrected Terms C
		Water		
Possible Hazard Identification	Poison B	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samples are retain	tained longer than 1 month) Archive For
ested. I, II, III, IV Other (specify)	d)	Requirement		
Empty Kit Relinquished by:	Date:	Птме:	Method of Shipment:	
Relinquished by: 1	08/23/22 13c		Date/Time (1)	13 No. 1355 Company
_	1.93, 22, 1946		~ Date/Tine: ~	$\overline{}$
	Date/Time:	Company Received by:		Сотралу
Custody Seals Intact: Custody Seal No.		Cooler Temperature(s) °C and Other Remarks:	kemarks:	
J				Ver. 01/16/2019

Login Sample Receipt Checklist

Job Number: 860-28484-1 Client: Jacobs Engineering Group, Inc.

List Source: Eurofins Houston Login Number: 28484

List Number: 1

Creator: Palmar, Pedro

Comment Question **Answer**

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate

HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

6/24/2022

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-28537-1

Client Project/Site: STC Silber Rd Pre-Design Investigation P

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 6/27/2022 4:35:05 PM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

11

12

. .

15

16

17

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Default Detection Limits	10
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
State Forms	22
TRRP Checklist	22
DCS Report	26
Chain of Custody	27
Receipt Checklists	28

6

8

10

12

14

15

17

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28537-1

Project/Site: STC Silber Rd Pre-Design Investigation P

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation	These commonly	y used abbreviations may	y or may not be	present in this report.
Appleviation	These commonly	y useu abbievialions ma	y or illay hot be	present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

5

7

Ö

10

11

13

15

17

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation P

Job ID: 860-28537-1

Job ID: 860-28537-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-28537-1

Receipt

The samples were received on 6/24/2022 3:00 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.8°C

4

ī

6

10

11

13

15

17

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation P

Client Sample ID: TB-01-062322 Lab Sample ID: 860-28537-1

No Detections.

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.148	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.0235	0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.00445	0.00100	0.000216	mg/L	1		8260D	Total/NA
Vinyl chloride	0.0881	0.00200	0.000234	mg/L	1		8260D	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D Method	Prep Type
1,1-Dichloroethane	0.0365	0.00100	0.000244	mg/L	1	8260D	Total/NA
1,1-Dichloroethene	0.00879	0.00100	0.000216	mg/L	1	8260D	Total/NA
Trichloroethene	0.000720 J	0.00500	0.000424	mg/L	1	8260D	Total/NA
cis-1,2-Dichloroethene - DL	0.217	0.00500	0.000870	mg/L	5	8260D	Total/NA
Vinyl chloride - DL	0.132	0.0100	0.00117	mg/L	5	8260D	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00489	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.0212	0.00100	0.000244	mg/L	1		8260D	Total/NA
1,2-Dichloroethane	0.000308 J	0.00100	0.000285	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.0160	0.00100	0.000216	mg/L	1		8260D	Total/NA
Tetrachloroethene	0.0249	0.00100	0.000500	mg/L	1		8260D	Total/NA
Trichloroethene	0.0102	0.00500	0.000424	mg/L	1		8260D	Total/NA
Vinyl chloride	0.00379	0.00200	0.000234	mg/L	1		8260D	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.0132	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.00726	0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.00615	0.00100	0.000216	mg/L	1		8260D	Total/NA
Tetrachloroethene	0.0413	0.00100	0.000500	mg/L	1		8260D	Total/NA
Trichloroethene	0.0600	0.00500	0.000424	mg/L	1		8260D	Total/NA
Vinyl chloride	0.00223	0.00200	0.000234	mg/L	1		8260D	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00937	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.00926	0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.00714	0.00100	0.000216	mg/L	1		8260D	Total/NA
Tetrachloroethene	0.0333	0.00100	0.000500	mg/L	1		8260D	Total/NA
Trichloroethene	0.0384	0.00500	0.000424	mg/L	1		8260D	Total/NA
Vinyl chloride	0.00200	0.00200	0.000234	mg/L	1		8260D	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	0.00537	0.00100	0.000174 mg/L		8260D	Total/NA
1,1-Dichloroethane	0.0221	0.00100	0.000244 mg/L	1	8260D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Houston

Page 5 of 28 6/27/2022

3

Job ID: 860-28537-1

6

1

9

10

12

14

15

17

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation P

Client Sample ID: FD-01-062422 (Continued)

Lab Sample ID: 860-28537-7

Job ID: 860-28537-1

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D Method	Prep Type
1,2-Dichloroethane	0.000315 J	0.00100	0.000285	mg/L	1	8260D	Total/NA
1,1-Dichloroethene	0.0160	0.00100	0.000216	mg/L	1	8260D	Total/NA
Tetrachloroethene	0.0288	0.00100	0.000500	mg/L	1	8260D	Total/NA
Trichloroethene	0.0128	0.00500	0.000424	mg/L	1	8260D	Total/NA
Vinyl chloride	0.00387	0.00200	0.000234	mg/L	1	8260D	Total/NA

9

10

4.0

13

15

17

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation P

Client Sample ID: TB-01-062322

Date Collected: 06/23/22 13:00 Date Received: 06/24/22 15:00

Lab Sample ID: 860-28537-1

Matrix: Water

Job ID: 860-28537-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/25/22 11:50	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/25/22 11:50	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/25/22 11:50	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/25/22 11:50	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/25/22 11:50	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/25/22 11:50	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/25/22 11:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

4-Bromofluorobenzene (Surr) 105 74 - 124 06/25/22 11:50 Dibromofluoromethane (Surr) 105 75 - 131 06/25/22 11:50 1,2-Dichloroethane-d4 (Surr) 113 63 - 144 06/25/22 11:50 Toluene-d8 (Surr) 101 80 - 117 06/25/22 11:50 Lab Sample ID: 860-28537-2

Client Sample ID: SB39-03-062322

Date Collected: 06/23/22 15:20

Matrix: Water

Date Received: 06/24/22 15:00

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.148		0.00100	0.000174	mg/L			06/25/22 13:53	1
1,1-Dichloroethane	0.0235		0.00100	0.000244	mg/L			06/25/22 13:53	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/25/22 13:53	1
1,1-Dichloroethene	0.00445		0.00100	0.000216	mg/L			06/25/22 13:53	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/25/22 13:53	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/25/22 13:53	1
Vinyl chloride	0.0881		0.00200	0.000234	mg/L			06/25/22 13:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		74 - 124			-		06/25/22 13:53	1
Dibromofluoromethane (Surr)	104		75 - 131					06/25/22 13:53	1

Client Sample ID: SB39-02-062322 Lab Sample ID: 860-28537-3 Date Collected: 06/23/22 15:40 **Matrix: Water**

63 - 144

80 - 117

114

101

Date Received: 06/24/22 15:00

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0365		0.00100	0.000244	mg/L			06/25/22 14:14	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/25/22 14:14	1
1,1-Dichloroethene	0.00879		0.00100	0.000216	mg/L			06/25/22 14:14	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/25/22 14:14	1
Trichloroethene	0.000720	J	0.00500	0.000424	mg/L			06/25/22 14:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		74 - 124					06/25/22 14:14	1
Dibromofluoromethane (Surr)	107		75 - 131					06/25/22 14:14	1
1,2-Dichloroethane-d4 (Surr)	112		63 - 144					06/25/22 14:14	1
Toluene-d8 (Surr)	98		80 - 117					06/25/22 14:14	1

Eurofins Houston

06/25/22 13:53

06/25/22 13:53

Page 7 of 28 6/27/2022

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation P

Client Sample ID: SB39-02-062322

Date Collected: 06/23/22 15:40 Date Received: 06/24/22 15:00 Lab Sample ID: 860-28537-3

Matrix: Water

Job ID: 860-28537-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.217		0.00500	0.000870	mg/L			06/27/22 11:15	5
Vinyl chloride	0.132		0.0100	0.00117	mg/L			06/27/22 11:15	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		74 - 124					06/27/22 11:15	5
Dibromofluoromethane (Surr)	98		75 - 131					06/27/22 11:15	5
1,2-Dichloroethane-d4 (Surr)	97		63 - 144					06/27/22 11:15	5
Toluene-d8 (Surr)	100		80 - 117					06/27/22 11:15	5

Client Sample ID: SB35-03-062422

Date Collected: 06/24/22 10:30

Date Received: 06/24/22 15:00

Lab Sample ID: 860-28537-4

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00489		0.00100	0.000174	mg/L			06/25/22 14:34	1
1,1-Dichloroethane	0.0212		0.00100	0.000244	mg/L			06/25/22 14:34	1
1,2-Dichloroethane	0.000308	J	0.00100	0.000285	mg/L			06/25/22 14:34	1
1,1-Dichloroethene	0.0160		0.00100	0.000216	mg/L			06/25/22 14:34	1
Tetrachloroethene	0.0249		0.00100	0.000500	mg/L			06/25/22 14:34	1
Trichloroethene	0.0102		0.00500	0.000424	mg/L			06/25/22 14:34	1
Vinyl chloride	0.00379		0.00200	0.000234	mg/L			06/25/22 14:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		74 - 124					06/25/22 14:34	1
Dibromofluoromethane (Surr)	104		75 - 131					06/25/22 14:34	1
1,2-Dichloroethane-d4 (Surr)	112		63 - 144					06/25/22 14:34	1
Toluene-d8 (Surr)	98		80 - 117					06/25/22 14:34	1

Client Sample ID: SB35-02-062422

Date Collected: 06/24/22 10:40

Date Received: 06/24/22 15:00

Lab Sample ID: 860-28537-5

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.0132		0.00100	0.000174	mg/L			06/25/22 14:55	1
1,1-Dichloroethane	0.00726		0.00100	0.000244	mg/L			06/25/22 14:55	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/25/22 14:55	1
1,1-Dichloroethene	0.00615		0.00100	0.000216	mg/L			06/25/22 14:55	1
Tetrachloroethene	0.0413		0.00100	0.000500	mg/L			06/25/22 14:55	1
Trichloroethene	0.0600		0.00500	0.000424	mg/L			06/25/22 14:55	1
Vinyl chloride	0.00223		0.00200	0.000234	mg/L			06/25/22 14:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		74 - 124					06/25/22 14:55	1
Dibromofluoromethane (Surr)	105		75 - 131					06/25/22 14:55	1
1,2-Dichloroethane-d4 (Surr)	112		63 - 144					06/25/22 14:55	1
Toluene-d8 (Surr)	99		80 - 117					06/25/22 14:55	1

Eurofins Houston

Page 8 of 28

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation P

Client Sample ID: SB35-01-062422

Date Collected: 06/24/22 10:50 Date Received: 06/24/22 15:00 Lab Sample ID: 860-28537-6

Matrix: Water

Job ID: 860-28537-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00937		0.00100	0.000174	mg/L			06/25/22 15:15	1
1,1-Dichloroethane	0.00926		0.00100	0.000244	mg/L			06/25/22 15:15	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/25/22 15:15	1
1,1-Dichloroethene	0.00714		0.00100	0.000216	mg/L			06/25/22 15:15	1
Tetrachloroethene	0.0333		0.00100	0.000500	mg/L			06/25/22 15:15	1
Trichloroethene	0.0384		0.00500	0.000424	mg/L			06/25/22 15:15	1
Vinyl chloride	0.00200		0.00200	0.000234	mg/L			06/25/22 15:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		74 - 124					06/25/22 15:15	1
Dibromofluoromethane (Surr)	106		75 - 131					06/25/22 15:15	1
1,2-Dichloroethane-d4 (Surr)	113		63 - 144					06/25/22 15:15	1
Toluene-d8 (Surr)	100		80 - 117					06/25/22 15:15	1

Client Sample ID: FD-01-062422

Date Collected: 06/24/22 00:00

Date Received: 06/24/22 15:00

Lab Sample ID: 860-28537-7

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS

Wethou. 0200D - Volatile Of	• •				_			
Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00537	0.00100	0.000174	mg/L			06/25/22 15:36	1
1,1-Dichloroethane	0.0221	0.00100	0.000244	mg/L			06/25/22 15:36	1
1,2-Dichloroethane	0.000315 J	0.00100	0.000285	mg/L			06/25/22 15:36	1
1,1-Dichloroethene	0.0160	0.00100	0.000216	mg/L			06/25/22 15:36	1
Tetrachloroethene	0.0288	0.00100	0.000500	mg/L			06/25/22 15:36	1
Trichloroethene	0.0128	0.00500	0.000424	mg/L			06/25/22 15:36	1
Vinyl chloride	0.00387	0.00200	0.000234	mg/L			06/25/22 15:36	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		74 - 124		06/25/22 15:36	1
Dibromofluoromethane (Surr)	105		75 - 131		06/25/22 15:36	1
1,2-Dichloroethane-d4 (Surr)	113		63 - 144		06/25/22 15:36	1
Toluene-d8 (Surr)	99		80 - 117		06/25/22 15:36	1

Eurofins Houston

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28537-1

Project/Site: STC Silber Rd Pre-Design Investigation P

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

6

R

9

11

14

16

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation P

Job ID: 860-28537-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	gate Recovery (Acce	ptance Limits)
		BFB	DBFM	DCA	TOL	
Lab Sample ID	Client Sample ID	(74-124)	(75-131)	(63-144)	(80-117)	
560-103138-C-15 MS	Matrix Spike	100	107	108	98	
860-28389-F-2 MS	Matrix Spike	99	99	97	97	
860-28537-1	TB-01-062322	105	105	113	101	
860-28537-2	SB39-03-062322	106	104	114	101	
860-28537-3	SB39-02-062322	105	107	112	98	
860-28537-3 - DL	SB39-02-062322	100	98	97	100	
860-28537-4	SB35-03-062422	104	104	112	98	
860-28537-5	SB35-02-062422	104	105	112	99	
860-28537-6	SB35-01-062422	106	106	113	100	
860-28537-7	FD-01-062422	103	105	113	99	
LCS 860-58537/5	Lab Control Sample	99	108	113	99	
LCS 860-58592/5	Lab Control Sample	98	102	96	98	
LCSD 860-58537/6	Lab Control Sample Dup	100	107	114	98	
LCSD 860-58592/6	Lab Control Sample Dup	97	99	97	98	
MB 860-58537/11	Method Blank	104	105	113	100	
MB 860-58592/11	Method Blank	98	99	98	98	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Eurofins Houston

6/27/2022

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation P

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-58537/11

Matrix: Water

Analysis Batch: 58537

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 860-28537-1

MB MB

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/25/22 11:30	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/25/22 11:30	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/25/22 11:30	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/25/22 11:30	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/25/22 11:30	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/25/22 11:30	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/25/22 11:30	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		74 - 124		06/25/22 11:30	1
Dibromofluoromethane (Surr)	105		75 - 131		06/25/22 11:30	1
1,2-Dichloroethane-d4 (Surr)	113		63 - 144		06/25/22 11:30	1
Toluene-d8 (Surr)	100		80 - 117		06/25/22 11:30	1

Lab Sample ID: LCS 860-58537/5

Matrix: Water

Analysis Batch: 58537

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	0.0500	0.05228		mg/L		105	75 - 125	
1,1-Dichloroethane	0.0500	0.05244		mg/L		105	72 ₋ 125	
1,2-Dichloroethane	0.0500	0.05805		mg/L		116	68 - 127	
1,1-Dichloroethene	0.0500	0.05182		mg/L		104	59 - 172	
Tetrachloroethene	0.0500	0.04944		mg/L		99	71 - 125	
Trichloroethene	0.0500	0.05042		mg/L		101	62 - 137	
Vinyl chloride	0.0500	0.05754		mg/L		115	60 - 140	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	108		75 - 131
1,2-Dichloroethane-d4 (Surr)	113		63 - 144
Toluene-d8 (Surr)	99		80 - 117

Lab Sample ID: LCSD 860-58537/6

Matrix: Water

Analysis Batch: 58537

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	0.0500	0.04950		mg/L		99	75 - 125	5	25
1,1-Dichloroethane	0.0500	0.04921		mg/L		98	72 - 125	6	25
1,2-Dichloroethane	0.0500	0.05530		mg/L		111	68 - 127	5	25
1,1-Dichloroethene	0.0500	0.04827		mg/L		97	59 - 172	7	25
Tetrachloroethene	0.0500	0.04656		mg/L		93	71 - 125	6	25
Trichloroethene	0.0500	0.04767		mg/L		95	62 - 137	6	25
Vinyl chloride	0.0500	0.05256		mg/L		105	60 - 140	9	25

Eurofins Houston

Page 12 of 28

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation P

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-58537/6

Matrix: Water

Analysis Batch: 58537

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 100 74 - 124 Dibromofluoromethane (Surr) 107 75 - 131 1,2-Dichloroethane-d4 (Surr) 63 - 144 114 Toluene-d8 (Surr) 98 80 - 117

Lab Sample ID: 560-103138-C-15 MS

Matrix: Water

Analysis Batch: 58537

Client Sample ID: Matrix Spike **Prep Type: Total/NA**

Job ID: 860-28537-1

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.05692		mg/L		114	75 - 125	
1,1-Dichloroethane	0.000244	U	0.0500	0.05560		mg/L		111	72 - 125	
1,2-Dichloroethane	0.000285	U	0.0500	0.05984		mg/L		120	68 - 127	
1,1-Dichloroethene	0.000216	U	0.0500	0.05814		mg/L		116	59 - 172	
Tetrachloroethene	0.000500	U	0.0500	0.05451		mg/L		109	71 - 125	
Trichloroethene	0.000424	U	0.0500	0.05586		mg/L		112	62 - 137	
Vinyl chloride	0.000234	U	0.0500	0.06998		mg/L		140	60 - 140	
I and the second										

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		74 - 124
Dibromofluoromethane (Surr)	107		75 - 131
1,2-Dichloroethane-d4 (Surr)	108		63 - 144
Toluene-d8 (Surr)	98		80 - 117

Lab Sample ID: MB 860-58592/11

Matrix: Water

Analysis Batch: 58592

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/27/22 10:14	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/27/22 10:14	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/27/22 10:14	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/27/22 10:14	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/27/22 10:14	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/27/22 10:14	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/27/22 10:14	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	74 - 124		06/27/22 10:14	1
Dibromofluoromethane (Surr)	99	75 - 131		06/27/22 10:14	1
1,2-Dichloroethane-d4 (Surr)	98	63 - 144		06/27/22 10:14	1
Toluene-d8 (Surr)	98	80 - 117		06/27/22 10:14	1

Eurofins Houston

Page 13 of 28

Client: Jacobs Engineering Group, Inc.

Lab Sample ID: LCS 860-58592/5

Project/Site: STC Silber Rd Pre-Design Investigation P

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 860-28537-1

Matrix: Water

Surrogate

Analysis Batch: 58592

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	0.0500	0.04858		mg/L		97	75 - 125	
1,1-Dichloroethane	0.0500	0.04972		mg/L		99	72 - 125	
1,2-Dichloroethane	0.0500	0.05014		mg/L		100	68 - 127	
1,1-Dichloroethene	0.0500	0.05196		mg/L		104	59 - 172	
Tetrachloroethene	0.0500	0.05391		mg/L		108	71 - 125	
Trichloroethene	0.0500	0.05356		mg/L		107	62 - 137	
Vinyl chloride	0.0500	0.05092		mg/L		102	60 - 140	

LCS LCS %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 98 74 - 124 75 - 131 102

Dibromofluoromethane (Surr) 1,2-Dichloroethane-d4 (Surr) 96 63 - 144 Toluene-d8 (Surr) 98 80 - 117

Lab Sample ID: LCSD 860-58592/6 **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 58592

•	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	0.0500	0.04507		mg/L		90	75 - 125	8	25
1,1-Dichloroethane	0.0500	0.04580		mg/L		92	72 - 125	8	25
1,2-Dichloroethane	0.0500	0.04735		mg/L		95	68 - 127	6	25
1,1-Dichloroethene	0.0500	0.04779		mg/L		96	59 - 172	8	25
Tetrachloroethene	0.0500	0.04962		mg/L		99	71 - 125	8	25
Trichloroethene	0.0500	0.04973		mg/L		99	62 - 137	7	25
Vinyl chloride	0.0500	0.04670		mg/L		93	60 - 140	9	25

LCSD LCSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 97 74 - 124 99 75 - 131 Dibromofluoromethane (Surr) 1,2-Dichloroethane-d4 (Surr) 97 63 - 144 Toluene-d8 (Surr) 98 80 - 117

Lab Sample ID: 860-28389-F-2 MS

Matrix: Water

Analysis Batch: 58592

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.04716		mg/L		94	75 - 125	
1,1-Dichloroethane	0.000244	U	0.0500	0.04811		mg/L		96	72 - 125	
1,2-Dichloroethane	0.000285	U	0.0500	0.04780		mg/L		96	68 - 127	
1,1-Dichloroethene	0.000216	U	0.0500	0.05383		mg/L		108	59 - 172	
Tetrachloroethene	0.000500	U	0.0500	0.05092		mg/L		102	71 - 125	
Trichloroethene	0.000424	U	0.0500	0.05184		mg/L		104	62 - 137	
Vinyl chloride	0.000234	U	0.0500	0.05508		mg/L		110	60 - 140	

Eurofins Houston

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Page 14 of 28

Client: Jacobs Engineering Group, Inc. Job ID: 860-28537-1

Project/Site: STC Silber Rd Pre-Design Investigation P

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 860-28389-F-2 MS

Matrix: Water

Analysis Batch: 58592

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	99		75 - 131
1,2-Dichloroethane-d4 (Surr)	97		63 - 144
Toluene-d8 (Surr)	97		80 - 117

Client Sample ID: Matrix Spike Prep Type: Total/NA

QC Association Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation P

GC/MS VOA

Analysis Batch: 58537

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-28537-1	TB-01-062322	Total/NA	Water	8260D	
860-28537-2	SB39-03-062322	Total/NA	Water	8260D	
860-28537-3	SB39-02-062322	Total/NA	Water	8260D	
860-28537-4	SB35-03-062422	Total/NA	Water	8260D	
860-28537-5	SB35-02-062422	Total/NA	Water	8260D	
860-28537-6	SB35-01-062422	Total/NA	Water	8260D	
860-28537-7	FD-01-062422	Total/NA	Water	8260D	
MB 860-58537/11	Method Blank	Total/NA	Water	8260D	
LCS 860-58537/5	Lab Control Sample	Total/NA	Water	8260D	
LCSD 860-58537/6	Lab Control Sample Dup	Total/NA	Water	8260D	
560-103138-C-15 MS	Matrix Spike	Total/NA	Water	8260D	

Analysis Batch: 58592

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-28537-3 - DL	SB39-02-062322	Total/NA	Water	8260D	
MB 860-58592/11	Method Blank	Total/NA	Water	8260D	
LCS 860-58592/5	Lab Control Sample	Total/NA	Water	8260D	
LCSD 860-58592/6	Lab Control Sample Dup	Total/NA	Water	8260D	
860-28389-F-2 MS	Matrix Spike	Total/NA	Water	8260D	

Job ID: 860-28537-1

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation P

Client Sample ID: TB-01-062322

Date Collected: 06/23/22 13:00

Date Received: 06/24/22 15:00

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	58537	06/25/22 11:50	TTD	XEN STF

Client Sample ID: SB39-03-062322

Date Collected: 06/23/22 15:20

Date Received: 06/24/22 15:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	58537	06/25/22 13:53	TTD	XEN STF

Client Sample ID: SB39-02-062322

Date Collected: 06/23/22 15:40 Date Received: 06/24/22 15:00

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type **Factor** Amount Amount Number or Analyzed Analyst Run Lab Total/NA Analysis 8260D 5 mL 5 mL 58537 06/25/22 14:14 TTD XEN STF Total/NA Analysis 8260D DL 5 5 mL 5 mL 58592 06/27/22 11:15 TTD XEN STF

Client Sample ID: SB35-03-062422

Date Collected: 06/24/22 10:30

Date Received: 06/24/22 15:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	58537	06/25/22 14:34	TTD	XEN STF

Client Sample ID: SB35-02-062422

Date Collected: 06/24/22 10:40

Date Received: 06/24/22 15:00

Г										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	58537	06/25/22 14:55	TTD	XEN STF

Client Sample ID: SB35-01-062422

Date Collected: 06/24/22 10:50

Date Received: 06/24/22 15:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	58537	06/25/22 15:15	TTD	XEN STF

Client Sample ID: FD-01-062422

Date Collected: 06/24/22 00:00

Date Received: 06/24/22 15:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	58537	06/25/22 15:36	TTD	XEN STF

Eurofins Houston

6/27/2022

Page 17 of 28

Job ID: 860-28537-1

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 860-28537-1

Lab Sample ID: 860-28537-2

Lab Sample ID: 860-28537-3

Lab Sample ID: 860-28537-4

Lab Sample ID: 860-28537-5

Lab Sample ID: 860-28537-6 **Matrix: Water**

Matrix: Water

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation P

Job ID: 860-28537-1

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

3

4

5

8

4.6

11

13

45

17

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation P

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Arkansas DEQ	State	21-038-0	08-04-22	
Florida	NELAP	E871002	06-30-22	
Louisiana	NELAP	03054	06-30-22	
Oklahoma	State	2021-168	08-31-22	
Texas	NELAP	T104704215-21-44	06-30-22	
Texas	TCEQ Water Supply	T104704215	06-30-22	
USDA	US Federal Programs	P330-22-00025	03-02-23	

Job ID: 860-28537-1

2

4

E

7

8

10

11

13

14

16

1 /

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation P Job ID: 860-28537-1

Method	Method Description	Protocol	Laboratory	
8260D	Volatile Organic Compounds by GC/MS	SW846	XEN STF	
5030C	Purge and Trap	SW846	XEN STF	

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

3

4

O

9

11

12

13

15

17

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation P

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-28537-1	TB-01-062322	Water	06/23/22 13:00	06/24/22 15:00
860-28537-2	SB39-03-062322	Water	06/23/22 15:20	06/24/22 15:00
860-28537-3	SB39-02-062322	Water	06/23/22 15:40	06/24/22 15:00
860-28537-4	SB35-03-062422	Water	06/24/22 10:30	06/24/22 15:00
860-28537-5	SB35-02-062422	Water	06/24/22 10:40	06/24/22 15:00
860-28537-6	SB35-01-062422	Water	06/24/22 10:50	06/24/22 15:00
860-28537-7	FD-01-062422	Water	06/24/22 00:00	06/24/22 15:00

Job ID: 860-28537-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-28537-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	06/27/2022

9

3

4

7

10

12

11

15

17

Laboratory Data Package Cover Page - Page 2 of 4

Labor	atory N	lame: Eurofins Houston	LRC Date: 06/27/202	2				
Projec	t Nam	e: STC Silber Rd Pre-Design Investigation P	Laboratory Job Numb	er: 860-	28537-1			
Revie	wer Na	me: Bethany McDaniel						
#¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵
R1	OI	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of s	ample acceptability upon	✓				
		receipt?	10					
		Were all departures from standard conditions described in		✓				
R2	OI	Sample and quality control (QC) identification						
		Are all field sample ID numbers cross-referenced to the lab		✓ ✓				
D2		Are all laboratory ID numbers cross-referenced to the corre	sponding QC data?					
R3	OI	Test reports Were all samples prepared and analyzed within holding tim	002	/				
		Other than those results < MQL, were all other raw values		-				
		standards?	bracketed by calibration					
		Were calculations checked by a peer or supervisor?		✓		+		
		Were all analyte identifications checked by a peer or super	visor?	✓		+		
		Were sample detection limits reported for all analytes not d		✓		+		
		Were all results for soil and sediment samples reported on			1	✓		
		Were % moisture (or solids) reported for all soil and sedime	ent samples?			√		
		Were bulk soils/solids samples for volatile analysis extracte	ed with methanol per			√		
		SW846 Method 5035?						
		If required for the project, are TICs reported?				✓		
R4	0	Surrogate recovery data						
		Were surrogates added prior to extraction?		✓				
		Were surrogate percent recoveries in all samples within the	-	✓				
R5	OI	Test reports/summary forms for blank samp	les					
		Were appropriate type(s) of blanks analyzed?		✓				
		Were blanks analyzed at the appropriate frequency?		✓				
		Were method blanks taken through the entire analytical pro	cess, including preparation	✓				
		and, if applicable, cleanup procedures? Were blank concentrations < MQL?		✓		+		
DC		· ·						
R6	OI	Laboratory control samples (LCS): Were all COCs included in the LCS?		/				
			so including proposed	V /				
		Was each LCS taken through the entire analytical procedur cleanup steps?	e, including prep and	•				
		Were LCSs analyzed at the required frequency?		✓		+		
		Were LCS (and LCSD, if applicable) %Rs within the laborar	tory QC limits?	✓		+		
		Does the detectability check sample data document the lab	<u> </u>	✓				
		detect the COCs at the MDL used to calculate the SDLs?	,					
		Was the LCSD RPD within QC limits?		✓				
R7	OI	Matrix spike (MS) and matrix spike duplicate	(MSD) data					
		Were the project/method specified analytes included in the		✓				
		Were MS/MSD analyzed at the appropriate frequency?		✓				
		Were MS (and MSD, if applicable) %Rs within the laborator	ry QC limits?	✓				
	T =	Were MS/MSD RPDs within laboratory QC limits?				✓		
R8	OI	Analytical duplicate data						
		Were appropriate analytical duplicates analyzed for each m				✓		
		Were analytical duplicates analyzed at the appropriate freq				√		
D C	0:	Were RPDs or relative standard deviations within the laboration	atory QC limits?			✓		
R9	OI	Method quantitation limits (MQLs):						
		Are the MQLs for each method analyte included in the labo		✓ ✓				
		Do the MQLs correspond to the concentration of the lowest	non-zero calibration	V				
		standard?	data nackaga?	✓		+		
D40		Are unadjusted MQLs and DCSs included in the laboratory	чата раскаде?	_ _				
R10	OI	Other problems/anomalies	Lin this LDC and EDC					
		Are all known problems/anomalies/special conditions noted		✓	✓	+		1
		Was applicable and available technology used to lower the	SUL to minimize the matrix		"			1
		interference effects on the sample results?	A A Et al' D	✓	+	+	+	
		Is the laboratory NELAC-accredited under the Texas Laboratory		· ·				

6/27/2022

Page 23 of 28

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 06/27/2022
Project Name: STC Silber Rd Pre-Design Investigation P	Laboratory Job Number: 860-28537-1
Reviewer Name: Bethany McDaniel	•

			Laboratory Job Numb	er: 860-	28537-1			
Revie		me: Bethany McDaniel						
#¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#
S1	OI	Initial calibration (ICAL)						
		Were response factors and/or relative response factors for ea	ch analyte within QC	✓				
		limits?						
		Were percent RSDs or correlation coefficient criteria met?		✓				
		Was the number of standards recommended in the method us	sed for all analytes?	✓				
		Were all points generated between the lowest and highest sta	indard used to calculate	✓				
		the curve?						
		Are ICAL data available for all instruments used?		√				
		Has the initial calibration curve been verified using an appropr	riate second source	✓				
00		standard?	1001/ 1001/					
S2	OI	Initial and continuing calibration verification (ICCV and CCV) and					
		continuing calibration blank (CCB):						
		Was the CCV analyzed at the method-required frequency?		√				
		Were percent differences for each analyte within the method-	required QC limits?	√				
		Was the ICAL curve verified for each analyte?	: 00B - MBI 0	✓				
	_	Was the absolute value of the analyte concentration in the inc	rganic CCB < MDL?			✓		
S3	0	Mass spectral tuning						
		Was the appropriate compound for the method used for tuning		✓				
		Were ion abundance data within the method-required QC limi	ts?	✓				
S4	0	Internal standards (IS)						
		Were IS area counts and retention times within the method-re	quired QC limits?	✓				
S5	OI	Raw data (NELAC Section 5.5.10)						
	•	Were the raw data (for example, chromatograms, spectral dat	a) reviewed by an	✓				
		analyst?						
		Were data associated with manual integrations flagged on the	raw data?	✓				
S6	0	Dual column confirmation						
		Did dual column confirmation results meet the method-require	ed QC?			✓		
S7	0	Tentatively identified compounds (TICs)						
	•	If TICs were requested, were the mass spectra and TIC data	subject to appropriate			✓		
		checks?						
S8		Interference Check Sample (ICS) results						
		Were percent recoveries within method QC limits?				✓		
S9		Serial dilutions, post digestion spikes, and me	ethod of standard					
		additions						
		Were percent differences, recoveries, and the linearity within	the QC limits specified			✓		
		in the method?	and Qo minito operation					
S10	OI	Method detection limit (MDL) studies						
		Was a MDL study performed for each reported analyte?		✓				
		Is the MDL either adjusted or supported by the analysis of DC	Ss?	✓				
S11	OI	Proficiency test reports						
		Was the laboratory's performance acceptable on the applicab	le proficiency tests or	✓				
		evaluation studies?	p					
S12	OI	Standards documentation						
<u> </u>	<u> </u>	Are all standards used in the analyses NIST-traceable or obta	ined from other	✓				
		appropriate sources?						
S13	OI	Compound/analyte identification procedures						
010	<u> </u>	Are the procedures for compound/analyte identification documents	nented?	√				
S14	OI		iontou:					
314		Demonstration of analyst competency (DOC) Was DOC conducted consistent with NELAC Chapter 5?		✓				
		Is documentation of the analyst's competency up-to-date and	on file?	· ·				
015	O	, , ,		•				
S15	OI	Verification/validation documentation for meth	iods (NELAC					
		Chapter 5)						
		Are all the methods used to generate the data documented, v	erified, and validated,	✓				
		where applicable?						
S16	OI	Laboratory standard operating procedures (Se	OPs)					
		Are laboratory SOPs current and on file for each method performance	ormed?	✓				

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

2

3

5

7

9

10

12

14

15

17

IC

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

^{3.} NA = Not applicable;

NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Laboratory Name: Eurofins Houston	LRC Date: 06/27/2022
Project Name: STC Silber Rd Pre-Design Investigation P	Laboratory Job Number: 860-28537-1
Reviewer Name: Bethany McDaniel	
ER#1 Description	
1 Method 8260D: The following sample was diluted to bring the concent	tration of target analytes within the calibration range: SB39-02-062322
(860-28537-3). Elevated reporting limits (RLs) are provided.	
1. ER# = Exception Report identification number (an Exception Report should	d be completed for an item if "NR" or "No" is checked).

A

I

Detection Check Summary

Client: Jacobs Engineering Group, Inc. Job ID: 860-28537-1

Project/Site: STC Silber Rd Pre-Design Investigation P

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Column: DB-624 **Detector: MSD/0**

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
Trichloroethene	0.00100	0.00503		mg/L	0.00500	0.000424	03/03/2022	860-43530
Vinyl chloride	0.00100	0.00381		mg/L	0.00200	0.000234	03/03/2022	860-43530
cis-1,2-Dichloroethene	0.00100	0.00499		mg/L	0.00100	0.000174	03/03/2022	860-43530
1,1-Dichloroethane	0.00100	0.00483		mg/L	0.00100	0.000244	03/03/2022	860-43530
1,2-Dichloroethane	0.00100	0.00498		mg/L	0.00100	0.000285	03/03/2022	860-43530
1,1-Dichloroethene	0.00100	0.00411		mg/L	0.00100	0.000216	03/03/2022	860-43530
Tetrachloroethene	0.00100	0.00463		mg/L	0.00100	0.000500	03/03/2022	860-43530

Eurofins Houston Temp: 0.8 IR ID-HOU-323	Cha	Chain of Custody Record	tody Rec	ord			(rofins Envir	Environment Testing America
Slient Information	Sampler		Lab PM: McDanie	Lab PM: McDaniel, Bethany A	860-28537 Chain of Custody	dy	1069-3875.1	
ilent Contact ohn Ynfante	Phone:		E-Mail: Bethany.	E-Mail: Bethany.McDaniel@et.eurofinsus.com	rofinsus.com	- F	Pageof	
ompany։ acobs Engineering Group, Inc.		PWSID:			Analysis Requested	Jo	ĺ	
ddress: 4701 St. Mary's Lane Suite 300	Due Date Requested:					780 000	Codes	Hexane
ity. touston	TAT Requested (days):	1 day RUSH				∩ 00 >	NaOH N Nor	AsnaO2
xate, Zip: X, 77079	Compliance Project: Δ	Δ Yes Δ No				mо	n O T	2503 2503
hone:	PO# D3542628.C.CS.TPE.SIL.22-01-02	.SIL 22-01-02		(7)		i o n	<u>.</u> -1 00 :	SO4 P Dodecahydrate
mail: lohn, Ymfante@jacobs.com	wo# D3542628.C.CS.TPE.SIL.22-01-02	SIL 22-01-02				<u> :</u>	Ice V MC	etone AA
roject Neme: STC Silber Rd Pre-Design Inv Part 2	Project #: 86002024					ᄃᄌ	EDTA Y Triz	Trizma other (specify)
ite:	SSOW#:			_		COLUMN TERROR	Other	
		Sample	litered	(MOD) V		Vumber I		
sample Identification	Sample Date Time	(C=comp, G=grab)				Total	Special Instructions/Note:	ions/Note:
		Preserva	Preservation Code: X	A		X		
13-01-062327	13/23/11	1300	Water	×		ש		
51339-03-062322	6/23/22 1520	69	Water	ス		3		
5739-02-067372	6/23/22 1546	46 G	Water	X		۶		
51335-03-062422	0501 22/42/9	30 (5)	Water	X		W		
SB35-02-06242L	10401 2214219		Water	又		W		
-01-	101 2214219		Water	X		W		
ED -01-01-1721	WEY STANTA	1919	Water	X		W		į
			Water			y - 1		
			Water					
			Water					1
			Water					!
ant 🗌	Poison B Unknown	Radiological		Sample Disposal (A f	Sample Disposal (A fee may be assessed if samples Return To Client Disposal By Lab	Imples are retained longer Archive For	than 1 mo	nth) Months
sted. 1 II III, IV Other (specify)	ס			Special Instructions/QC Re	quireme			
mpty Kit Relinquished by:	Date:		Time:		Method of Shipment	Shipment:		
telinquished by:	Date/Time: மூ	124/PC 1	755	Received by		Date/juge / /	3/3) Company	any
elinquished by:	Date/Time: 6/24	122	Company, O	Regulved by	Show!	14/3/2	1800 Cost	withs
elinquished by:	Date/Time:		Company	Received by:	•	Date/Time:	Company	any
Custody Seals Intact: Custody Seal No.				Cooler Temperature(s) °C and	ture(s) "C and Other Remarks:			

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-28537-1

Login Number: 28537 List Source: Eurofins Houston

List Number: 1

Creator: Torres, Sandra

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

4

5

9

11

13

15

10

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-28568-1

Client Project/Site: STC Silber Rd Pre-Design Investigation Part

2

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 6/28/2022 3:29:52 PM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

Links

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Ľ

3

4

5

7

8

4.0

11

14

15

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	8
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
State Forms	17
TRRP Checklist	17
DCS Report	21
Chain of Custody	22
	23

11

12

14

16

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28568-1

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation These commonly used abbreviations may or n	ay not be present in this report.
---	-----------------------------------

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

_

4

5

7

8

10

12

13

15

17

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Job ID: 860-28568-1

Job ID: 860-28568-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-28568-1

Receipt

The samples were received on 6/25/2022 9:31 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.3°C

4

_

_

7

8

46

11

13

14

16

Detection Summary

Client: Jacobs Engineering Group, Inc.

Client Sample ID: TB-01-062422

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Lab Sample ID: 860-28568-1

Job ID: 860-28568-1

No Detections.

No Detections.

Client Sample ID: SB45-02-062422 Lab Sample ID: 860-28568-3

Analyte Result Qualifier MQL (Adj) SDL Unit Dil Fac D Method Prep Type

1,1-Dichloroethane 0.000547 J 0.00100 0.000244 mg/L 1 8260D Total/NA

2

5

7

8

10

12

14

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: TB-01-062422

Date Collected: 06/24/22 13:30 Date Received: 06/25/22 09:31 Lab Sample ID: 860-28568-1

Matrix: Water

Job ID: 860-28568-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result Qualit	fier MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174 U	0.00100	0.000174	mg/L			06/27/22 10:34	1
1,1-Dichloroethane	0.000244 U	0.00100	0.000244	mg/L			06/27/22 10:34	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			06/27/22 10:34	1
1,1-Dichloroethene	0.000216 U	0.00100	0.000216	mg/L			06/27/22 10:34	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			06/27/22 10:34	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			06/27/22 10:34	1
Vinyl chloride	0.000234 U	0.00200	0.000234	mg/L			06/27/22 10:34	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101	74 - 124	06/27/22 10:34	1
Dibromofluoromethane (Surr)	100	75 - 131	06/27/22 10:34	1
1,2-Dichloroethane-d4 (Surr)	98	63 - 144	06/27/22 10:34	1
Toluene-d8 (Surr)	99	80 - 117	06/27/22 10:34	1

Client Sample ID: SB45-03-062422

Date Collected: 06/24/22 15:00

Date Received: 06/25/22 09:31

Lab Sample ID: 860-28568-2

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS

Welliou. 0200D - Volatile	iethod. 0200D - Volatile Organic Compounds by Go/MG									
Analyte	Result Qualifier	MQL (Adj)	SDL Uni	it C	Prepared	Analyzed	Dil Fac			
cis-1,2-Dichloroethene	0.000174 U	0.00100	0.000174 mg/	/L		06/27/22 14:19	1			
1,1-Dichloroethane	0.000244 U	0.00100	0.000244 mg	/L		06/27/22 14:19	1			
1,2-Dichloroethane	0.000285 U	0.00100	0.000285 mg	/L		06/27/22 14:19	1			
1,1-Dichloroethene	0.000216 U	0.00100	0.000216 mg	/L		06/27/22 14:19	1			
Tetrachloroethene	0.000500 U	0.00100	0.000500 mg	/L		06/27/22 14:19	1			
Trichloroethene	0.000424 U	0.00500	0.000424 mg	/L		06/27/22 14:19	1			
Vinyl chloride	0.000234 U	0.00200	0.000234 mg	/L		06/27/22 14:19	1			

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		74 - 124		06/27/22 14:19	1
Dibromofluoromethane (Surr)	99		75 - 131		06/27/22 14:19	1
1,2-Dichloroethane-d4 (Surr)	100		63 - 144		06/27/22 14:19	1
Toluene-d8 (Surr)	98		80 - 117		06/27/22 14:19	1

Client Sample ID: SB45-02-062422

Date Collected: 06/24/22 15:30

Date Received: 06/25/22 09:31

Lab	Samp	le ID:	860-2	28568-3
-----	------	--------	-------	---------

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/27/22 14:39	1
1,1-Dichloroethane	0.000547	J	0.00100	0.000244	mg/L			06/27/22 14:39	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/27/22 14:39	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/27/22 14:39	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/27/22 14:39	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/27/22 14:39	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/27/22 14:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		74 - 124					06/27/22 14:39	1
Dibromofluoromethane (Surr)	100		75 ₋ 131					06/27/22 14:39	1

Eurofins Houston

Page 6 of 23 6/28/2022

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: SB45-02-062422

Date Collected: 06/24/22 15:30 Date Received: 06/25/22 09:31 Lab Sample ID: 860-28568-3

Matrix: Water

Job ID: 860-28568-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	98		63 - 144		06/27/22 14:39	1
ı	Toluene-d8 (Surr)	98		80 - 117		06/27/22 14:39	1

3

4

9

11

13

15

17

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28568-1

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

Л

6

_

9

10

12

1 1

15

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			P	ercent Surro	gate Reco
		BFB	DBFM	DCA	TOL
Lab Sample ID	Client Sample ID	(74-124)	(75-131)	(63-144)	(80-117)
860-28389-F-2 MS	Matrix Spike	99	99	97	97
860-28568-1	TB-01-062422	101	100	98	99
860-28568-2	SB45-03-062422	97	99	100	98
860-28568-3	SB45-02-062422	101	100	98	98
LCS 860-58592/5	Lab Control Sample	98	102	96	98
LCSD 860-58592/6	Lab Control Sample Dup	97	99	97	98
MB 860-58592/11	Method Blank	98	99	98	98

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Eurofins Houston

Job ID: 860-28568-1

Page 9 of 23 6/28/2022

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-58592/11

Matrix: Water

Analysis Batch: 58592

Client Sample ID: Method Blank Prep Type: Total/NA

Job ID: 860-28568-1

MB MB

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/27/22 10:14	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/27/22 10:14	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/27/22 10:14	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/27/22 10:14	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/27/22 10:14	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/27/22 10:14	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/27/22 10:14	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		74 - 124		06/27/22 10:14	1
Dibromofluoromethane (Surr)	99		75 - 131		06/27/22 10:14	1
1,2-Dichloroethane-d4 (Surr)	98		63 - 144		06/27/22 10:14	1
Toluene-d8 (Surr)	98		80 - 117		06/27/22 10:14	1

Lab Sample ID: LCS 860-58592/5

Matrix: Water

Analysis Batch: 58592

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	0.0500	0.04858		mg/L		97	75 - 125	
1,1-Dichloroethane	0.0500	0.04972		mg/L		99	72 ₋ 125	
1,2-Dichloroethane	0.0500	0.05014		mg/L		100	68 - 127	
1,1-Dichloroethene	0.0500	0.05196		mg/L		104	59 - 172	
Tetrachloroethene	0.0500	0.05391		mg/L		108	71 ₋ 125	
Trichloroethene	0.0500	0.05356		mg/L		107	62 - 137	
Vinyl chloride	0.0500	0.05092		mg/L		102	60 - 140	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		74 - 124
Dibromofluoromethane (Surr)	102		75 - 131
1,2-Dichloroethane-d4 (Surr)	96		63 - 144
Toluene-d8 (Surr)	98		80 - 117

Lab Sample ID: LCSD 860-58592/6

Matrix: Water

Analysis Batch: 58592

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

-	Spike	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualifie	r Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	0.0500	0.04507	mg/L		90	75 - 125	8	25
1,1-Dichloroethane	0.0500	0.04580	mg/L		92	72 - 125	8	25
1,2-Dichloroethane	0.0500	0.04735	mg/L		95	68 - 127	6	25
1,1-Dichloroethene	0.0500	0.04779	mg/L		96	59 - 172	8	25
Tetrachloroethene	0.0500	0.04962	mg/L		99	71 - 125	8	25
Trichloroethene	0.0500	0.04973	mg/L		99	62 - 137	7	25
Vinyl chloride	0.0500	0.04670	mg/L		93	60 - 140	9	25

Eurofins Houston

Page 10 of 23

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Job ID: 860-28568-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-58592/6

Lab Sample ID: 860-28389-F-2 MS

Matrix: Water

Analysis Batch: 58592

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 97 74 - 124 Dibromofluoromethane (Surr) 99 75 - 131 1,2-Dichloroethane-d4 (Surr) 97 63 - 144 Toluene-d8 (Surr) 98 80 - 117

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 58592

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.04716		mg/L	_	94	75 - 125
1,1-Dichloroethane	0.000244	U	0.0500	0.04811		mg/L		96	72 - 125
1,2-Dichloroethane	0.000285	U	0.0500	0.04780		mg/L		96	68 - 127
1,1-Dichloroethene	0.000216	U	0.0500	0.05383		mg/L		108	59 - 172
Tetrachloroethene	0.000500	U	0.0500	0.05092		mg/L		102	71 - 125
Trichloroethene	0.000424	U	0.0500	0.05184		mg/L		104	62 - 137
Vinyl chloride	0.000234	U	0.0500	0.05508		mg/L		110	60 - 140

MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 74 - 124 99 Dibromofluoromethane (Surr) 99 75 - 131 1,2-Dichloroethane-d4 (Surr) 97 63 - 144 Toluene-d8 (Surr) 97 80 - 117

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Job ID: 860-28568-1

GC/MS VOA

Analysis Batch: 58592

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-28568-1	TB-01-062422	Total/NA	Water	8260D	
860-28568-2	SB45-03-062422	Total/NA	Water	8260D	
860-28568-3	SB45-02-062422	Total/NA	Water	8260D	
MB 860-58592/11	Method Blank	Total/NA	Water	8260D	
LCS 860-58592/5	Lab Control Sample	Total/NA	Water	8260D	
LCSD 860-58592/6	Lab Control Sample Dup	Total/NA	Water	8260D	
860-28389-F-2 MS	Matrix Spike	Total/NA	Water	8260D	

3

_

6

8

9

10

12

1 1

16

17

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: TB-01-062422

Date Collected: 06/24/22 13:30

Date Received: 06/25/22 09:31

Lab Sample ID: 860-28568-1

Lab Sample ID: 860-28568-2

Lab Sample ID: 860-28568-3

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	58592	06/27/22 10:34	TTD	XEN STF

Client Sample ID: SB45-03-062422

Date Collected: 06/24/22 15:00

Date Received: 06/25/22 09:31

_										
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	58592	06/27/22 14:19	TTD	XEN STF

Client Sample ID: SB45-02-062422

Date Collected: 06/24/22 15:30

Date Received: 06/25/22 09:31

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	58592	06/27/22 14:39	TTD	XEN STF

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-28568-1

3

4

6

8

46

11

16

14

16

4 C

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Job ID: 860-28568-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

3

4

5

8

9

11

12

14

16

17

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation Part 2 Job ID: 860-28568-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	XEN STF
5030C	Purge and Trap	SW846	XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

3

4

5

6

9

11

13

14

16

17

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-28568-1	TB-01-062422	Water	06/24/22 13:30	06/25/22 09:31
860-28568-2	SB45-03-062422	Water	06/24/22 15:00	06/25/22 09:31
860-28568-3	SB45-02-062422	Water	06/24/22 15:30	06/25/22 09:31

Job ID: 860-28568-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-28568-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	06/28/2022

2

3

4

6

_

46

13

15

17

Laboratory Data Package Cover Page - Page 2 of 4

		Name: Eurofins Houston LRC Date: 06/28/2 e: STC Silber Rd Pre-Design Investigation Part 2 Laboratory Job Nur		28568-1			
		ame: Bethany McDaniel	110C1. 000-	_0000-I			
#1	A ²	Description	Yes	No	NA ³	NR ⁴	ER#
, R1	OI OI	Chain-of-custody (C-O-C)	100	110	147 (14.1	
•		Did samples meet the laboratory's standard conditions of sample acceptability upon	✓				
		receipt?					
		Were all departures from standard conditions described in an exception report?	✓				
₹2	OI	Sample and quality control (QC) identification					
		Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	✓				
		Are all laboratory ID numbers cross-referenced to the corresponding QC data?	✓				
R3	OI	Test reports					
		Were all samples prepared and analyzed within holding times?	√				
		Other than those results < MQL, were all other raw values bracketed by calibration	✓				
		standards?					
		Were calculations checked by a peer or supervisor? Were all analyte identifications checked by a peer or supervisor?	✓ ✓				
		Were sample detection limits reported for all analytes not detected?	→				
		Were all results for soil and sediment samples reported on a dry weight basis?	•		/		
		Were % moisture (or solids) reported for all soil and sediment samples?			· ✓		+
		Were bulk soils/solids samples for volatile analysis extracted with methanol per			✓		+
		SW846 Method 5035?					
		If required for the project, are TICs reported?			✓		
₹4	0	Surrogate recovery data					
		Were surrogates added prior to extraction?	✓				
		Were surrogate percent recoveries in all samples within the laboratory QC limits?	✓				
R5 OI	OI	Test reports/summary forms for blank samples					
		Were appropriate type(s) of blanks analyzed?	✓				
		Were blanks analyzed at the appropriate frequency?	✓				
		Were method blanks taken through the entire analytical process, including preparation	✓				
		and, if applicable, cleanup procedures?					
	01	Were blank concentrations < MQL?	✓				
₹6	OI	Laboratory control samples (LCS):					
		Were all COCs included in the LCS?	√				
		Was each LCS taken through the entire analytical procedure, including prep and	✓				
		cleanup steps? Were LCSs analyzed at the required frequency?	✓				
		Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	· ·				
		Does the detectability check sample data document the laboratory's capability to	√				
		detect the COCs at the MDL used to calculate the SDLs?					
		Was the LCSD RPD within QC limits?	✓				
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data					
		Were the project/method specified analytes included in the MS and MSD?	✓				
		Were MS/MSD analyzed at the appropriate frequency?	✓				
		Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	✓				
		Were MS/MSD RPDs within laboratory QC limits?			✓		
R8	OI	Analytical duplicate data					
		Were appropriate analytical duplicates analyzed for each matrix?			✓		
		Were analytical duplicates analyzed at the appropriate frequency?			✓		
		Were RPDs or relative standard deviations within the laboratory QC limits?			✓		
२9	OI	Method quantitation limits (MQLs):					
		Are the MQLs for each method analyte included in the laboratory data package?	√				
		Do the MQLs correspond to the concentration of the lowest non-zero calibration	√				
		standard? Are unadjusted MOLs and DOSs included in the laboratory data nackage?	✓		+		-
240	\cap	Are unadjusted MQLs and DCSs included in the laboratory data package?	V				
R10	OI	Other problems/anomalies Are all known problems/anomalies/special conditions noted in this LRC and ER?	√				
		·			+		+
		Was applicable and available technology used to lower the SDL to minimize the matrix interference effects on the sample results?	•				
		Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program	✓		+		+
		for the analytes, matrices and methods associated with this laboratory data package?					

Page 18 of 23 6/28/2022

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 06/28/2022	2			
Project Name: STC Silber Rd Pre-Design Investigation Part 2	Laboratory Job Number	er: 860-2	28568-1		
Reviewer Name: Bethany McDaniel					

		e: STC Silber Rd Pre-Design Investigation Part 2 Laboratory Job Numb	per: 860-28568-1							
		me: Bethany McDaniel								
#¹	A ²	Description	Yes	No	NA ³	NR⁴	ER#			
S1	OI	Initial calibration (ICAL)								
		Were response factors and/or relative response factors for each analyte within QC limits?	√							
		Were percent RSDs or correlation coefficient criteria met?	✓							
		Was the number of standards recommended in the method used for all analytes?	✓							
		Were all points generated between the lowest and highest standard used to calculate	✓							
		the curve? Are ICAL data available for all instruments used?	✓							
		Has the initial calibration curve been verified using an appropriate second source	✓							
		standard?								
S2	OI	Initial and continuing calibration verification (ICCV and CCV) and								
		continuing calibration blank (CCB):								
		Was the CCV analyzed at the method-required frequency?	√							
		Were percent differences for each analyte within the method-required QC limits?	✓							
		Was the ICAL curve verified for each analyte?	✓							
		Was the absolute value of the analyte concentration in the inorganic CCB < MDL?			✓					
S3	0	Mass spectral tuning								
		Was the appropriate compound for the method used for tuning?	✓							
		Were ion abundance data within the method-required QC limits?	✓							
S4	0	Internal standards (IS)								
		Were IS area counts and retention times within the method-required QC limits?	✓							
S5	OI	Raw data (NELAC Section 5.5.10)								
		Were the raw data (for example, chromatograms, spectral data) reviewed by an	✓							
		analyst?	√							
		Were data associated with manual integrations flagged on the raw data?	V							
S6	0	Dual column confirmation			✓					
07		Did dual column confirmation results meet the method-required QC?			· ·					
S7 0		Tentatively identified compounds (TICs)			✓					
		If TICs were requested, were the mass spectra and TIC data subject to appropriate checks?			•					
S8	1	Interference Check Sample (ICS) results								
30	ı	Were percent recoveries within method QC limits?			/					
S9	1	Serial dilutions, post digestion spikes, and method of standard								
	'	additions								
		Were percent differences, recoveries, and the linearity within the QC limits specified in the method?			✓					
S10	OI	Method detection limit (MDL) studies								
		Was a MDL study performed for each reported analyte?	✓							
		Is the MDL either adjusted or supported by the analysis of DCSs?	✓							
S11	OI	Proficiency test reports								
		Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	✓							
S12	OI	Standards documentation								
		Are all standards used in the analyses NIST-traceable or obtained from other	✓							
		appropriate sources?								
S13	OI	Compound/analyte identification procedures								
		Are the procedures for compound/analyte identification documented?	✓							
S14	OI	Demonstration of analyst competency (DOC)								
		Was DOC conducted consistent with NELAC Chapter 5?	√							
		Is documentation of the analyst's competency up-to-date and on file?	✓							
S15	OI	Verification/validation documentation for methods (NELAC Chapter 5)								
		Are all the methods used to generate the data documented, verified, and validated, where applicable?	√							
S16	OI	Laboratory standard operating procedures (SOPs)								
	<u> </u>	Are laboratory SOPs current and on file for each method performed?	√							

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

2

3

4

6

8

10

12

14

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

^{3.} NA = Not applicable;

NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

^{6/28/2022}

Laboratory Data Package Cover Page - Page 4 of 4

Labora	tory Name: Eurofins Houston	LRC Date: 06/28/2022							
Project	Name: STC Silber Rd Pre-Design Investigation Part 2	Laboratory Job Number: 860-28568-1							
Reviewer Name: Bethany McDaniel									
ER#1	ER#¹ Description								
	No Exceptions								
1. ER:	ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).								

2

6

Δ

E

-

10

111

13

14

16

17

Detection Check Summary

Client: Jacobs Engineering Group, Inc. Job ID: 860-28568-1

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Column: DB-624 **Detector: MSD/0**

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
Trichloroethene	0.00100	0.00503		mg/L	0.00500	0.000424	03/03/2022	860-43530
Vinyl chloride	0.00100	0.00381		mg/L	0.00200	0.000234	03/03/2022	860-43530
cis-1,2-Dichloroethene	0.00100	0.00499		mg/L	0.00100	0.000174	03/03/2022	860-43530
1,1-Dichloroethane	0.00100	0.00483		mg/L	0.00100	0.000244	03/03/2022	860-43530
1,2-Dichloroethane	0.00100	0.00498		mg/L	0.00100	0.000285	03/03/2022	860-43530
1,1-Dichloroethene	0.00100	0.00411		mg/L	0.00100	0.000216	03/03/2022	860-43530
Tetrachloroethene	0.00100	0.00463		mg/L	0.00100	0.000500	03/03/2022	860-43530

Phone (281) 240-4200					
Client Information	Sampler	Lab PM: McDar	: niel Bethanv A	Camer Tracking No(s):	COC No: 860-11069-3875-1
Client Contact: John Vinfante	Phone:	E-Mail:	E-Mail: Bothow: MoDoniol@et enrofings	State of Origin:	Page:
Company	the state of the s	DC IS	iy.ivicDalijei@eLeuloiii isus.com		raye 1 of _
Company: Jacobs Engineering Group Inc.	PWSID:		Analysis Requested	quested	# qor
Address 14701 St Mary's Lane Suite 300	Due Date Requested:				
City: Houston	TAT Requested (days): 1 day RUSH				
State, Zlp: TX, 77079	Compliance Project: A Yes A No				Nitric Acid NaHSO4
Phone:					ζω⊢ 3
Емаі: John. Ynfante@jacobs.com	WO#: D3542628.C.CS.TPE.SIL.22-01-02		\$8 7 W		Ice V Ci Water W
Project Name: STC Silber Rd Pre-Design Inv Part 2	Project #: 86002024		1 1	1921 #1	K EDTA
Site:	SSOW#:			rod to	Ойыг
		Matrix (w-water, 8-solid,	A (QOW) O	edmbn/i	
Sample Identification	Sample Date Time G=grab)	O-waste/oil BT-Tissue, A-Air)	atg.	2	Special Instructions/Note:
T2-01-01-12	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Mater			
22/20-10 (1)		Motor			
51545-65-006766	37.	water			
5345-02 -062422	(3/24/12 1530 (3	Water	×	n	
		Water			
		Water		len -	Temp: 7.2 IR ID:HOU-323
860-28568 Chain of Custody		Water		C/F	4.0 0.000
		Water		3 1	Corrected Lemp 7
10 10 10 10 10 10 10 10 10 10 10 10 10 1		Water			
Skin Imitant	Poison B	Ī	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	assessed if samples are retaine Disposal By Lab	tained longer than 1 month) Archive For Months
Other (specify)	d.		Requirem		
Empty Kit Relinquished by: 1	Date:		Time:	Method of Shipment:	
Relinquished by	22/52/6)	B	Received by MC	Dete/Time	37 092 Company
Relinquished by:	Date/Time:	Company	Received by	Date/Time:	Сомрапу
Relinquished by:	Date/Time:	Company	Receivedby		Company
Custody Seals Intact: Custody Seal No.			Sapler Temperature(s) °C and Other Remarks:	amarks:	
				;	Ver 01/16/2019
	1		1 1 1	1	

্যৈ eurofins | Environment Testing | America

Chain of Custody Record

Eurofins Houston 4145 Greenbriar Dr Stafford TX 77477 Phone (281) 240-4200

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-28568-1

Login Number: 28568 List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

5

4

_

7

9

11

12

14

16

17

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-28628-1

Client Project/Site: STC Silber Rd Pre-Design Inv Part 2

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 6/28/2022 4:01:38 PM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

Links

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

5

7

8

1 0

13

14

15

10

17

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	8
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
State Forms	17
TRRP Checklist	17
DCS Report	21
Chain of Custody	22
Receipt Checklists	23

12

11

15

17

Definitions/Glossary

Client: Jacobs Engineering Group, Inc. Job ID: 860-28628-1

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

N1 MS, MSD: Spike recovery exceeds upper or lower control limits.

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28628-1

Job ID: 860-28628-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-28628-1

Receipt

The samples were received on 6/27/2022 3:15 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.9°C

4

4

E

6

9

10

12

11

16

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Lab Sample ID: 860-28628-1 Client Sample ID: TB-01-062722

No Detections.

Client Sample ID: SB36-03-062722 Lab Sample ID: 860-28628-2

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00345	J	0.00500	0.000870	mg/L	5	_	8260D	Total/NA
1,1-Dichloroethane	0.193		0.00500	0.00122	mg/L	5		8260D	Total/NA
1,2-Dichloroethane	0.00218	J	0.00500	0.00143	mg/L	5		8260D	Total/NA
1,1-Dichloroethene	0.131		0.00500	0.00108	mg/L	5		8260D	Total/NA
Tetrachloroethene	0.00803		0.00500	0.00250	mg/L	5		8260D	Total/NA
Trichloroethene	0.00259	J	0.0250	0.00212	mg/L	5		8260D	Total/NA
Vinyl chloride	0.0139		0.0100	0.00117	mg/L	5		8260D	Total/NA

Lab Sample ID: 860-28628-3 Client Sample ID: SB36-02-062722

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	0.00201	0.00100	0.000174	mg/L		8260D	Total/NA
1,1-Dichloroethane	0.117	0.00100	0.000244	mg/L	1	8260D	Total/NA
1,2-Dichloroethane	0.00146	0.00100	0.000285	mg/L	1	8260D	Total/NA
1,1-Dichloroethene	0.0691	0.00100	0.000216	mg/L	1	8260D	Total/NA
Tetrachloroethene	0.00322	0.00100	0.000500	mg/L	1	8260D	Total/NA
Trichloroethene	0.000979 J	0.00500	0.000424	mg/L	1	8260D	Total/NA
Vinyl chloride	0.00863	0.00200	0.000234	mg/L	1	8260D	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 860-28628-1

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: TB-01-062722

Date Collected: 06/27/22 07:20 Date Received: 06/27/22 15:15 Lab Sample ID: 860-28628-1

Matrix: Water

Job ID: 860-28628-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result Qualif	ier MQL (Adj)	SDL Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174 U	0.00100	0.000174 mg/L			06/28/22 12:13	1
1,1-Dichloroethane	0.000244 U	0.00100	0.000244 mg/L			06/28/22 12:13	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285 mg/L			06/28/22 12:13	1
1,1-Dichloroethene	0.000216 U	0.00100	0.000216 mg/L			06/28/22 12:13	1
Tetrachloroethene	0.000500 U	0.00100	0.000500 mg/L			06/28/22 12:13	1
Trichloroethene	0.000424 U	0.00500	0.000424 mg/L			06/28/22 12:13	1
Vinyl chloride	0.000234 U	0.00200	0.000234 mg/L			06/28/22 12:13	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100	74 - 124	06/28/22 12:13	1
Dibromofluoromethane (Surr)	98	75 - 131	06/28/22 12:13	1
1,2-Dichloroethane-d4 (Surr)	98	63 - 144	06/28/22 12:13	1
Toluene-d8 (Surr)	99	80 - 117	06/28/22 12:13	1

Client Sample ID: SB36-03-062722

Date Collected: 06/27/22 11:45

Date Received: 06/27/22 15:15

Lab Sample ID: 860-28628-2

Matrix: Water

Mathad: 8260D - Valatila Organic Compounds by GC/MS

wethod: 8260D - Volatile Organic Compounds by GC/WS								
Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00345 J	0.00500	0.000870	mg/L			06/28/22 12:34	5
1,1-Dichloroethane	0.193	0.00500	0.00122	mg/L			06/28/22 12:34	5
1,2-Dichloroethane	0.00218 J	0.00500	0.00143	mg/L			06/28/22 12:34	5
1,1-Dichloroethene	0.131	0.00500	0.00108	mg/L			06/28/22 12:34	5
Tetrachloroethene	0.00803	0.00500	0.00250	mg/L			06/28/22 12:34	5
Trichloroethene	0.00259 J	0.0250	0.00212	mg/L			06/28/22 12:34	5
Vinyl chloride	0.0139	0.0100	0.00117	mg/L			06/28/22 12:34	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		74 - 124		06/28/22 12:34	5
Dibromofluoromethane (Surr)	98		75 - 131		06/28/22 12:34	5
1,2-Dichloroethane-d4 (Surr)	100		63 - 144		06/28/22 12:34	5
Toluene-d8 (Surr)	98		80 - 117		06/28/22 12:34	5

Client Sample ID: SB36-02-062722

Date Collected: 06/27/22 12:55

Lab Sample ID: 860-28628-3 **Matrix: Water** Date Received: 06/27/22 15:15

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00201		0.00100	0.000174	mg/L			06/28/22 12:54	1
1,1-Dichloroethane	0.117		0.00100	0.000244	mg/L			06/28/22 12:54	1
1,2-Dichloroethane	0.00146		0.00100	0.000285	mg/L			06/28/22 12:54	1
1,1-Dichloroethene	0.0691		0.00100	0.000216	mg/L			06/28/22 12:54	1
Tetrachloroethene	0.00322		0.00100	0.000500	mg/L			06/28/22 12:54	1
Trichloroethene	0.000979	J	0.00500	0.000424	mg/L			06/28/22 12:54	1
Vinyl chloride	0.00863		0.00200	0.000234	mg/L			06/28/22 12:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			74 - 124					06/28/22 12:54	1
Dibromofluoromethane (Surr)	99		75 ₋ 131					06/28/22 12:54	1

Eurofins Houston

Page 6 of 23 6/28/2022

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Date Collected: 06/27/22 12:55

Lab Sample 1D. 860-26626-3

Matrix: Water

Date Received: 06/27/22 15:15

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		63 - 144		06/28/22 12:54	1
Toluene-d8 (Surr)	100		80 - 117		06/28/22 12:54	1

Job ID: 860-28628-1

G

7

9

11

12

14

16

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28628-1

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

5

4

5

Q

10

12

11

15

<u> 17</u>

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		BFB	DBFM	DCA	TOL			
Lab Sample ID	Client Sample ID	(74-124)	(75-131)	(63-144)	(80-117)			
860-28628-1	TB-01-062722	100	98	98	99			
860-28628-2	SB36-03-062722	99	98	100	98			
860-28628-2 MS	SB36-03-062722	98	101	97	98			
860-28628-2 MSD	SB36-03-062722	99	101	95	98			
860-28628-3	SB36-02-062722	101	99	99	100			
LCS 860-58802/5	Lab Control Sample	99	101	96	98			
LCSD 860-58802/6	Lab Control Sample Dup	97	99	93	97			
MB 860-58802/12	Method Blank	100	99	97	100			

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Eurofins Houston

Job ID: 860-28628-1

Page 9 of 23 6/28/2022

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-58802/12

Matrix: Water

Analysis Batch: 58802

Client Sample ID: Method Blank

Job ID: 860-28628-1

Prep Type: Total/NA MR MR

		14110							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/28/22 11:53	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/28/22 11:53	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/28/22 11:53	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/28/22 11:53	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/28/22 11:53	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/28/22 11:53	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/28/22 11:53	1

		MB	MB				
Surrogate		%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromoflu	orobenzene (Surr)	100		74 - 124		06/28/22 11:53	1
Dibromoflu	oromethane (Surr)	99		75 - 131		06/28/22 11:53	1
1,2-Dichlor	oethane-d4 (Surr)	97		63 - 144		06/28/22 11:53	1
Toluene-d8	(Surr)	100		80 - 117		06/28/22 11:53	1

Lab Sample ID: LCS 860-58802/5

Matrix: Water

Analysis Batch: 58802

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 0.0500 cis-1,2-Dichloroethene 0.04672 mg/L 93 75 - 125 1,1-Dichloroethane 0.0500 0.04792 96 72 - 125 mg/L 1,2-Dichloroethane 0.0500 96 0.04779 mg/L 68 - 127 1,1-Dichloroethene 0.0500 0.04975 mg/L 100 59 - 172 Tetrachloroethene 0.0500 0.05188 104 mg/L 71 - 125 Trichloroethene 0.0500 0.05098 mg/L 102 62 - 137 Vinyl chloride 0.0500 0.04950 mg/L 99 60 - 140

LCS	LCS		
%Recovery	Qualifier	Limits	
99		74 - 124	
101		75 - 131	
96		63 - 144	
98		80 - 117	
	%Recovery 99 101 96	101 96	

Lab Sample ID: LCSD 860-58802/6

Matrix: Water

Analysis Batch: 58802

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	0.0500	0.04322		mg/L		86	75 - 125	8	25
1,1-Dichloroethane	0.0500	0.04417		mg/L		88	72 - 125	8	25
1,2-Dichloroethane	0.0500	0.04426		mg/L		89	68 - 127	8	25
1,1-Dichloroethene	0.0500	0.04569		mg/L		91	59 - 172	9	25
Tetrachloroethene	0.0500	0.04757		mg/L		95	71 - 125	9	25
Trichloroethene	0.0500	0.04755		mg/L		95	62 - 137	7	25
Vinyl chloride	0.0500	0.04423		mg/L		88	60 - 140	11	25

Eurofins Houston

Page 10 of 23

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28628-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-58802/6

Matrix: Water

Analysis Batch: 58802

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 97 74 - 124 Dibromofluoromethane (Surr) 99 75 - 131 1,2-Dichloroethane-d4 (Surr) 93 63 - 144 Toluene-d8 (Surr) 97 80 - 117

Lab Sample ID: 860-28628-2 MS

Matrix: Water

Analysis Batch: 58802

Client Sample ID: SB36-03-062722

Prep Type: Total/NA

%Rec Sample Sample Spike MS MS Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits cis-1.2-Dichloroethene 0.00345 J 0.250 0.2398 75 - 125 mg/L 95 1,1-Dichloroethane 0.193 0.250 0.3694 N1 mg/L 71 72 - 125 1,2-Dichloroethane 0.00218 J 0.250 0.2424 mg/L 96 68 - 127 1,1-Dichloroethene 79 0.131 0.250 0.3274 mg/L 59 - 172 Tetrachloroethene 0.00803 0.250 101 0.2609 mg/L 71 - 125 Trichloroethene 0.00259 0.250 0.2554 mg/L 101 62 - 137Vinyl chloride 0.0139 0.250 0.2795 106 60 - 140 mg/L

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		74 - 124
Dibromofluoromethane (Surr)	101		75 - 131
1,2-Dichloroethane-d4 (Surr)	97		63 - 144
Toluene-d8 (Surr)	98		80 - 117

Lab Sample ID: 860-28628-2 MSD

Matrix: Water

Analysis Batch: 58802

Client Sample ID: SB36-03-062722

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	0.00345	J	0.250	0.2610		mg/L		103	75 - 125	8	25
1,1-Dichloroethane	0.193		0.250	0.4123		mg/L		88	72 - 125	11	25
1,2-Dichloroethane	0.00218	J	0.250	0.2624		mg/L		104	68 - 127	8	25
1,1-Dichloroethene	0.131		0.250	0.3669		mg/L		95	59 - 172	11	25
Tetrachloroethene	0.00803		0.250	0.2778		mg/L		108	71 - 125	6	25
Trichloroethene	0.00259	J	0.250	0.2788		mg/L		110	62 - 137	9	25
Vinyl chloride	0.0139		0.250	0.2939		mg/L		112	60 - 140	5	25

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	101		75 - 131
1,2-Dichloroethane-d4 (Surr)	95		63 - 144
Toluene-d8 (Surr)	98		80 - 117

Page 11 of 23

QC Association Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28628-1

GC/MS VOA

Analysis Batch: 58802

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-28628-1	TB-01-062722	Total/NA	Water	8260D	
860-28628-2	SB36-03-062722	Total/NA	Water	8260D	
860-28628-3	SB36-02-062722	Total/NA	Water	8260D	
MB 860-58802/12	Method Blank	Total/NA	Water	8260D	
LCS 860-58802/5	Lab Control Sample	Total/NA	Water	8260D	
LCSD 860-58802/6	Lab Control Sample Dup	Total/NA	Water	8260D	
860-28628-2 MS	SB36-03-062722	Total/NA	Water	8260D	
860-28628-2 MSD	SB36-03-062722	Total/NA	Water	8260D	

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Client Sample ID: TB-01-062722

Date Collected: 06/27/22 07:20

Date Received: 06/27/22 15:15

Lab Sample ID: 860-28628-1

Matrix: Water

Job ID: 860-28628-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	58802	06/28/22 12:13	TTD	XEN STF

Client Sample ID: SB36-03-062722

Date Collected: 06/27/22 11:45

Lab Sample ID: 860-28628-2 **Matrix: Water**

Date Received: 06/27/22 15:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		5	5 mL	5 mL	58802	06/28/22 12:34	TTD	XEN STF

Client Sample ID: SB36-02-062722

Date Collected: 06/27/22 12:55

Date Received: 06/27/22 15:15

Lab Sample ID: 860-28628-3 **Matrix: Water**

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method **Factor Amount** Number or Analyzed Type Run **A**mount Analyst Lab Total/NA Analysis 8260D 5 mL 5 mL 58802 06/28/22 12:54 TTD XEN STF

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

Page 13 of 23

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Job ID: 860-28628-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

4

6

9

11

13

14

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Inv Part 2

MethodMethod DescriptionProtocolLaboratory8260DVolatile Organic Compounds by GC/MSSW846XEN STF5030CPurge and TrapSW846XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-28628-1

6

А

4

9

11

12

13

15

17

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Inv Part 2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-28628-1	TB-01-062722	Water	06/27/22 07:20	06/27/22 15:15
860-28628-2	SB36-03-062722	Water	06/27/22 11:45	06/27/22 15:15
860-28628-3	SB36-02-062722	Water	06/27/22 12:55	06/27/22 15:15

Job ID: 860-28628-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-28628-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etymp:0	Senior Project Manager	06/28/2022

3

4

5

7

9

4 4

12

11

15

17

Laboratory Data Package Cover Page - Page 2 of 4

	atory iv	lame: Eurofins Houston LR	LRC Date: 06/28/2022						
			Laboratory Job Number: 860-28628-1						
		me: Bethany McDaniel							
#¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵	
R1	OI	Chain-of-custody (C-O-C)							
		Did samples meet the laboratory's standard conditions of sample	acceptability upon	✓					
		receipt?		✓					
- DO		Were all departures from standard conditions described in an exce	eption report?	V					
R2	OI	Sample and quality control (QC) identification	. ID	✓					
		Are all field sample ID numbers cross-referenced to the laboratory Are all laboratory ID numbers cross-referenced to the correspondi		✓					
D2	OI		ing QC data?	•					
R3	OI	Test reports Were all samples prepared and analyzed within holding times?		✓					
		Other than those results < MQL, were all other raw values bracket	tod by colibration	→					
		standards?	led by calibration	•					
		Were calculations checked by a peer or supervisor?		✓					
		Were all analyte identifications checked by a peer or supervisor?		✓					
		Were sample detection limits reported for all analytes not detected	1?	✓					
		Were all results for soil and sediment samples reported on a dry w				✓			
		Were % moisture (or solids) reported for all soil and sediment sam				✓			
		Were bulk soils/solids samples for volatile analysis extracted with	•			✓			
		SW846 Method 5035?							
		If required for the project, are TICs reported?				✓			
R4	0	Surrogate recovery data							
		Were surrogates added prior to extraction?		✓					
		Were surrogate percent recoveries in all samples within the labora	atory QC limits?	✓					
R5	OI	Test reports/summary forms for blank samples							
		Were appropriate type(s) of blanks analyzed?		✓					
		Were blanks analyzed at the appropriate frequency?		✓					
		Were method blanks taken through the entire analytical process, i	ncluding preparation	✓					
		and, if applicable, cleanup procedures?	01 1						
		Were blank concentrations < MQL?		✓					
R6	OI	Laboratory control samples (LCS):							
		Were all COCs included in the LCS?		✓					
		Was each LCS taken through the entire analytical procedure, inclu	uding prep and	✓					
		cleanup steps?							
		Were LCSs analyzed at the required frequency?		✓					
		Were LCS (and LCSD, if applicable) %Rs within the laboratory Q0		✓					
		Does the detectability check sample data document the laboratory	y's capability to	✓					
		detect the COCs at the MDL used to calculate the SDLs?							
		Was the LCSD RPD within QC limits?		√					
R7	OI	Matrix spike (MS) and matrix spike duplicate (MS							
		Were the project/method specified analytes included in the MS an	а мѕр.	✓ ✓					
		Were MS/MSD analyzed at the appropriate frequency?	::4-0	V	✓			1	
		Were MS (and MSD, if applicable) %Rs within the laboratory QC I	mmts ?	✓	•			1	
- DO		Were MS/MSD RPDs within laboratory QC limits?		V					
R8	OI	Analytical duplicate data							
		Were appropriate analytical duplicates analyzed for each matrix? Were analytical duplicates analyzed at the appropriate frequency?)			✓ ✓		-	
		Were RPDs or relative standard deviations within the laboratory C				V ✓			
R9	OI		(O minus:			•			
רא	OI	Method quantitation limits (MQLs): Are the MQLs for each method analyte included in the laboratory	data nackado?	✓					
				✓					
		Do the MQLs correspond to the concentration of the lowest non-z standard?	ero calibration						
		Are unadjusted MQLs and DCSs included in the laboratory data p	ackage?	✓				1	
D10	OI		ackage:	•					
R10	Oi	Other problems/anomalies	L DC and ED2	✓					
		Are all known problems/anomalies/special conditions noted in this		•	✓			2	
		Was applicable and available technology used to lower the SDL to	ווווווווווובe the matrix		•			2	
		interference effects on the sample results?		✓				1	
		Is the laboratory NELAC-accredited under the Texas Laboratory A							

Page 18 of 23 6/28/2022

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 06/28/2022
Project Name: STC Silber Rd Pre-Design Inv Part 2	Laboratory Job Number: 860-28628-1
Reviewer Name Bethany McDaniel	

			Laboratory Job Number: 860-28628-1						
Revie	wer Na	ame: Bethany McDaniel							
# ¹	A ²	Description	Yes	No	NA ³	NR⁴	ER#		
S1	OI	Initial calibration (ICAL)							
	_	Were response factors and/or relative response factors for each analyte within QC	✓						
		limits?							
		Were percent RSDs or correlation coefficient criteria met?	✓						
		Was the number of standards recommended in the method used for all analytes?	✓						
		Were all points generated between the lowest and highest standard used to calculate	✓						
		the curve?							
		Are ICAL data available for all instruments used?	✓						
		Has the initial calibration curve been verified using an appropriate second source	✓						
		standard?							
S2	OI	Initial and continuing calibration verification (ICCV and CCV) and	ıd						
		continuing calibration blank (CCB):							
	1	Was the CCV analyzed at the method-required frequency?	✓						
		Were percent differences for each analyte within the method-required QC limits?	✓						
		Was the ICAL curve verified for each analyte?	✓						
		Was the absolute value of the analyte concentration in the inorganic CCB < MDL?			✓				
S3	0	Mass spectral tuning							
	1	Was the appropriate compound for the method used for tuning?	✓						
		Were ion abundance data within the method-required QC limits?	✓						
S4	0	Internal standards (IS)							
		Were IS area counts and retention times within the method-required QC limits?	✓						
S5 O		Raw data (NELAC Section 5.5.10)							
		Were the raw data (for example, chromatograms, spectral data) reviewed by an	✓						
		analyst?							
		Were data associated with manual integrations flagged on the raw data?	✓						
S6	0	Dual column confirmation							
		Did dual column confirmation results meet the method-required QC?			√				
S7	0	Tentatively identified compounds (TICs)							
		If TICs were requested, were the mass spectra and TIC data subject to appropriate			√				
		checks?							
S8	1	Interference Check Sample (ICS) results							
00 1		Were percent recoveries within method QC limits?			✓				
S9 I		Serial dilutions, post digestion spikes, and method of standard							
		additions							
		Were percent differences, recoveries, and the linearity within the QC limits specified			√				
		in the method?							
S10	OI	Method detection limit (MDL) studies							
0.0	_ O.	Was a MDL study performed for each reported analyte?	✓						
		Is the MDL either adjusted or supported by the analysis of DCSs?	✓						
S11	OI	Proficiency test reports							
<u> </u>		Was the laboratory's performance acceptable on the applicable proficiency tests or	√						
		evaluation studies?							
S12	OI	Standards documentation							
U 12		Are all standards used in the analyses NIST-traceable or obtained from other	√						
		appropriate sources?							
S13	OI	Compound/analyte identification procedures							
J 10		Are the procedures for compound/analyte identification documented?	√						
S14	OI	Demonstration of analyst competency (DOC)							
U 17	_ Ji	Was DOC conducted consistent with NELAC Chapter 5?	√						
		Is documentation of the analyst's competency up-to-date and on file?	→	+	+	1	1		
			•						
Q1 <i>E</i>	\cap								
S15	OI	Verification/validation documentation for methods (NELAC							
S15	OI	Chapter 5)							
S15	OI	Chapter 5) Are all the methods used to generate the data documented, verified, and validated,	✓						
S15 S16	OI	Chapter 5)							

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

NA = Not applicable;

NR = Not reviewed;

ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Labora	atory Name: Eurofins Houston	LRC Date: 06/28/2022							
Projec	t Name: STC Silber Rd Pre-Design Inv Part 2	Laboratory Job Number: 860-28628-1							
Reviewer Name: Bethany McDaniel									
ER#1	Description								
1	Method 8260D: The matrix spike(MS) recoveries for analytical batch	860-58802 were outside control limits. Sample matrix interference and/or							
	non-homogeneity are suspected because the associated laboratory c	control sample (LCS/LCSD) recovery was within acceptance limits.							
2	Method 8260D: The following samples were diluted to bring the conce	entration of target analytes within the calibration range: SB36-03-062722							
	(860-28628-2), SB36-03-062722 (860-28628-2[MS]) and SB36-03-06	S2722 (860-28628-2[MSD]). Elevated reporting limits (RLs) are provided.							
1. ER	ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).								

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28628-1

Project/Site: STC Silber Rd Pre-Design Inv Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Detector: MSD/0 Column: DB-624

	Spike						
Analyte	Added	Result Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
Trichloroethene	0.00100	0.00503	mg/L	0.00500	0.000424	03/03/2022	860-43530
Vinyl chloride	0.00100	0.00381	mg/L	0.00200	0.000234	03/03/2022	860-43530
cis-1,2-Dichloroethene	0.00100	0.00499	mg/L	0.00100	0.000174	03/03/2022	860-43530
1,1-Dichloroethane	0.00100	0.00483	mg/L	0.00100	0.000244	03/03/2022	860-43530
1,2-Dichloroethane	0.00100	0.00498	mg/L	0.00100	0.000285	03/03/2022	860-43530
1,1-Dichloroethene	0.00100	0.00411	mg/L	0.00100	0.000216	03/03/2022	860-43530
Tetrachloroethene	0.00100	0.00463	mg/L	0.00100	0.000500	03/03/2022	860-43530

4

6

9

10

12

1 A

19

17

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Phone (281) 240-4200	ວັ	ain of (Sustody	Chain of Custody Record			्के eurofins	1S Environment Testing America
Client Information	Sampler			ab PM: McDaniel, Betha	any A	Carrier Tracking No(s):	COC No: 860-11069-3875.1	875.1
Client Contact John Ynfante	Phone:			e-Mail: Bethany.McDan	E-Mail: Bethany.McDaniel@et.eurofinsus.com	State of Origin:	Page: Page of	
Company: Jacobs Engineering Group, Inc.		PWSID		_	Analysis Requested	equested	ſ	
Address: 14701 St. Mary's Lane Suite 300	Due Date Requestad:	1					Preservation Codes:	Codes; M Hexane
Oik: Houston	TAT Requested (days):	1 day RUSH					B NaOH C Zn Acetate	2 O a
ip: 079 – – – – – – – – – – – – – – – – – – –	Compliance Project:	A Yes A No					D Nitric Acid E NaHSO4	ran
	PO#. D3542628.C.CS.TI	PE SIL 22-01-4	22				G Amchlor H Ascorbic Aci	
	WO#: D3542628.C.CS.TI	PE.SIL. 22-01-0	72				<u> 3</u>	>>≥
Project Name STC Silber Rd Pre-Design Inv Part 2	Project #: 86002024			મુક્તિ			<u> </u>	y Trizma Z other (specify)
	SSOVV#.			গ্ৰা)বৃত্তি			noo to	
		San Ty Sample (C≃c		A Pariented Misimus And Misimus Andrews (GOM) - 2088			redmulf late	
Sample Identification	sample Date	4	G=grab) annass, A-Arr Preservation Code:					Special Instructions/Note:
TT3-01-062722	0 12/1/19	0770	Water	× ×			~6	
5B36-03-067722	 	<u> </u>	(5) Water	×			Qswism 5	2
5836-62-06272E	1/21/12	755 6	Gy Water	٠ ٧			4	
			Water					
			Water	·				
			Water	,				
			Water					
			Water				IR ID:HOU-332	
860-28528 Chain of Custody		_	Water	_		C/F:-0.9		
			Water	ر ا		Corrected Lemp:	1.9	
			Water	. [<u> </u>				
Possible Hazard Identification Non-Hazard Flammable Skin Initant Poison B	on B 🗀 Unknown	n 🗀 Radiological	ogical	Sample	le Disposal (A fee may be Return To Client	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	retained longer than Archive For	n 1 month) Months
O ∧ ,ii	TRRP			Special	Special Instructions/QC Requirements:			
kinqdiskad by:	Date	l		Time:		Method of Shipment)	
1	22/12/A).	131	Сотрану	Rece	Received by	Date/Time	Deterting 17.90 B	Company
Relinquished by	Date/Time	ر رود	Company	78ec	Received by:	L 81271	SIS) 201	Company EX
	Date; Little:		Company	LIGO.	ived by:	3		Company
Custody Seals Intact: Custody Seal No.				Cod	Cooler Temperature(s) °C and Other Remarks:	Remarks:		
								Ver 01/16/2019

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-28628-1

Login Number: 28628 List Source: Eurofins Houston

List Number: 1

Creator: Palmar, Pedro

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

1

5

q

10

12

11

10

17

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-28799-1

Client Project/Site: STC Silber Rd Pre-Design Investigation Part

2

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 6/30/2022 4:30:12 PM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

.....LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Default Detection Limits	8
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
State Forms	17
TRRP Checklist	17
DCS Report	21
Chain of Custody	22
Receipt Checklists	23

-5

4

6

8

10

12

14

119

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Job ID: 860-28799-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Houston

Page 3 of 23

6/30/2022

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Job ID: 860-28799-1

Job ID: 860-28799-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-28799-1

Comments

No additional comments.

Receipt

The samples were received on 6/29/2022~3:17~PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was $3.4^{\circ}~C$.

6

4

0

0

8

9

10

12

14

13

17

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Job ID: 860-28799-1

Client Sample ID: TB-01-062922	Lab Sample ID: 860-28799-1
No Detections.	
Client Sample ID: SWD-14-062922	Lab Sample ID: 860-28799-2
No Detections.	
Client Sample ID: SWD-12-062922	Lab Sample ID: 860-28799-3

No Detections.

3

4

5

6

9

11

13

14

16

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: TB-01-062922

Date Collected: 06/29/22 13:00 Date Received: 06/29/22 15:17 Lab Sample ID: 860-28799-1

Matrix: Water

Job ID: 860-28799-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/30/22 10:56	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/30/22 10:56	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/30/22 10:56	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/30/22 10:56	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/30/22 10:56	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/30/22 10:56	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/30/22 10:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		74 - 124			-		06/30/22 10:56	1

75 - 131

63 - 144

80 - 117

Client Sample ID: SWD-14-062922

Date Collected: 06/29/22 14:15

Date Received: 06/29/22 15:17

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 860-28799-2

06/30/22 10:56

06/30/22 10:56

06/30/22 10:56

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS

101

98

100

Welliou. 6260D - Volalile	Organic Compounds by C							
Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174 U	0.00100	0.000174	mg/L			06/30/22 12:18	1
1,1-Dichloroethane	0.000244 U	0.00100	0.000244	mg/L			06/30/22 12:18	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			06/30/22 12:18	1
1,1-Dichloroethene	0.000216 U	0.00100	0.000216	mg/L			06/30/22 12:18	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			06/30/22 12:18	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			06/30/22 12:18	1
Vinyl chloride	0.000234 U	0.00200	0.000234	mg/L			06/30/22 12:18	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		74 - 124		06/30/22 12:18	1
Dibromofluoromethane (Surr)	99		75 - 131		06/30/22 12:18	1
1,2-Dichloroethane-d4 (Surr)	99		63 - 144		06/30/22 12:18	1
Toluene-d8 (Surr)	100		80 - 117		06/30/22 12:18	1

Client Sample ID: SWD-12-062922

Date Collected: 06/29/22 14:35

Date Received: 06/29/22 15:17

Lab	Sample	e ID:	860-28	799-3

Matrix: Water

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/30/22 12:38	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/30/22 12:38	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/30/22 12:38	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/30/22 12:38	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/30/22 12:38	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/30/22 12:38	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/30/22 12:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		74 - 124			•		06/30/22 12:38	1
Dibromofluoromethane (Surr)	99		75 - 131					06/30/22 12:38	1

Eurofins Houston

Page 6 of 23 6/30/2022

2

6

8

10

12

14

16

Client Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: SWD-12-062922

Date Collected: 06/29/22 14:35 Date Received: 06/29/22 15:17 Lab Sample ID: 860-28799-3

Matrix: Water

Job ID: 860-28799-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	99		63 - 144		06/30/22 12:38	1
ı	Toluene-d8 (Surr)	99		80 - 117		06/30/22 12:38	1

2

Δ

6

8

10

12

14

16

17

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28799-1

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units	
1,1-Dichloroethane	0.00100	0.000244	mg/L	
1,1-Dichloroethene	0.00100	0.000216	mg/L	
1,2-Dichloroethane	0.00100	0.000285	mg/L	
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L	
Tetrachloroethene	0.00100	0.000500	mg/L	
Trichloroethene	0.00500	0.000424	mg/L	
Vinyl chloride	0.00200	0.000234	mg/L	

3

4

6

Q

9

11

12

14

4.0

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surro	ogate Reco
		BFB	DBFM	DCA	TOL
Lab Sample ID	Client Sample ID	(74-124)	(75-131)	(63-144)	(80-117)
860-28656-A-8 MS	Matrix Spike	99	101	97	98
860-28799-1	TB-01-062922	102	101	98	100
860-28799-2	SWD-14-062922	101	99	99	100
860-28799-3	SWD-12-062922	100	99	99	99
LCS 860-59193/5	Lab Control Sample	99	102	98	98
LCSD 860-59193/6	Lab Control Sample Dup	99	100	97	98
MB 860-59193/11	Method Blank	100	99	99	100

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Eurofins Houston

2

Job ID: 860-28799-1

5

4

7

0

40

11

13

. . 1 E

16

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-59193/11

Matrix: Water

Vinyl chloride

Analysis Batch: 59193

Client Sample ID: Method Blank Prep Type: Total/NA

06/30/22 10:15

Job ID: 860-28799-1

MB MB Dil Fac Result Qualifier SDL Unit Analyte MQL (Adj) D Prepared Analyzed cis-1,2-Dichloroethene 0.000174 U 0.00100 0.000174 mg/L 06/30/22 10:15 1,1-Dichloroethane 0.000244 U 0.00100 0.000244 mg/L 06/30/22 10:15 1,2-Dichloroethane 0.000285 U 0.00100 0.000285 mg/L 06/30/22 10:15 0.00100 0.000216 mg/L 1,1-Dichloroethene 0.000216 U 06/30/22 10:15 Tetrachloroethene 0.000500 U 0.00100 0.000500 mg/L 06/30/22 10:15 Trichloroethene 0.000424 U 0.00500 0.000424 mg/L 06/30/22 10:15

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 74 - 124 06/30/22 10:15 4-Bromofluorobenzene (Surr) 100 Dibromofluoromethane (Surr) 75 - 131 99 06/30/22 10:15 1,2-Dichloroethane-d4 (Surr) 99 63 - 144 06/30/22 10:15 Toluene-d8 (Surr) 100 80 - 117 06/30/22 10:15

0.00200

0.000234 mg/L

Lab Sample ID: LCS 860-59193/5

Matrix: Water

Analysis Batch: 59193

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS %Rec Spike Added Result Qualifier Unit D %Rec Limits Analyte 0.0500 98 75 - 125 cis-1,2-Dichloroethene 0.04904 mg/L 0.0500 99 1,1-Dichloroethane 0.04960 mg/L 72 - 125 1.2-Dichloroethane 0.0500 0.04979 mg/L 100 68 - 127 1,1-Dichloroethene 0.0500 0.05170 103 59 - 172 mg/L Tetrachloroethene 0.0500 0.05273 mg/L 105 71 - 125Trichloroethene 0.0500 0.05285 106 62 - 137 mg/L Vinyl chloride 0.0500 0.04983 100 60 - 140 mg/L

LCS LCS

0.000234 U

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	102		75 - 131
1,2-Dichloroethane-d4 (Surr)	98		63 - 144
Toluene-d8 (Surr)	98		80 - 117

Lab Sample ID: LCSD 860-59193/6

Matrix: Water

Analysis Batch: 59193

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	0.0500	0.04605	mg/L		92	75 - 125	6	25
1,1-Dichloroethane	0.0500	0.04712	mg/L		94	72 - 125	5	25
1,2-Dichloroethane	0.0500	0.04890	mg/L		98	68 - 127	2	25
1,1-Dichloroethene	0.0500	0.04753	mg/L		95	59 - 172	8	25
Tetrachloroethene	0.0500	0.05045	mg/L		101	71 - 125	4	25
Trichloroethene	0.0500	0.05095	mg/L		102	62 - 137	4	25
Vinyl chloride	0.0500	0.04662	mg/L		93	60 - 140	7	25

Eurofins Houston

2

3

5

7

9

11

13

15

16

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Job ID: 860-28799-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-59193/6

Matrix: Water

Analysis Batch: 59193

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 99 74 - 124 Dibromofluoromethane (Surr) 100 75 - 131 1,2-Dichloroethane-d4 (Surr) 97 63 - 144 Toluene-d8 (Surr) 98 80 - 117

Lab Sample ID: 860-28656-A-8 MS

Matrix: Water

Analysis Batch: 59193

Client Sample ID: Matrix Spike

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits cis-1.2-Dichloroethene 0.000174 U 0.0500 0.04792 75 - 125 mg/L 96 1,1-Dichloroethane 0.000244 U 0.0500 0.04805 mg/L 96 72 - 125 1,2-Dichloroethane 0.000285 U 0.0500 0.04823 mg/L 96 68 - 127 106 1,1-Dichloroethene 0.000216 U 0.0500 0.05285 mg/L 59 - 172 Tetrachloroethene 0.0500 102 0.000500 U 0.05122 mg/L 71 - 125 Trichloroethene 0.000424 U 0.0500 0.05113 mg/L 102 62 - 137Vinyl chloride 0.000234 U 0.0500 0.05491 110 60 - 140 mg/L

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	101		75 - 131
1,2-Dichloroethane-d4 (Surr)	97		63 - 144
Toluene-d8 (Surr)	98		80 - 117

Prep Type: Total/NA

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Job ID: 860-28799-1

GC/MS VOA

Analysis Batch: 59193

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-28799-1	TB-01-062922	Total/NA	Water	8260D	
860-28799-2	SWD-14-062922	Total/NA	Water	8260D	
860-28799-3	SWD-12-062922	Total/NA	Water	8260D	
MB 860-59193/11	Method Blank	Total/NA	Water	8260D	
LCS 860-59193/5	Lab Control Sample	Total/NA	Water	8260D	
LCSD 860-59193/6	Lab Control Sample Dup	Total/NA	Water	8260D	
860-28656-A-8 MS	Matrix Spike	Total/NA	Water	8260D	

3

4

5

8

4.0

11

4.0

14

16

1 /

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: TB-01-062922

Date Collected: 06/29/22 13:00

Date Received: 06/29/22 15:17

Lab Sample ID: 860-28799-1

Matrix: Water

Matrix: Water

Job ID: 860-28799-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	59193	06/30/22 10:56	TTD	XEN STF

Client Sample ID: SWD-14-062922

Date Collected: 06/29/22 14:15 Date Received: 06/29/22 15:17

Lab Sample ID: 860-28799-2 **Matrix: Water**

Lab Sample ID: 860-28799-3

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run **Factor** Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260D 5 mL 5 mL 59193 06/30/22 12:18 TTD XEN STF

Client Sample ID: SWD-12-062922

Date Collected: 06/29/22 14:35

Date Received: 06/29/22 15:17

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method **Factor Amount** Number or Analyzed Type Run **A**mount Analyst Lab Total/NA Analysis 8260D 5 mL 5 mL 59193 06/30/22 12:38 TTD XEN STF

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Eurofins Houston

6/30/2022

Page 13 of 23

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Job ID: 860-28799-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-22-46	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

2

4

__

6

Я

9

11

13

14

16

1 /

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation Part 2 Job ID: 860-28799-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	XEN STF
5030C	Purge and Trap	SW846	XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

4

5

6

8

9

11

13

14

16

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-28799-1	TB-01-062922	Water	06/29/22 13:00	06/29/22 15:17
860-28799-2	SWD-14-062922	Water	06/29/22 14:15	06/29/22 15:17
860-28799-3	SWD-12-062922	Water	06/29/22 14:35	06/29/22 15:17

Job ID: 860-28799-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-28799-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	8th mail	Senior Project Manager	06/30/2022

2

3

4

5

7

9

10

12

14

15

17

4 (

Laboratory Data Package Cover Page - Page 2 of 4

		Name: Eurofins Houston LRC Date: 06/30/20 e: STC Silber Rd Pre-Design Investigation Part 2 Laboratory Job Num		28799-1			
		ame: Bethany McDaniel	NGI. 000-	<u>-0199-1</u>			
#1	A ²	Description	Yes	No	NA ³	NR ⁴	ER#
R1 OI		Chain-of-custody (C-O-C)			14/3		
		Did samples meet the laboratory's standard conditions of sample acceptability upon	✓				
		receipt?					
		Were all departures from standard conditions described in an exception report?					
₹2	OI	Sample and quality control (QC) identification					
	Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	✓					
	Are all laboratory ID numbers cross-referenced to the corresponding QC data?	✓					
R3 OI	OI	Test reports					
		Were all samples prepared and analyzed within holding times?	✓				
		Other than those results < MQL, were all other raw values bracketed by calibration	✓				
standards?			-				
		Were calculations checked by a peer or supervisor? Were all analyte identifications checked by a peer or supervisor?					
		Were sample detection limits reported for all analytes not detected?	✓				
		Were all results for soil and sediment samples reported on a dry weight basis? Were % moisture (or solids) reported for all soil and sediment samples?			✓		1
		Were bulk soils/solids samples for volatile analysis extracted with methanol per			\ \ \ \		
		SW846 Method 5035?					
		If required for the project, are TICs reported?			✓		+
₹4	0	Surrogate recovery data					
•		Were surrogates added prior to extraction?	✓				
		Were surrogate percent recoveries in all samples within the laboratory QC limits?	✓				
₹5	OI	Test reports/summary forms for blank samples					
		Were appropriate type(s) of blanks analyzed?	✓				
		Were blanks analyzed at the appropriate frequency?	✓				
		Were method blanks taken through the entire analytical process, including preparation	✓				
		and, if applicable, cleanup procedures?					
		Were blank concentrations < MQL?	✓				
₹6	OI	Laboratory control samples (LCS):					
	'	Were all COCs included in the LCS?	✓				
		Was each LCS taken through the entire analytical procedure, including prep and	✓				
		cleanup steps?					
		Were LCSs analyzed at the required frequency?	✓				
		Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	✓				
		Does the detectability check sample data document the laboratory's capability to	✓				
		detect the COCs at the MDL used to calculate the SDLs?					
	01	Was the LCSD RPD within QC limits?	✓				
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data					
		Were the project/method specified analytes included in the MS and MSD?	√				
		Were MS/MSD analyzed at the appropriate frequency? Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	✓ ✓				
		Were MS/MSD RPDs within laboratory QC limits?	•		/		
	OI	Analytical duplicate data			•		
Ko	Oi	Were appropriate analytical duplicates analyzed for each matrix?			/		
		Were analytical duplicates analyzed to each matrix: Were analytical duplicates analyzed at the appropriate frequency?			· /		+
		Were RPDs or relative standard deviations within the laboratory QC limits?			· /		
29	OI	Method quantitation limits (MQLs):					
R9 (Are the MQLs for each method analyte included in the laboratory data package?	✓				
		Do the MQLs correspond to the concentration of the lowest non-zero calibration	·				1
		standard?					
		Are unadjusted MQLs and DCSs included in the laboratory data package?	✓				1
R10	OI	Other problems/anomalies					
		Are all known problems/anomalies/special conditions noted in this LRC and ER?	✓				
		Was applicable and available technology used to lower the SDL to minimize the matrix	✓				
		interference effects on the sample results?					
		Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program	✓				
		for the analytes, matrices and methods associated with this laboratory data package?					

Page 18 of 23 6/30/2022

. .

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 06/30/2022
Project Name: STC Silber Rd Pre-Design Investigation Part 2	Laboratory Job Number: 860-28799-1
Reviewer Name: Bethany McDaniel	

		me Bethany McDaniel					
#¹	A ²	Description	Yes	No	NA ³	NR⁴	ER#
S1	OI	Initial calibration (ICAL)					
		Were response factors and/or relative response factors for each analyte within QC	✓				
		limits?					
		Were percent RSDs or correlation coefficient criteria met?	✓				
		Was the number of standards recommended in the method used for all analytes?	✓ ✓				
		Were all points generated between the lowest and highest standard used to calculate the curve?	•				
		Are ICAL data available for all instruments used?	✓				
		Has the initial calibration curve been verified using an appropriate second source	✓				+
		standard?					
S2	OI	Initial and continuing calibration verification (ICCV and CCV) and					
		continuing calibration blank (CCB):					
	1	Was the CCV analyzed at the method-required frequency?	✓				
		Were percent differences for each analyte within the method-required QC limits?	✓				
		Was the ICAL curve verified for each analyte?	✓				
		Was the absolute value of the analyte concentration in the inorganic CCB < MDL?			✓		
S3	0	Mass spectral tuning					
		Was the appropriate compound for the method used for tuning?	√	-			
<u> </u>		Were ion abundance data within the method-required QC limits?	✓				
S4	0	Internal standards (IS)					
0.5		Were IS area counts and retention times within the method-required QC limits?	✓				
S5	OI	Raw data (NELAC Section 5.5.10)	✓				
		Were the raw data (for example, chromatograms, spectral data) reviewed by an	•				
		analyst? Were data associated with manual integrations flagged on the raw data?	✓				+
S6	0	Dual column confirmation					
		Did dual column confirmation results meet the method-required QC?			/		
S7	0	Tentatively identified compounds (TICs)					
<u> </u>		If TICs were requested, were the mass spectra and TIC data subject to appropriate			√		
		checks?					
S8	ı	Interference Check Sample (ICS) results					
		Were percent recoveries within method QC limits?			✓		
S9	I	Serial dilutions, post digestion spikes, and method of standard					
		additions					
		Were percent differences, recoveries, and the linearity within the QC limits specified			✓		
		in the method?					
S10	OI	Method detection limit (MDL) studies					
		Was a MDL study performed for each reported analyte?	√				
044		Is the MDL either adjusted or supported by the analysis of DCSs?	✓				
S11	OI	Proficiency test reports	✓				
		Was the laboratory's performance acceptable on the applicable proficiency tests or evaluation studies?	•				
S12	OI	Standards documentation					
312	Oi	Are all standards used in the analyses NIST-traceable or obtained from other	/				
		appropriate sources?	,				
S13	OI	Compound/analyte identification procedures					
010	<u> </u>	Are the procedures for compound/analyte identification documented?	✓				
S14	OI	Demonstration of analyst competency (DOC)					
<u> </u>		Was DOC conducted consistent with NELAC Chapter 5?	✓				
		Is documentation of the analyst's competency up-to-date and on file?	✓				
S15	OI	Verification/validation documentation for methods (NELAC					
-		Chapter 5)					
	1	Are all the methods used to generate the data documented, verified, and validated,	✓				
		where applicable?					
S16	OI	Laboratory standard operating procedures (SOPs)					
	•	Are laboratory SOPs current and on file for each method performed?	✓				

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s).
 Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

12

14

15

17

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

^{3.} NA = Not applicable;

^{4.} NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Labora	tory Name: Eurofins Houston	LRC Date: 06/30/2022						
Project	Name: STC Silber Rd Pre-Design Investigation Part 2	Laboratory Job Number: 860-28799-1						
Reviewer Name: Bethany McDaniel								
ER#1	Description							
	No Exceptions							
1. ER:	# = Exception Report identification number (an Exception Report shou	ld be completed for an item if "NR" or "No" is checked).						

Ę

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28799-1

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Detector: MSD/0 Column: DB-624

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
Trichloroethene	0.00100	0.00503		mg/L	0.00500	0.000424	03/03/2022	860-43530
Vinyl chloride	0.00100	0.00381		mg/L	0.00200	0.000234	03/03/2022	860-43530
cis-1,2-Dichloroethene	0.00100	0.00499		mg/L	0.00100	0.000174	03/03/2022	860-43530
1,1-Dichloroethane	0.00100	0.00483		mg/L	0.00100	0.000244	03/03/2022	860-43530
1,2-Dichloroethane	0.00100	0.00498		mg/L	0.00100	0.000285	03/03/2022	860-43530
1,1-Dichloroethene	0.00100	0.00411		mg/L	0.00100	0.000216	03/03/2022	860-43530
Tetrachloroethene	0.00100	0.00463		mg/L	0.00100	0.000500	03/03/2022	860-43530

Eurofins Houston Temp. 3.4 IR ID:HOU-323 4145 Greenbriar Dr C/F0.0 Stafford, TX 77477 Corrected Temp: 3.4 Phone (781) 240-4200	0	Chain of Custody Record	f Cust	ody Re	cord			:UrOfins Environment Testing America	ag.
Client Information	Sampler			Lab PM: McDan	Lab PM: McDaniel, Bethany A			No: -11069-3875.1	$oxed{oxed}$
Clien! Contact John Ynfante	Phone:			E-Mail: Bethai	E-Mail: Bethany.McDaniel@et ւ			Je of]	
Company. Jacobs Engineering Group, Inc.			PWSID:			Analysis Requested	Jo	Job 共	
Address: 14701 St. Mary's Lane Suite 300	Due Date Requested:	5-						eservation Codes:	
City: Houston	TAT Requested (days):	/s): 1 day RUSH	E	, <u>,</u>			C W 3	NaOH N I	
State, Zip. TX, 77079	Compliance Project:	: A Yes A No	8					Natic Acid	
Phone:	PO# D3542628.C.CS.TPE.SIL 22-01-02	TPE SIL 22	01-02				I O 1	Amochlor 7	₹ 5
Emait: John.Ynfante@jacobs.com	WO#: D3542628.C.CS	TPE.SIL.22	-01-02		(E)}			lce V DI Water W	
Project Name: STC Silber Rd Pre-Design Inv Part 2	Project #: 86002024			in t	Assend		ntaine	EDA Y	
Site:	SSOW#:				B9(8		_	Other	L
			Sample Type		illered		Number		
Sample Identification	Sample Date	Sample Time	G=grab) B		ŢĊ)ĭ/		Total	Special Instructions/Note:	
	\bigvee	_	Preservation Code:		× ×		X		
224270-10-51L	6/29/72	2	1	Water ,	×		2		_
2249-14-0422	12/121	77.25	3	Water	ヌ		3		
SWD-14-012922	6/29/72	1435	3	Water	×		~		
				Water					L
		_		Water					
				Water					
		 		Water			} 		
				Water					
) 	Water			 		L_
				Water			i e		
		<u> </u>	 	Water					L
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B	ກ B 🔲 Unknown		Radiological		Sample Disposal (A fee	To Client Disposal By Lab Archive For	nples are retained long Archive For	e For Months	
sted: I III, IV Other (specify)	õ				Special Instructions/QC	Requireme			
Empty Kit Relinguished by		Date:			Time:	Method of Shipment:	hipment:		
Relinquished by:	Date/Time:	M	1517	Company	Registred by:	Unker	DeterTime/29/27	2 1517 Company	2
Relinquished by:	Date/Time:			Company	Recarded by		Date/Timė:	Company	
Relinquished by:	Date/Time:			Company	Received by:	y:	Date/Time:	Company	
Custody Seals Intact Custody Seal No.					Cooler Tem	Cooler Temperature(s) °C and Other Remarks:			<u> </u>
								Ver 01/16/2019	

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-28799-1

Login Number: 28799 List Source: Eurofins Houston

List Number: 1

Creator: Torres, Sandra

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

4

5

_

10

12

11

4.0

17

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-28800-1

Client Project/Site: STC Silber Rd Pre-Design Investigation Part

2

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 6/30/2022 7:31:13 PM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

Links

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
Default Detection Limits	14
Surrogate Summary	15
QC Sample Results	16
QC Association Summary	20
Lab Chronicle	21
Certification Summary	24
Method Summary	25
Sample Summary	26
State Forms	27
TRRP Checklist	27
DCS Report	31
Chain of Custody	32
Receipt Checklists	34

•

8

10

12

1 1

15

17

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28800-1

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation	These commonly	used abbreviations may	or may not be	present in this report.

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Houston

Page 3 of 34

_ _

3

4

5

7

8

11

12

11

4.0

17

Ш

6/30/2022

Case Narrative

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Job ID: 860-28800-1

Job ID: 860-28800-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-28800-1

Receipt

The samples were received on 6/29/2022~3:17~PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was $3.4^{\circ}C$

3

4

6

7

Ö

10

11

13

14

16

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

No Detections.

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00129	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.0315	0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.0377	0.00100	0.000216	mg/L	1		8260D	Total/NA
Tetrachloroethene	0.00116	0.00100	0.000500	mg/L	1		8260D	Total/NA
Trichloroethene	0.000781 J	0.00500	0.000424	mg/L	1		8260D	Total/NA
Vinyl chloride	0.00553	0.00200	0.000234	mg/L	1		8260D	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00191	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.00781	0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.0142	0.00100	0.000216	mg/L	1		8260D	Total/NA
Tetrachloroethene	0.00423	0.00100	0.000500	mg/L	1		8260D	Total/NA
Trichloroethene	0.00189 J	0.00500	0.000424	mg/L	1		8260D	Total/NA
Vinyl chloride	0.00113 J	0.00200	0.000234	mg/L	1		8260D	Total/NA

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.000344	J	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.00638		0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.00764		0.00100	0.000216	mg/L	1		8260D	Total/NA
Tetrachloroethene	0.000914	J	0.00100	0.000500	mg/L	1		8260D	Total/NA
Vinvl chloride	0.000554	J	0.00200	0.000234	ma/L	1		8260D	Total/NA

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.0121		0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.00276		0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.000436	J	0.00100	0.000216	mg/L	1		8260D	Total/NA
Tetrachloroethene	0.00711		0.00100	0.000500	mg/L	1		8260D	Total/NA
Trichloroethene	0.0196		0.00500	0.000424	mg/L	1		8260D	Total/NA
Vinyl chloride	0.00393		0.00200	0.000234	mg/L	1		8260D	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00457	0.00100	0.000244	mg/L		_	8260D	Total/NA
1,1-Dichloroethene	0.00162	0.00100	0.000216	mg/L	1		8260D	Total/NA
Vinyl chloride	0.0242	0.00200	0.000234	mg/L	1		8260D	Total/NA
cis-1,2-Dichloroethene - DL	0.248	0.0200	0.00348	mg/L	20		8260D	Total/NA
Tetrachloroethene - DL	0.715	0.0200	0.0100	mg/L	20		8260D	Total/NA
Trichloroethene - DL	0.858	0.100	0.00848	mg/L	20		8260D	Total/NA

Client Sample ID: FD-01-062822 Lab Sample ID: 860-28800-7

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	0.0140	0.00100	0.000174 mg/L		8260D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Houston

Page 5 of 34 6/30/2022

3

Job ID: 860-28800-1

4

6

9

10

12

3

15

17

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: FD-01-062822 (Continued)

Lab Sample ID: 860-28800-7

Analyte	Result (Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.00271		0.00100	0.000244	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethene	0.000439 J	J	0.00100	0.000216	mg/L	1		8260D	Total/NA
Tetrachloroethene	0.00775		0.00100	0.000500	mg/L	1		8260D	Total/NA
Trichloroethene	0.0212		0.00500	0.000424	mg/L	1		8260D	Total/NA
Vinyl chloride	0.00236		0.00200	0.000234	mg/L	1		8260D	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D Metho	d Prep Type
cis-1,2-Dichloroethene	0.00128	0.00100	0.000174	mg/L	1	8260D	Total/NA
1,1-Dichloroethane	0.00163	0.00100	0.000244	mg/L	1	8260D	Total/NA
1,1-Dichloroethene	0.000395 J	0.00100	0.000216	mg/L	1	8260D	Total/NA
Tetrachloroethene	0.00909	0.00100	0.000500	mg/L	1	8260D	Total/NA
Trichloroethene	0.0100	0.00500	0.000424	mg/L	1	8260D	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.00126	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.00165	0.00100	0.000244	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.000417 J	0.00100	0.000216	mg/L	1		8260D	Total/NA
Tetrachloroethene	0.00933	0.00100	0.000500	mg/L	1		8260D	Total/NA
Trichloroethene	0.00731	0.00500	0.000424	mg/L	1		8260D	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.000876 J	0.00100	0.000174	mg/L	1	_	8260D	Total/NA
1,1-Dichloroethane	0.000945 J	0.00100	0.000244	mg/L	1		8260D	Total/NA
Tetrachloroethene	0.00562	0.00100	0.000500	mg/L	1		8260D	Total/NA
Trichloroethene	0.00416 J	0.00500	0.000424	mg/L	1		8260D	Total/NA

No Detections.

Client Sample ID: SB48-03-062922 Lab Sample ID: 860-28800-12

	Result Qualifie	r MQL (Adj)	SDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	0.0365	0.00100	0.000174	mg/L		8260D	Total/NA
1,1-Dichloroethane	0.00476	0.00100	0.000244	mg/L	1	8260D	Total/NA
1,1-Dichloroethene	0.00106	0.00100	0.000216	mg/L	1	8260D	Total/NA
Tetrachloroethene	0.0315	0.00100	0.000500	mg/L	1	8260D	Total/NA
Trichloroethene	0.0778	0.00500	0.000424	mg/L	1	8260D	Total/NA
Vinyl chloride	0.00635	0.00200	0.000234	mg/L	1	8260D	Total/NA

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	0.0612	0.00100	0.000174	mg/L	1	8260D	Total/NA
1,1-Dichloroethane	0.00528	0.00100	0.000244	mg/L	1	8260D	Total/NA
1,1-Dichloroethene	0.00142	0.00100	0.000216	mg/L	1	8260D	Total/NA
Tetrachloroethene	0.0863	0.00100	0.000500	mg/L	1	8260D	Total/NA
Vinyl chloride	0.0117	0.00200	0.000234	mg/L	1	8260D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Houston

Job ID: 860-28800-1

Page 6 of 34 6/30/2022

Detection Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Lab Sample ID: 860-28800-13

Job ID: 860-28800-1

	Client	Sample	ID: SB48-02-06	62922 (Continued)
--	--------	--------	----------------	-------------------

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D Method	Prep Type
Trichloroethene - DL	0.162	0.0250	0.00212 mg/L	5 8260D	Total/NA

Client Sample ID: SB48-01-062922

Lab Sample ID: 860-28800-14

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.0300	0.00100	0.000244	mg/L	1	_	8260D	Total/NA
1,2-Dichloroethane	0.00176	0.00100	0.000285	mg/L	1		8260D	Total/NA
1,1-Dichloroethene	0.0203	0.00100	0.000216	mg/L	1		8260D	Total/NA
Vinyl chloride	0.0353	0.00200	0.000234	mg/L	1		8260D	Total/NA
cis-1,2-Dichloroethene - DL	0.272	0.00500	0.000870	mg/L	5		8260D	Total/NA
Tetrachloroethene - DL	0.261	0.00500	0.00250	mg/L	5		8260D	Total/NA
Trichloroethene - DL	0.266	0.0250	0.00212	ma/L	5		8260D	Total/NA

7

8

10

12

13

15

17

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: TB-01-062822

Date Collected: 06/28/22 07:10 Date Received: 06/29/22 15:17

Lab Sample ID: 860-28800-1

Matrix: Water

Job ID: 860-28800-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result Qualif	ier MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174 U	0.00100	0.000174	mg/L			06/30/22 11:16	1
1,1-Dichloroethane	0.000244 U	0.00100	0.000244	mg/L			06/30/22 11:16	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			06/30/22 11:16	1
1,1-Dichloroethene	0.000216 U	0.00100	0.000216	mg/L			06/30/22 11:16	1
Tetrachloroethene	0.000500 U	0.00100	0.000500	mg/L			06/30/22 11:16	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			06/30/22 11:16	1
Vinyl chloride	0.000234 U	0.00200	0.000234	mg/L			06/30/22 11:16	1

Surrogate	%Recovery Qualifi	er Limits	Prepared Analyz	ed Dil Fac
4-Bromofluorobenzene (Surr)	101	74 - 124	06/30/22	11:16 1
Dibromofluoromethane (Surr)	100	75 - 131	06/30/22	11:16 1
1,2-Dichloroethane-d4 (Surr)	99	63 - 144	06/30/22	11:16 1
Toluene-d8 (Surr)	99	80 - 117	06/30/22	11:16 1

Client Sample ID: SB34-03-062822

Date Collected: 06/28/22 08:00

Date Received: 06/29/22 15:17

Lab Sample ID: 860-28800-2

Matrix: Water

Mathad: 8260D - Valatila Organic Compounds by GC/MS

Method: 6260D - Volatile C	organic Compounds by C							
Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00129	0.00100	0.000174	mg/L			06/30/22 12:59	1
1,1-Dichloroethane	0.0315	0.00100	0.000244	mg/L			06/30/22 12:59	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			06/30/22 12:59	1
1,1-Dichloroethene	0.0377	0.00100	0.000216	mg/L			06/30/22 12:59	1
Tetrachloroethene	0.00116	0.00100	0.000500	mg/L			06/30/22 12:59	1
Trichloroethene	0.000781 J	0.00500	0.000424	mg/L			06/30/22 12:59	1
Vinyl chloride	0.00553	0.00200	0.000234	mg/L			06/30/22 12:59	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		74 - 124		06/30/22 12:59	1
Dibromofluoromethane (Surr)	100		75 - 131		06/30/22 12:59	1
1,2-Dichloroethane-d4 (Surr)	100		63 - 144		06/30/22 12:59	1
Toluene-d8 (Surr)	98		80 - 117		06/30/22 12:59	1

Client Sample ID: SB34-02-062822

Lab Sample ID: 860-28800-3 Date Collected: 06/28/22 08:10 Date Received: 06/29/22 15:17

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00191		0.00100	0.000174	mg/L			06/30/22 16:02	1
1,1-Dichloroethane	0.00781		0.00100	0.000244	mg/L			06/30/22 16:02	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/30/22 16:02	1
1,1-Dichloroethene	0.0142		0.00100	0.000216	mg/L			06/30/22 16:02	1
Tetrachloroethene	0.00423		0.00100	0.000500	mg/L			06/30/22 16:02	1
Trichloroethene	0.00189	J	0.00500	0.000424	mg/L			06/30/22 16:02	1
Vinyl chloride	0.00113	J	0.00200	0.000234	mg/L			06/30/22 16:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		74 - 124			-		06/30/22 16:02	1
Dibromofluoromethane (Surr)	93		75 ₋ 131					06/30/22 16:02	1

Eurofins Houston

Matrix: Water

Page 8 of 34

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: SB34-02-062822

Date Collected: 06/28/22 08:10 Date Received: 06/29/22 15:17 Lab Sample ID: 860-28800-3

Matrix: Water

Job ID: 860-28800-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		63 - 144		06/30/22 16:02	1
Toluene-d8 (Surr)	100		80 - 117		06/30/22 16:02	1

Client Sample ID: SB34-01-062822

Date Collected: 06/28/22 08:30 Date Received: 06/29/22 15:17 Lab Sample ID: 860-28800-4

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000344 J	0.00100	0.000174	mg/L			06/30/22 16:21	1
1,1-Dichloroethane	0.00638	0.00100	0.000244	mg/L			06/30/22 16:21	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			06/30/22 16:21	1
1,1-Dichloroethene	0.00764	0.00100	0.000216	mg/L			06/30/22 16:21	1
Tetrachloroethene	0.000914 J	0.00100	0.000500	mg/L			06/30/22 16:21	1
Trichloroethene	0.000424 U	0.00500	0.000424	mg/L			06/30/22 16:21	1
Vinyl chloride	0.000554 J	0.00200	0.000234	mg/L			06/30/22 16:21	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97	74 - 124		06/30/22 16:21	1
Dibromofluoromethane (Surr)	97	75 - 131		06/30/22 16:21	1
1,2-Dichloroethane-d4 (Surr)	99	63 - 144		06/30/22 16:21	1
Toluene-d8 (Surr)	100	80 - 117		06/30/22 16:21	1

Client Sample ID: SB47-03-062822

Date Collected: 06/28/22 11:40

Date Received: 06/29/22 15:17

Lab Sample ID: 860-28800-5

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result Q	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.0121		0.00100	0.000174	mg/L			06/30/22 14:00	1
1,1-Dichloroethane	0.00276		0.00100	0.000244	mg/L			06/30/22 14:00	1
1,2-Dichloroethane	0.000285 U	J	0.00100	0.000285	mg/L			06/30/22 14:00	1
1,1-Dichloroethene	0.000436 J		0.00100	0.000216	mg/L			06/30/22 14:00	1
Tetrachloroethene	0.00711		0.00100	0.000500	mg/L			06/30/22 14:00	1
Trichloroethene	0.0196		0.00500	0.000424	mg/L			06/30/22 14:00	1
Vinyl chloride	0.00393		0.00200	0.000234	mg/L			06/30/22 14:00	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		74 - 124		06/30/22 14:00	1
Dibromofluoromethane (Surr)	99		75 - 131		06/30/22 14:00	1
1,2-Dichloroethane-d4 (Surr)	100		63 - 144		06/30/22 14:00	1
Toluene-d8 (Surr)	98		80 - 117	(06/30/22 14:00	1

Client Sample ID: SB47-02-062822

Date Collected: 06/28/22 13:20

Date Received: 06/29/22 15:17

Lab Sample	ID: 860-28800-6
------------	-----------------

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS								
	Analyte	Result Qualifier	MQL (Adj)	SDL Unit	D	Prepared	Analyzed	Dil Fac
	1,1-Dichloroethane	0.00457	0.00100	0.000244 mg/L			06/30/22 14:21	1
	1,2-Dichloroethane	0.000285 U	0.00100	0.000285 mg/L			06/30/22 14:21	1

Eurofins Houston

Page 9 of 34 6/30/2022

3

5

6

9

11

13

15

17

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: SB47-02-062822

Date Collected: 06/28/22 13:20 Date Received: 06/29/22 15:17

Lab Sample ID: 860-28800-6

Matrix: Water

Job ID: 860-28800-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.00162		0.00100	0.000216	mg/L			06/30/22 14:21	1
Vinyl chloride	0.0242		0.00200	0.000234	mg/L			06/30/22 14:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		74 - 124			-		06/30/22 14:21	1
Dibromofluoromethane (Surr)	98		75 - 131					06/30/22 14:21	1
1,2-Dichloroethane-d4 (Surr)	98		63 - 144					06/30/22 14:21	1
Toluene-d8 (Surr)	99		80 - 117					06/30/22 14:21	1

ganic Compound	s by GC/	MS - DL						
Result Qua	alifier I	/IQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
0.248		0.0200	0.00348	mg/L			06/30/22 15:01	20
0.715		0.0200	0.0100	mg/L			06/30/22 15:01	20
0.858		0.100	0.00848	mg/L			06/30/22 15:01	20
%Recovery Qua	alifier	Limits				Prepared	Analyzed	Dil Fac
97		74 - 124			-		06/30/22 15:01	20
100		75 - 131					06/30/22 15:01	20
	Result Qu 0.248 0.715 0.858 %Recovery Qu 97	Result Qualifier N	0.248 0.0200 0.715 0.0200 0.858 0.100 %Recovery Qualifier Limits 97 74 - 124	Result 0.248 Qualifier 0.0200 MQL (Adj) 0.00348 SDL 0.0200 0.00348 0.715 0.0200 0.0100 0.0100 0.00848 %Recovery 97 24 124 Qualifier 124 Limits 124	Result 0.248 MQL (Adj) SDL 0.001 Unit mg/L mg/L mg/L mg/L 0.715 0.0200 0.0100 mg/L mg/L 0.858 0.100 0.00848 mg/L %Recovery Qualifier 197 Limits 197 74 - 124 74 - 124	Result Qualifier MQL (Adj) SDL unit D 0.248 0.0200 0.00348 mg/L mg/L 0.715 0.0200 0.0100 mg/L mg/L 0.858 0.100 0.00848 mg/L mg/L %Recovery Qualifier Limits 74 - 124 D	Result 0.248 MQL (Adj) SDL unit D Prepared 0.715 0.0200 0.0100 mg/L 0.858 0.100 0.00848 mg/L %Recovery Qualifier 97 Limits Frepared Prepared	Result Qualifier MQL (Adj) SDL unit D Prepared Analyzed 0.248 0.0200 0.00348 mg/L 06/30/22 15:01 0.715 0.0200 0.0100 mg/L 06/30/22 15:01 0.858 0.100 0.00848 mg/L 06/30/22 15:01 %Recovery Qualifier Limits Prepared Analyzed 97 74 - 124 06/30/22 15:01

63 - 144

80 - 117

Client Sample ID: FD-01-062822

Date Collected: 06/28/22 00:00 Date Received: 06/29/22 15:17

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 860-28800-7

06/30/22 15:01

06/30/22 15:01

Matrix: Water

99

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.0140		0.00100	0.000174	mg/L			06/30/22 16:59	1
1,1-Dichloroethane	0.00271		0.00100	0.000244	mg/L			06/30/22 16:59	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/30/22 16:59	1
1,1-Dichloroethene	0.000439	J	0.00100	0.000216	mg/L			06/30/22 16:59	1
Tetrachloroethene	0.00775		0.00100	0.000500	mg/L			06/30/22 16:59	1
Trichloroethene	0.0212		0.00500	0.000424	mg/L			06/30/22 16:59	1
Vinyl chloride	0.00236		0.00200	0.000234	mg/L			06/30/22 16:59	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	74 - 124		06/30/22 16:59	1
Dibromofluoromethane (Surr)	97	75 - 131		06/30/22 16:59	1
1,2-Dichloroethane-d4 (Surr)	102	63 - 144		06/30/22 16:59	1
Toluene-d8 (Surr)	103	80 - 117		06/30/22 16:59	1

Client Sample ID: SB46-03-062822

Date Collected: 06/28/22 16:30 Date Received: 06/29/22 15:17

Lab Sample ID: 860-28800-8

Matrix: Water

Method: 8260D - Volatile Or	ganic Compounds by GC/MS
Analyte	Result Qualifier MQI

Welliou. 0200D - Volatile O	rgaine compounds by c	CINIS						
Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00128	0.00100	0.000174	mg/L			06/30/22 13:19	1
1,1-Dichloroethane	0.00163	0.00100	0.000244	mg/L			06/30/22 13:19	1
1,2-Dichloroethane	0.000285 U	0.00100	0.000285	mg/L			06/30/22 13:19	1
1,1-Dichloroethene	0.000395 J	0.00100	0.000216	mg/L			06/30/22 13:19	1

Eurofins Houston

Page 10 of 34

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: SB46-03-062822

Date Collected: 06/28/22 16:30 Date Received: 06/29/22 15:17 Lab Sample ID: 860-28800-8

Matrix: Water

Matrix: Water

Job ID: 860-28800-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.00909		0.00100	0.000500	mg/L			06/30/22 13:19	1
Trichloroethene	0.0100		0.00500	0.000424	mg/L			06/30/22 13:19	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/30/22 13:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		74 - 124					06/30/22 13:19	1
Dibromofluoromethane (Surr)	102		75 - 131					06/30/22 13:19	1
1,2-Dichloroethane-d4 (Surr)	100		63 - 144					06/30/22 13:19	1
Toluene-d8 (Surr)	99		80 - 117					06/30/22 13:19	

Date Collected: 06/28/22 16:40

Date Received: 06/29/22 15:17

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00126		0.00100	0.000174	mg/L			06/30/22 13:40	1
1,1-Dichloroethane	0.00165		0.00100	0.000244	mg/L			06/30/22 13:40	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/30/22 13:40	1
1,1-Dichloroethene	0.000417	J	0.00100	0.000216	mg/L			06/30/22 13:40	1
Tetrachloroethene	0.00933		0.00100	0.000500	mg/L			06/30/22 13:40	1
Trichloroethene	0.00731		0.00500	0.000424	mg/L			06/30/22 13:40	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/30/22 13:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		74 - 124			•		06/30/22 13:40	1
Dibromofluoromethane (Surr)	99		75 - 131					06/30/22 13:40	1
1,2-Dichloroethane-d4 (Surr)	101		63 - 144					06/30/22 13:40	1
Toluene-d8 (Surr)	98		80 - 117					06/30/22 13:40	1

Client Sample ID: SB46-01-062822

Date Collected: 06/28/22 16:50

Lab Sample ID: 860-28800-10

Matrix: Water

Date Received: 06/29/22 15:17

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000876	J	0.00100	0.000174	mg/L			06/30/22 16:40	1
1,1-Dichloroethane	0.000945	J	0.00100	0.000244	mg/L			06/30/22 16:40	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/30/22 16:40	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/30/22 16:40	1
Tetrachloroethene	0.00562		0.00100	0.000500	mg/L			06/30/22 16:40	1
Trichloroethene	0.00416	J	0.00500	0.000424	mg/L			06/30/22 16:40	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/30/22 16:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		74 - 124			-		06/30/22 16:40	1
Dibromofluoromethane (Surr)	99		75 - 131					06/30/22 16:40	1
1,2-Dichloroethane-d4 (Surr)	98		63 - 144					06/30/22 16:40	1
Toluene-d8 (Surr)	99		80 - 117					06/30/22 16:40	1

Eurofins Houston

Page 11 of 34

2

3

5

7

9

11

13

15

4-

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: EB-01-062922

Date Collected: 06/29/22 07:15 Date Received: 06/29/22 15:17

Lab Sample ID: 860-28800-11

Matrix: Water

Job ID: 860-28800-1

Method: 8260D - Volatile Organic Compounds by GC/MS Result Qualifier SDL Unit Analyte MQL (Adj) D Prepared Analyzed Dil Fac 0.000174 U cis-1,2-Dichloroethene 0.00100 0.000174 mg/L 06/30/22 11:37 0.000244 U 0.000244 mg/L 1,1-Dichloroethane 0.00100 06/30/22 11:37 1,2-Dichloroethane 0.000285 U 0.00100 0.000285 mg/L 06/30/22 11:37 1,1-Dichloroethene 0.000216 mg/L 0.000216 U 0.00100 06/30/22 11:37 Tetrachloroethene 0.000500 U 0.00100 0.000500 mg/L 06/30/22 11:37 Trichloroethene 0.000424 U 0.00500 0.000424 mg/L 06/30/22 11:37 Vinyl chloride 0.000234 U 0.00200 0.000234 mg/L 06/30/22 11:37 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

74 - 124

75 - 131

63 - 144

80 - 117

102

100

98

99

Client Sample ID: SB48-03-062922 Lab Sample ID: 860-28800-12

Date Collected: 06/29/22 10:50 Date Received: 06/29/22 15:17

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

06/30/22 11:37

06/30/22 11:37

06/30/22 11:37

06/30/22 11:37

Matrix: Water

Method: 8260D - Volatile Organic Compounds by GC/MS **Analyte** Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Dil Fac cis-1,2-Dichloroethene 0.00100 0.000174 mg/L 06/30/22 17:07 0.0365 0.00100 0.000244 mg/L 06/30/22 17:07 1,1-Dichloroethane 0.00476 1.2-Dichloroethane 0.000285 U 0.00100 0.000285 mg/L 06/30/22 17:07 1,1-Dichloroethene 0.00100 0.000216 mg/L 06/30/22 17:07 0.00106 **Tetrachloroethene** 0.0315 0.00100 0.000500 mg/L 06/30/22 17:07 0.00500 0.000424 mg/L 06/30/22 17:07 **Trichloroethene** 0.0778 Vinyl chloride 0.00635 0.00200 0.000234 mg/L 06/30/22 17:07

Surrogate	%Recovery	Qualifier Limi	s Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100	74 - 1	24	06/30/22 17:07	1
Dibromofluoromethane (Surr)	100	75 ₋ 1	31	06/30/22 17:07	1
1,2-Dichloroethane-d4 (Surr)	100	63 - 1	44	06/30/22 17:07	1
Toluene-d8 (Surr)	99	80 - 1	17	06/30/22 17:07	1

Client Sample ID: SB48-02-062922 Lab Sample ID: 860-28800-13

Date Collected: 06/29/22 11:00 Date Received: 06/29/22 15:17

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.0612		0.00100	0.000174	mg/L			06/30/22 15:24	1
1,1-Dichloroethane	0.00528		0.00100	0.000244	mg/L			06/30/22 15:24	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/30/22 15:24	1
1,1-Dichloroethene	0.00142		0.00100	0.000216	mg/L			06/30/22 15:24	1
Tetrachloroethene	0.0863		0.00100	0.000500	mg/L			06/30/22 15:24	1
Vinyl chloride	0.0117		0.00200	0.000234	mg/L			06/30/22 15:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		74 - 124					06/30/22 15:24	1
Dibromofluoromethane (Surr)	101		75 - 131					06/30/22 15:24	1
1,2-Dichloroethane-d4 (Surr)	100		63 ₋ 144					06/30/22 15:24	1

Eurofins Houston

Matrix: Water

Page 12 of 34

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: SB48-02-062922

Date Collected: 06/29/22 11:00 Date Received: 06/29/22 15:17

Lab Sample ID: 860-28800-13

Matrix: Water

Matrix: Water

Job ID: 860-28800-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 117		06/30/22 15:24	1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	0.162		0.0250	0.00212	mg/L			06/30/22 16:26	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		74 - 124			-		06/30/22 16:26	5
Dibromofluoromethane (Surr)	98		75 - 131					06/30/22 16:26	5
1,2-Dichloroethane-d4 (Surr)	100		63 - 144					06/30/22 16:26	5
Toluene-d8 (Surr)	98		80 - 117					06/30/22 16:26	5

Lab Sample ID: 860-28800-14 **Client Sample ID: SB48-01-062922**

Date Collected: 06/29/22 11:10

Date Received: 06/29/22 15:17

Method: 8260D - Volatile	Organic Compounds	by GC/MS
--------------------------	-------------------	----------

Method: 6260D - Volatile C	organic Compounds by G	C/IVIO					
Analyte	Result Qualifier	MQL (Adj)	SDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.0300	0.00100	0.000244 mg/L			06/30/22 15:45	1
1,2-Dichloroethane	0.00176	0.00100	0.000285 mg/L			06/30/22 15:45	1
1,1-Dichloroethene	0.0203	0.00100	0.000216 mg/L			06/30/22 15:45	1
Vinyl chloride	0.0353	0.00200	0.000234 mg/L			06/30/22 15:45	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	74 - 124	06/30/22 15:-	15 1
Dibromofluoromethane (Surr)	100	75 - 131	06/30/22 15:	15 1
1,2-Dichloroethane-d4 (Surr)	100	63 - 144	06/30/22 15:	15 1
Toluene-d8 (Surr)	98	80 - 117	06/30/22 15:	15 1

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.272	0.00500	0.000870	mg/L			06/30/22 16:05	5
Tetrachloroethene	0.261	0.00500	0.00250	mg/L			06/30/22 16:05	5
Trichloroethene	0.266	0.0250	0.00212	mg/L			06/30/22 16:05	5
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	74 - 124					06/30/22 16:05	5

Dibromofluoromethane (Surr)	100	75 - 131	06/30/22 16:05	5
1,2-Dichloroethane-d4 (Surr)	99	63 - 144	06/30/22 16:05	5
Toluene-d8 (Surr)	99	80 - 117	06/30/22 16:05	5

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28800-1

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Analyte	MQL	MDL	Units
1,1-Dichloroethane	0.00100	0.000244	mg/L
1,1-Dichloroethene	0.00100	0.000216	mg/L
1,2-Dichloroethane	0.00100	0.000285	mg/L
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L
Tetrachloroethene	0.00100	0.000500	mg/L
Trichloroethene	0.00500	0.000424	mg/L
Vinyl chloride	0.00200	0.000234	mg/L

7

9

11

12

4 4

15

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

		DED		ercent Surro	•
	au .a	BFB (74.404)	DBFM	DCA	TOL
Lab Sample ID	Client Sample ID	(74-124)	(75-131)	(63-144)	(80-117)
860-28656-A-8 MS	Matrix Spike	99	101	97	98
860-28656-A-17 MS	Matrix Spike	98	98	91	98
860-28800-1	TB-01-062822	101	100	99	99
860-28800-2	SB34-03-062822	101	100	100	98
860-28800-3	SB34-02-062822	96	93	100	100
860-28800-4	SB34-01-062822	97	97	99	100
860-28800-5	SB47-03-062822	101	99	100	98
860-28800-6	SB47-02-062822	101	98	98	99
860-28800-6 - DL	SB47-02-062822	97	100	99	99
860-28800-7	FD-01-062822	102	97	102	103
860-28800-8	SB46-03-062822	102	102	100	99
860-28800-9	SB46-02-062822	101	99	101	98
860-28800-10	SB46-01-062822	103	99	98	99
860-28800-11	EB-01-062922	102	100	98	99
860-28800-12	SB48-03-062922	100	100	100	99
860-28800-13	SB48-02-062922	100	101	100	99
860-28800-13 - DL	SB48-02-062922	101	98	100	98
860-28800-14	SB48-01-062922	102	100	100	98
860-28800-14 - DL	SB48-01-062922	102	100	99	99
LCS 860-59193/5	Lab Control Sample	99	102	98	98
LCS 860-59284/3	Lab Control Sample	99	97	91	97
LCSD 860-59193/6	Lab Control Sample Dup	99	100	97	98
LCSD 860-59284/4	Lab Control Sample Dup	99	94	88	98
MB 860-59193/11	Method Blank	100	99	99	100
MB 860-59284/9	Method Blank	100	97	94	100

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Job ID: 860-28800-1

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-59193/11

Matrix: Water

cis-1,2-Dichloroethene

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

Tetrachloroethene

Trichloroethene

Analyte

Analysis Batch: 59193

Client Sample ID: Method Blank Prep Type: Total/NA

06/30/22 10:15

06/30/22 10:15

Analyzed

06/30/22 10:15

06/30/22 10:15

06/30/22 10:15

06/30/22 10:15

Job ID: 860-28800-1

MB MB Dil Fac Result Qualifier SDL Unit MQL (Adj) D Prepared Analyzed 0.000174 U 0.00100 0.000174 mg/L 06/30/22 10:15 0.000244 U 0.00100 0.000244 mg/L 06/30/22 10:15 0.000285 U 0.00100 0.000285 mg/L 06/30/22 10:15 0.00100 0.000216 U 0.000216 mg/L 06/30/22 10:15 0.000500 U 0.00100 0.000500 mg/L 06/30/22 10:15

0.000424 mg/L

0.000234 mg/L

Vinyl chloride 0.000234 U

MB MB Surrogate %Recovery Qualifier Limits Prepared 74 - 124 4-Bromofluorobenzene (Surr) 100 Dibromofluoromethane (Surr) 75 - 131 99 1,2-Dichloroethane-d4 (Surr) 99 63 - 144 Toluene-d8 (Surr) 100 80 - 117

0.000424 U

Lab Sample ID: LCS 860-59193/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

0.00500

0.00200

Analysis Batch: 59193

LCS LCS %Rec Spike Added Result Qualifier Unit D %Rec Limits Analyte 0.0500 98 75 - 125 cis-1,2-Dichloroethene 0.04904 mg/L 0.0500 1,1-Dichloroethane 0.04960 mg/L 99 72 - 125 1.2-Dichloroethane 0.0500 0.04979 mg/L 100 68 - 127 1,1-Dichloroethene 0.0500 0.05170 103 59 - 172 mg/L Tetrachloroethene 0.0500 0.05273 mg/L 105 71 - 125Trichloroethene 0.0500 0.05285 106 62 - 137 mg/L 0.0500 100 Vinyl chloride 0.04983 mg/L 60 - 140

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 99 74 - 124 102 75 - 131 Dibromofluoromethane (Surr) 1,2-Dichloroethane-d4 (Surr) 98 63 - 144 Toluene-d8 (Surr) 98 80 - 117

Lab Sample ID: LCSD 860-59193/6

Matrix: Water

Analysis Batch: 59193

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD I	LCSD				%Rec		RPD
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	0.0500	0.04605		mg/L		92	75 - 125	6	25
1,1-Dichloroethane	0.0500	0.04712		mg/L		94	72 - 125	5	25
1,2-Dichloroethane	0.0500	0.04890		mg/L		98	68 - 127	2	25
1,1-Dichloroethene	0.0500	0.04753		mg/L		95	59 - 172	8	25
Tetrachloroethene	0.0500	0.05045		mg/L		101	71 - 125	4	25
Trichloroethene	0.0500	0.05095		mg/L		102	62 - 137	4	25
Vinyl chloride	0.0500	0.04662		mg/L		93	60 - 140	7	25

Page 16 of 34

Dil Fac

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-59193/6

Matrix: Water

Analysis Batch: 59193

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 99 74 - 124 Dibromofluoromethane (Surr) 100 75 - 131 1,2-Dichloroethane-d4 (Surr) 97 63 - 144 Toluene-d8 (Surr) 98 80 - 117

Lab Sample ID: 860-28656-A-8 MS

Matrix: Water

Analysis Batch: 59193

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Job ID: 860-28800-1

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.04792		mg/L		96	75 - 125	
1,1-Dichloroethane	0.000244	U	0.0500	0.04805		mg/L		96	72 - 125	
1,2-Dichloroethane	0.000285	U	0.0500	0.04823		mg/L		96	68 - 127	
1,1-Dichloroethene	0.000216	U	0.0500	0.05285		mg/L		106	59 - 172	
Tetrachloroethene	0.000500	U	0.0500	0.05122		mg/L		102	71 - 125	
Trichloroethene	0.000424	U	0.0500	0.05113		mg/L		102	62 - 137	
Vinyl chloride	0.000234	U	0.0500	0.05491		mg/L		110	60 - 140	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	101		75 - 131
1,2-Dichloroethane-d4 (Surr)	97		63 - 144
Toluene-d8 (Surr)	98		80 - 117

Lab Sample ID: MB 860-59284/9

Matrix: Water

Analysis Batch: 59284

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.000174	U	0.00100	0.000174	mg/L			06/30/22 14:38	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			06/30/22 14:38	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			06/30/22 14:38	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			06/30/22 14:38	1
Tetrachloroethene	0.000500	U	0.00100	0.000500	mg/L			06/30/22 14:38	1
Trichloroethene	0.000424	U	0.00500	0.000424	mg/L			06/30/22 14:38	1
Vinyl chloride	0.000234	U	0.00200	0.000234	mg/L			06/30/22 14:38	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100	74 - 124		06/30/22 14:38	1
Dibromofluoromethane (Surr)	97	75 - 131		06/30/22 14:38	1
1,2-Dichloroethane-d4 (Surr)	94	63 - 144		06/30/22 14:38	1
Toluene-d8 (Surr)	100	80 - 117		06/30/22 14:38	1

Eurofins Houston

Client: Jacobs Engineering Group, Inc.

Lab Sample ID: LCS 860-59284/3

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

60 - 140

Job ID: 860-28800-1

Matrix: Water

Vinyl chloride

Analysis Batch: 59284

•	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
cis-1,2-Dichloroethene	0.0500	0.04939		mg/L		99	75 - 125
1,1-Dichloroethane	0.0500	0.05030		mg/L		101	72 - 125
1,2-Dichloroethane	0.0500	0.04907		mg/L		98	68 - 127
1,1-Dichloroethene	0.0500	0.05066		mg/L		101	59 - 172
Tetrachloroethene	0.0500	0.05231		mg/L		105	71 - 125
Trichloroethene	0.0500	0.05287		ma/L		106	62 - 137

0.04594

mg/L

0.0500

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	97		75 - 131
1,2-Dichloroethane-d4 (Surr)	91		63 - 144
Toluene-d8 (Surr)	97		80 - 117

Lab Sample ID: LCSD 860-59284/4 **Client Sample ID: Lab Control Sample Dup**

Ma

Ar

Matrix: Water				Prep Type: To	ital/NA
Analysis Batch: 59284					
	Spike	LCSD LCSD		%Rec	RPD
naluta	Addad	Popult Qualifier Unit	D 0/ Boo	Limita DDD	Limit

	Spike	LC3D LC	-SD			/onec		KFD
Analyte	Added	Result Qu	alifier Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	0.0500	0.04768	mg/L		95	75 - 125	4	25
1,1-Dichloroethane	0.0500	0.04862	mg/L		97	72 - 125	3	25
1,2-Dichloroethane	0.0500	0.04797	mg/L		96	68 - 127	2	25
1,1-Dichloroethene	0.0500	0.05135	mg/L		103	59 - 172	1	25
Tetrachloroethene	0.0500	0.05106	mg/L		102	71 - 125	2	25
Trichloroethene	0.0500	0.05121	mg/L		102	62 - 137	3	25
Vinyl chloride	0.0500	0.04411	mg/L		88	60 - 140	4	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	94		75 - 131
1,2-Dichloroethane-d4 (Surr)	88		63 - 144
Toluene-d8 (Surr)	98		80 - 117

Lab Sample ID: 860-28656-A-17 MS

Matrix: Water

Analysis Batch: 59284

_	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	0.000174	U	0.0500	0.04964		mg/L		99	75 - 125	
1,1-Dichloroethane	0.000244	U	0.0500	0.04789		mg/L		96	72 - 125	
1,2-Dichloroethane	0.000285	U	0.0500	0.04757		mg/L		95	68 - 127	
1,1-Dichloroethene	0.000216	U	0.0500	0.05651		mg/L		113	59 - 172	
Tetrachloroethene	0.000500	U	0.0500	0.05489		mg/L		110	71 - 125	
Trichloroethene	0.000424	U	0.0500	0.05503		mg/L		110	62 - 137	
Vinyl chloride	0.000234	U	0.0500	0.03893		mg/L		78	60 - 140	

Eurofins Houston

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Page 18 of 34

Limits

74 - 124

75 - 131

63 - 144

80 - 117

Client: Jacobs Engineering Group, Inc. Job ID: 860-28800-1

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

MS MS %Recovery Qualifier

98

98

91

98

Lab Sample ID: 860-28656-A-17 MS

Matrix: Water

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 59284

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Client	Sample	ID:	Mat	rix S	pike
	Pre	ρ T _\	/pe:	Tota	I/NA

QC Association Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Job ID: 860-28800-1

GC/MS VOA

Analysis Batch: 59193

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-28800-1	TB-01-062822	Total/NA	Water	8260D	
860-28800-2	SB34-03-062822	Total/NA	Water	8260D	
860-28800-5	SB47-03-062822	Total/NA	Water	8260D	
860-28800-6	SB47-02-062822	Total/NA	Water	8260D	
860-28800-6 - DL	SB47-02-062822	Total/NA	Water	8260D	
860-28800-8	SB46-03-062822	Total/NA	Water	8260D	
860-28800-9	SB46-02-062822	Total/NA	Water	8260D	
860-28800-11	EB-01-062922	Total/NA	Water	8260D	
860-28800-12	SB48-03-062922	Total/NA	Water	8260D	
860-28800-13	SB48-02-062922	Total/NA	Water	8260D	
860-28800-13 - DL	SB48-02-062922	Total/NA	Water	8260D	
860-28800-14	SB48-01-062922	Total/NA	Water	8260D	
860-28800-14 - DL	SB48-01-062922	Total/NA	Water	8260D	
MB 860-59193/11	Method Blank	Total/NA	Water	8260D	
LCS 860-59193/5	Lab Control Sample	Total/NA	Water	8260D	
LCSD 860-59193/6	Lab Control Sample Dup	Total/NA	Water	8260D	
860-28656-A-8 MS	Matrix Spike	Total/NA	Water	8260D	

Analysis Batch: 59284

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-28800-3	SB34-02-062822	Total/NA	Water	8260D	
860-28800-4	SB34-01-062822	Total/NA	Water	8260D	
860-28800-7	FD-01-062822	Total/NA	Water	8260D	
860-28800-10	SB46-01-062822	Total/NA	Water	8260D	
MB 860-59284/9	Method Blank	Total/NA	Water	8260D	
LCS 860-59284/3	Lab Control Sample	Total/NA	Water	8260D	
LCSD 860-59284/4	Lab Control Sample Dup	Total/NA	Water	8260D	
860-28656-A-17 MS	Matrix Spike	Total/NA	Water	8260D	

4

6

8

10

12

13

15

45

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: TB-01-062822

Date Collected: 06/28/22 07:10

Date Received: 06/29/22 15:17

Lab Sample ID: 860-28800-1

Matrix: Water

Job ID: 860-28800-1

Dil Batch Batch Batch Initial Final Prepared or Analyzed Method **Factor Prep Type** Type Run **Amount** Amount Number **Analyst** Lab Total/NA Analysis 8260D 59193 06/30/22 11:16 TTD XEN STF 5 mL 5 mL

Client Sample ID: SB34-03-062822

Date Collected: 06/28/22 08:00 Date Received: 06/29/22 15:17

Lab Sample ID: 860-28800-2 **Matrix: Water**

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Type Method Run Factor **Amount** Amount Number or Analyzed Analyst Lab Total/NA Analysis 8260D 5 mL 5 mL 59193 06/30/22 12:59 TTD XEN STF

Client Sample ID: SB34-02-062822

Date Collected: 06/28/22 08:10 Date Received: 06/29/22 15:17

Lab Sample ID: 860-28800-3

Lab Sample ID: 860-28800-4

Lab Sample ID: 860-28800-5

Lab Sample ID: 860-28800-6

Lab Sample ID: 860-28800-7

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Batch Batch Dil Initial Final **Batch** Prepared **Prep Type** Method **Factor** Number or Analyzed Type Run Amount Amount **Analyst** Lab Total/NA Analysis 8260D 5 mL 59284 06/30/22 16:02 AN XEN STF 5 mL

Client Sample ID: SB34-01-062822

Date Collected: 06/28/22 08:30

Date Received: 06/29/22 15:17

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Method **Factor** Amount Amount Number or Analyzed Type Run **Analyst** Lab Analysis 8260D 5 mL 59284 06/30/22 16:21 AN XEN STF Total/NA 5 mL

Client Sample ID: SB47-03-062822

Date Collected: 06/28/22 11:40

Date Received: 06/29/22 15:17

	_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	8260D		1	5 mL	5 mL	59193	06/30/22 14:00	TTD	XEN STF

Client Sample ID: SB47-02-062822

Date Collected: 06/28/22 13:20

Date Received: 06/29/22 15:17

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D	D.	1	5 mL	5 mL	59193	06/30/22 14:21	TTD	XEN STF
Total/NA	Analysis	8260D	DL	20	5 mL	5 mL	59193	06/30/22 15:01	TTD	XEN STF

Client Sample ID: FD-01-062822

Date Collected: 06/28/22 00:00

Date Received: 06/29/22 15:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	59284	06/30/22 16:59	AN	XEN STF

Eurofins Houston

6/30/2022

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Client Sample ID: SB46-03-062822

Date Collected: 06/28/22 16:30

Date Received: 06/29/22 15:17

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D			5 mL	5 mL	59193	06/30/22 13:19	TTD	XEN STF

Client Sample ID: SB46-02-062822

Date Collected: 06/28/22 16:40 Date Received: 06/29/22 15:17

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run Factor **Amount** Amount Number or Analyzed Analyst Lab Total/NA 8260D 59193 06/30/22 13:40 TTD XEN STF

5 mL

5 mL

Client Sample ID: SB46-01-062822

Analysis

Date Collected: 06/28/22 16:50 Date Received: 06/29/22 15:17

Batch Batch Dil Initial Final **Batch** Prepared Factor **Prep Type** Method Amount Number or Analyzed Type Run Amount **Analyst** Lab Total/NA Analysis 8260D 5 mL 5 mL 59284 06/30/22 16:40 AN XEN STF

Client Sample ID: EB-01-062922

Date Collected: 06/29/22 07:15

Date Received: 06/29/22 15:17

Batch Batch Dil Initial Final Batch **Prepared Prep Type** Method **Factor** Amount Amount Number or Analyzed Type Run **Analyst** Lab Total/NA Analysis 8260D 5 mL 5 mL 59193 06/30/22 11:37 TTD XEN STF

Client Sample ID: SB48-03-062922

Date Collected: 06/29/22 10:50

Date Received: 06/29/22 15:17

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	59193	06/30/22 17:07	TTD	XEN STF

Client Sample ID: SB48-02-062922

Date Collected: 06/29/22 11:00

Date Received: 06/29/22 15:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	59193	06/30/22 15:24	TTD	XEN STF
Total/NA	Analysis	8260D	DL	5	5 mL	5 mL	59193	06/30/22 16:26	TTD	XEN STF

Client Sample ID: SB48-01-062922

Date Collected: 06/29/22 11:10

Date Received: 06/29/22 15:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	59193	06/30/22 15:45	TTD	XEN STF
Total/NA	Analysis	8260D	DL	5	5 mL	5 mL	59193	06/30/22 16:05	TTD	XEN STF

Eurofins Houston

6/30/2022

Page 22 of 34

Job ID: 860-28800-1

Matrix: Water

Lab Sample ID: 860-28800-8

Lab Sample ID: 860-28800-9

Lab Sample ID: 860-28800-10

Lab Sample ID: 860-28800-11

Lab Sample ID: 860-28800-12

Lab Sample ID: 860-28800-13

Lab Sample ID: 860-28800-14

Lab Chronicle

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-28800-1

6

3

4

5

9

11

12

4 /

16

17

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Job ID: 860-28800-1

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-22-46	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

4

5

7

8

11

12

14

16

1 /

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd Pre-Design Investigation Part 2

MethodMethod DescriptionProtocolLaboratory8260DVolatile Organic Compounds by GC/MSSW846XEN STF5030CPurge and TrapSW846XEN STF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Job ID: 860-28800-1

3

4

5

7

8

10

111

13

15

17

Sample Summary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-28800-1	TB-01-062822	Water	06/28/22 07:10	06/29/22 15:17
860-28800-2	SB34-03-062822	Water	06/28/22 08:00	06/29/22 15:17
860-28800-3	SB34-02-062822	Water	06/28/22 08:10	06/29/22 15:17
860-28800-4	SB34-01-062822	Water	06/28/22 08:30	06/29/22 15:17
860-28800-5	SB47-03-062822	Water	06/28/22 11:40	06/29/22 15:17
860-28800-6	SB47-02-062822	Water	06/28/22 13:20	06/29/22 15:17
860-28800-7	FD-01-062822	Water	06/28/22 00:00	06/29/22 15:17
860-28800-8	SB46-03-062822	Water	06/28/22 16:30	06/29/22 15:17
860-28800-9	SB46-02-062822	Water	06/28/22 16:40	06/29/22 15:17
860-28800-10	SB46-01-062822	Water	06/28/22 16:50	06/29/22 15:17
860-28800-11	EB-01-062922	Water	06/29/22 07:15	06/29/22 15:17
860-28800-12	SB48-03-062922	Water	06/29/22 10:50	06/29/22 15:17
860-28800-13	SB48-02-062922	Water	06/29/22 11:00	06/29/22 15:17
860-28800-14	SB48-01-062922	Water	06/29/22 11:10	06/29/22 15:17

1

Job ID: 860-28800-1

3

4

5

0

10

13

14

16

1/

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-28800-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☐ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date
Bethany McDaniel	Etympio	Senior Project Manager	06/30/2022

3

4

6

7

q

10

12

11

15

Laboratory Data Package Cover Page - Page 2 of 4

		Name: Eurofins Houston LRC Date: 06/30/2 e: STC Silber Rd Pre-Design Investigation Part 2 Laboratory Job Nur		28800-1			
		e: STC Sliber Rd Pre-Design Investigation Part 2 Laboratory Job Nur ame: Bethany McDaniel	inet. 000-	∠0000-1			
#1	A ²	Description	Yes	No	NA ³	NR⁴	ER#
<u>r</u> R1	OI	Chain-of-custody (C-O-C)	163	NO	IVA	IVIX	LIN
\ 1	Oi	Did samples meet the laboratory's standard conditions of sample acceptability upon	✓				
		receipt?					
		Were all departures from standard conditions described in an exception report?	√				
R2	OI	Sample and quality control (QC) identification					
		Are all field sample ID numbers cross-referenced to the laboratory ID numbers?	√				
		Are all laboratory ID numbers cross-referenced to the corresponding QC data?	✓				
R 3	OI	Test reports					
		Were all samples prepared and analyzed within holding times?	✓				
		Other than those results < MQL, were all other raw values bracketed by calibration	✓				
		standards?					
		Were calculations checked by a peer or supervisor?	✓				
		Were all analyte identifications checked by a peer or supervisor?	✓				
		Were sample detection limits reported for all analytes not detected?	✓				
		Were all results for soil and sediment samples reported on a dry weight basis?			✓		-
		Were % moisture (or solids) reported for all soil and sediment samples?			✓		
		Were bulk soils/solids samples for volatile analysis extracted with methanol per SW846 Method 5035?			•		
		If required for the project, are TICs reported?			/		_
R 4	0	Surrogate recovery data					
\4		Were surrogates added prior to extraction?	√				
		Were surrogate percent recoveries in all samples within the laboratory QC limits?	✓ ·				
₹5	OI	Test reports/summary forms for blank samples					
10	_ <u> </u>	Were appropriate type(s) of blanks analyzed?	√				
		Were blanks analyzed at the appropriate frequency?	√				
		Were method blanks taken through the entire analytical process, including preparation	✓				
		and, if applicable, cleanup procedures?					
		Were blank concentrations < MQL?	✓				
₹6	OI	Laboratory control samples (LCS):					
		Were all COCs included in the LCS?	✓				
		Was each LCS taken through the entire analytical procedure, including prep and	✓				
		cleanup steps?					
		Were LCSs analyzed at the required frequency?	✓				
		Were LCS (and LCSD, if applicable) %Rs within the laboratory QC limits?	✓				
		Does the detectability check sample data document the laboratory's capability to	✓				
		detect the COCs at the MDL used to calculate the SDLs?	✓				
77		Was the LCSD RPD within QC limits?	V				
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD) data Were the project/method specified analytes included in the MS and MSD?	✓				
		Were MS/MSD analyzed at the appropriate frequency?	→				+
		Were MS (and MSD, if applicable) %Rs within the laboratory QC limits?	→				
		Were MS/MSD RPDs within laboratory QC limits?	,		✓		+
₹8	OI	Analytical duplicate data					
10	<u> </u>	Were appropriate analytical duplicates analyzed for each matrix?			√		
		Were analytical duplicates analyzed at the appropriate frequency?			✓		
		Were RPDs or relative standard deviations within the laboratory QC limits?			✓		
२9	OI	Method quantitation limits (MQLs):					
		Are the MQLs for each method analyte included in the laboratory data package?	✓				
		Do the MQLs correspond to the concentration of the lowest non-zero calibration	✓		1		
		standard?					
		Are unadjusted MQLs and DCSs included in the laboratory data package?	✓				
R10	OI	Other problems/anomalies					
		Are all known problems/anomalies/special conditions noted in this LRC and ER?	✓				
		Was applicable and available technology used to lower the SDL to minimize the matrix		✓			1
		interference effects on the sample results?					
		Is the laboratory NELAC-accredited under the Texas Laboratory Accreditation Program	√				
		for the analytes, matrices and methods associated with this laboratory data package?	1			1	

Page 28 of 34 6/30/2022

1/

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston	LRC Date: 06/30/2022
Project Name: STC Silber Rd Pre-Design Investigation Part 2	Laboratory Job Number: 860-28800-1
Reviewer Name Bethany McDaniel	

		me: Bethany McDaniel					
#¹	A ²	Description	Yes	No	NA ³	NR⁴	ER#
S1	OI	Initial calibration (ICAL)					
		Were response factors and/or relative response factors for each analyte within QC	✓				
		limits?					
		Were percent RSDs or correlation coefficient criteria met?	✓ ✓				
		Was the number of standards recommended in the method used for all analytes?	✓				
		Were all points generated between the lowest and highest standard used to calculate the curve?	•				
		Are ICAL data available for all instruments used?	✓				
		Has the initial calibration curve been verified using an appropriate second source	✓				
		standard?					
S2	OI	Initial and continuing calibration verification (ICCV and CCV) and					
		continuing calibration blank (CCB):					
		Was the CCV analyzed at the method-required frequency?	√				
		Were percent differences for each analyte within the method-required QC limits?	✓				
		Was the ICAL curve verified for each analyte?	✓				
		Was the absolute value of the analyte concentration in the inorganic CCB < MDL?			✓		
S3	0	Mass spectral tuning					
	•	Was the appropriate compound for the method used for tuning?	✓				
		Were ion abundance data within the method-required QC limits?	✓				
S4	0	Internal standards (IS)					
		Were IS area counts and retention times within the method-required QC limits?	✓				
S5	OI	Raw data (NELAC Section 5.5.10)					
		Were the raw data (for example, chromatograms, spectral data) reviewed by an	√				
		analyst?					
		Were data associated with manual integrations flagged on the raw data?	√				
S6	0	Dual column confirmation					
		Did dual column confirmation results meet the method-required QC?			✓		
S7	0	Tentatively identified compounds (TICs)					
		If TICs were requested, were the mass spectra and TIC data subject to appropriate			✓		
		checks?					
S8	I	Interference Check Sample (ICS) results					
		Were percent recoveries within method QC limits?			✓		
S9	I	Serial dilutions, post digestion spikes, and method of standard					
		additions					
		Were percent differences, recoveries, and the linearity within the QC limits specified			✓		
		in the method?					
S10	OI	Method detection limit (MDL) studies					
		Was a MDL study performed for each reported analyte?	✓				
		Is the MDL either adjusted or supported by the analysis of DCSs?	✓				
S11	OI	Proficiency test reports					
	1	Was the laboratory's performance acceptable on the applicable proficiency tests or	✓				
		evaluation studies?					
S12	OI	Standards documentation					
		Are all standards used in the analyses NIST-traceable or obtained from other	✓				
		appropriate sources?					
S13	OI	Compound/analyte identification procedures					
	1	Are the procedures for compound/analyte identification documented?	✓				
S14	OI	Demonstration of analyst competency (DOC)					
<u> </u>	1	Was DOC conducted consistent with NELAC Chapter 5?	✓				
		Is documentation of the analyst's competency up-to-date and on file?	✓				
S15	OI	Verification/validation documentation for methods (NELAC					
•	-	Chapter 5)					
	1	Are all the methods used to generate the data documented, verified, and validated,	✓				
		where applicable?					
S16	OI	Laboratory standard operating procedures (SOPs)					
010		Are laboratory SOPs current and on file for each method performed?					

^{1.} Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

2

3

4

7

9

10

12

14

15

17

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

^{3.} NA = Not applicable;

^{4.} NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Laboratory Name: Eurofins Houston	LRC Date: 06/30/2022								
Project Name: STC Silber Rd Pre-Design Investigation Part 2	Laboratory Job Number: 860-28800-1								
Reviewer Name: Bethany McDaniel									
ER#1 Description	Description								
1 Method 8260D: The following sample was diluted to bring the concer	Method 8260D: The following sample was diluted to bring the concentration of target analytes within the calibration range: SB47-02-062822								
(860-28800-6). Elevated reporting limits (RLs) are provided.	(860-28800-6). Elevated reporting limits (RLs) are provided.								
1. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).									

IC

Detection Check Summary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-28800-1

Project/Site: STC Silber Rd Pre-Design Investigation Part 2

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A294 Detector: MSD/0 Column: DB-624

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
Trichloroethene	0.00500	0.00510		mg/L	0.00500	0.000424	02/23/2022	860-42516
Vinyl chloride	0.00500	0.00494		mg/L	0.00200	0.000234	02/23/2022	860-42516
cis-1,2-Dichloroethene	0.00500	0.00494		mg/L	0.00100	0.000174	02/23/2022	860-42516
1,1-Dichloroethane	0.00500	0.00501		mg/L	0.00100	0.000244	02/23/2022	860-42516
1,2-Dichloroethane	0.00500	0.00495		mg/L	0.00100	0.000285	02/23/2022	860-42516
1,1-Dichloroethene	0.00500	0.00478		mg/L	0.00100	0.000216	02/23/2022	860-42516
Tetrachloroethene	0.00500	0.00496		mg/L	0.00100	0.000500	02/23/2022	860-42516

Matrix: Water Prep Type: Total/NA

Prep Method: 5030C-Purge and Trap

Instrument: A325 Detector: MSD/0 Column: DB-624

monument. Aue	Detector: Mobie							COIGIIII. DD CLT		
	Spike									
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch		
Trichloroethene	0.00100	0.00503		mg/L	0.00500	0.000424	03/03/2022	860-43530		
Vinyl chloride	0.00100	0.00381		mg/L	0.00200	0.000234	03/03/2022	860-43530		
cis-1,2-Dichloroethene	0.00100	0.00499		mg/L	0.00100	0.000174	03/03/2022	860-43530		
1,1-Dichloroethane	0.00100	0.00483		mg/L	0.00100	0.000244	03/03/2022	860-43530		
1,2-Dichloroethane	0.00100	0.00498		mg/L	0.00100	0.000285	03/03/2022	860-43530		
1,1-Dichloroethene	0.00100	0.00411		mg/L	0.00100	0.000216	03/03/2022	860-43530		
Tetrachloroethene	0.00100	0.00463		mg/L	0.00100	0.000500	03/03/2022	860-43530		

2

3

4

6

9

11

13

14

16

17

Houston Temp: 34 IR ID:HOU 77477 C/F -0.0 34 440-4200 Corrected Temp: 3,4 mation		Chain of Custody Record	Record Lab PM: McDaniel, Bethany A 860-28800 Chain of Custody E-Mai:		6/30/2022
Company: Jacobs Engineering Group, Inc.	Pi	PWSID:	Analysis Requested	#.	
8	Due Data Requestad:			eservation Codes	
	TAT Requested (days): 1 day RUSH	Ĭ.		B NaOH O ASNAGOZ C Zn Acetate P NaOOAS	
9	Compliance Project: A Yes A No	ō		Natic Acid	
Phone:	PO#. D3542628.C.CS.TPE.SIL.22-01-02		(7)	Amchlor Ascorbic Acid	
Email: John.Ynfante@jacobs.com	WO#: D3542628,C.CS.TPE.SIL.22-01-02	orN		J DI Water	_
Inv Part 2	Project #: 86002024	la (Yer		EDA 3	
	SSOW#.			of co Other	
		Sample Matrix Porting Type (www.niter, Expension)	C (MOD)	i Numbei	
Sample Identification	۴	BT=Trasue, A=Air)	Y	Special Instructions/Note:	<u> </u>
73-01-012822	0110 22/8/21	- Water	X	2	of 3
51334-03-062872	6/28/22 0800 P	C, Water	X	3	32
	0180 22/82/10	S, Water	×	W	age
51334-01-062822	0830 22/82/A	G Water		W	P
SB47-03-062822	128122 1140	G Water	X	W	
228290-20- £HEIS	me! 22/82/9	G Water	X		<u>. </u>
220 PO- 10- CHESS	32/82/9	Mater		+++ V () () () () () () () () () (J
5		Cy Water	· 文	120	<u> </u>
20-02		-	X		
51396-01-062822 <240-01-062822	10/28/22 1/050	V Water		TOWLY ZXVOX	<u> </u>
Hazərd Identification Hazərd ☐ Flamməble ☐ Skin Imilant ☐	☐ Unknown ☐	Radiological	Sample Disposal (A fee may be assessed if samples Return To Client Disposal By Lab	amples are retained longer than 1 month)	لــــــــــــــــــــــــــــــــــــــ
ested I II, III, IV Other			Special Instructions/QC Requirements:		
inquished by:	Date:	Time:			
Relinquished by:	Date/Time:	Company Company	Received by: Received by:	Date Time: Date Time: Company Company	- 2-3
	Date/Time:	Company		Date/Time: (Company	<u>. </u>
Custody Seals Intact: Custody Seal No.			Cooler I emperature(s) "C and Other Remarks:	V 01 11 6 0010	

Eurofins Houston 4145 Greenbrian Dr

Chain of Custody Record

eurofins | Environment Testing

Houston State, Zp: TX, 77079 Stafford, TX 77477 Phone (281) 240-4200 Empty Kit Rejipquished Possible Hazard Identification Non-Hazard Flammable STC Silber Rd Pre-Design Inv Part 2 John. Ynfante@jacobs.com 14701 St. Mary's Lane Suite 300 John Ynfante Client Information Deliverable Requested: I II, III, IV Other (specify) Jacobs Engineering Group, Inc Sample Identification telinquished by: telinquished by: elinquished by: Custody Seals Intact <u>A Yes A No</u> 27570-50-84615 126270 - 70 -84US 21348-01 EB-01-01-292 126270-Custody Seal No. Skin Irritant Poison B Project #: 86002024 TAT Requested (days): 1 day RUSH Phone: 콗 Compliance Project: A Yes A No Due Date Requested: WO# D3542628.C.CS.TPE.SIL.22-01-02 PO#. D3542628.C.CS.TPE.SIL 22-01-02 Date/Time: 6/12/12/11/10 1441 129/12 129122 11/00 Unknown いたれたい 1050 252 Sample Radiological PWSID: (C=comp, o-waste/oil Sample Type Preservation Code: 2 S S Company Matrix Water McDaniel, Bethany A E-Mail: Bethany.McDaniel@et.eurofinsus.com Field Filtered Sample (Yes or No) Ħ Special Instructions/QC Requirements: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon (EDITO INTERNET ((ALTORIE) 8260C - (MOD) VOCs Custom List (7) Cooler Temperature(s) °C and Other Remarks: Received by: Analysis Requested State of Origin: Date/Time: W W Total Number of containers A HCL D NAOH C ZNACHUE D Nith Acid E NaHSO4 F MACH G Amchine H Ascorbit Acid I ce J Di Water K EDTA - EDA Page Zof COC No: 860-11069-3875.1 Job.# Preservation Codes: Special Instructions/Note: η M Hexane N None N None O AsNac2 P Na2045 Q Na2503 R Na2503 R Na2503 R Na2504 T 75P Dodecahydrale U Acatone U Acatone V MCAA V MC Company Ver 01/16/2019 Lustr Months

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-28800-1

Login Number: 28800 List Source: Eurofins Houston

List Number: 1

Creator: Torres, Sandra

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

2

Δ

5

0

8

40

4.0

13

15

17

IDW Lab Reports

Environment Testing America

ANALYTICAL REPORT

Eurofins Houston 4145 Greenbriar Dr Stafford, TX 77477 Tel: (281)240-4200

Laboratory Job ID: 860-26460-1

Client Project/Site: STC Silber Rd IDW

Revision: 1

For:

Jacobs Engineering Group, Inc. 12750 Merit Drive Suite 1100 Dallas, Texas 75251

Attn: John Knott

Bethany McDaniel

Authorized for release by: 6/24/2022 3:53:43 PM

Bethany McDaniel, Senior Project Manager (713)358-2005

Bethany.McDaniel@et.eurofinsus.com

Links

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

9

1 0

12

13

16

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Default Detection Limits	17
Surrogate Summary	20
QC Sample Results	22
QC Association Summary	41
Lab Chronicle	44
Certification Summary	46
Method Summary	47
Sample Summary	48
State Forms	49
TRRP Checklist	49
DCS Report	53
Chain of Custody	57
Receipt Checklists	58

8

40

11

13

15

16

11/

Definitions/Glossary

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Qualifiers

GC/MS VOA

Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

U Analyte was not detected at or above the SDL.

GC/MS Semi VOA

Qualifier Qualifier Description

* LCS or LCSD is outside acceptance limits.

* RPD of the LCS and LCSD exceeds the control limits

Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

U Analyte was not detected at or above the SDL.

X Surrogate recovery exceeds control limits

GC Semi VOA

Qualifier Qualifier Description

U Analyte was not detected at or above the SDL.

Metals

Qualifier Qualifier Description

b The compound was found in the blank and sample

J Result is less than the MQL but greater than or equal to the SDL and the concentration is an estimated value.

U Analyte was not detected at or above the SDL.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)
MDL Method Detection Limit

ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

Eurofins Houston

2

3

Λ

5

6

1

9

10

4.6

4.0

14

16

Definitions/Glossary

Job ID: 860-26460-1

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Glossary (Continued)

Abbreviation	These commonly	y used abbreviations may	y or may not be	present in this report.

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Job ID: 860-26460-1

Laboratory: Eurofins Houston

Narrative

Job Narrative 860-26460-1

Receipt

The samples were received on 5/19/2022 12:37 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3°C

This report was revised to add Pyridine per client request to the 8270 select list

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 8270D: The surrogate recovery for the blank associated with preparation batch 860-53687 and 860-53840 and analytical batch 860-53944 was outside the control limits. The surrogate recovery for the sample passed. No target compounds were detected, data can be reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 6010C: The leachate blank for preparation batch 860-53687 and 860-53954 and analytical batch 860-54342 contained barium and antimony above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method 6010C: The method blank for preparation batch 860-53954 and analytical batch 860-54342 contained chromium and selenium above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4

5

6

1

10

11

1 1

15

45

Detection Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Lab Sample ID: 860-26460-1

Lab Sample ID: 860-26460-2

Lab Sample ID: 860-26460-3

Analyte	Result Qua	alifier MQL (Adj	SDL	Unit	Dil Fac	D Method	Prep Type
Toluene	1.19	0.0500	0.0250	mg/L	50	8260C	TCLP
Xylenes, Total	0.0221 J	0.500	0.0165	mg/L	50	8260C	TCLP
m-Xylene & p-Xylene	0.0221 J	0.500	0.0165	mg/L	50	8260C	TCLP
Barium	1.71 b	0.0500	0.00674	mg/L	1	6010C	TCLP
Manganese	0.634	0.100	0.0158	mg/L	1	6010C	TCLP

Client Sample ID: IDW-WS02-051922

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D	Method	Prep Type
Arsenic	0.0281 J	0.0500	0.0275 mg/L		6010C	TCLP
Barium	1.20 b	0.0500	0.00674 mg/L	1	6010C	TCLP
Manganese	0.369	0.100	0.0158 mg/L	1	6010C	TCLP

Client Sample ID: IDW-WS03-051922

Analyte	Result Qualifier	MQL (Adj)	SDL Unit	Dil Fac D	Method	Prep Type
Arsenic	0.0326 J	0.0500	0.0275 mg/L		6010C	TCLP
Barium	1.17 b	0.0500	0.00674 mg/L	1	6010C	TCLP
Manganese	1.64	0.100	0.0158 mg/L	1	6010C	TCLP

Client: Jacobs Engineering Group, Inc. Job ID: 860-26460-1 Project/Site: STC Silber Rd IDW

Client Sample ID: IDW-WS01-051922

Lab Sample ID: 860-26460-1 Date Collected: 05/19/22 11:30 **Matrix: Solid**

Date Received: 05/19/22 12:37

Method: 8260C - Volatile Orgar Analyte	Result	Qualifier	MQL (Adj)		Unit	D Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.0252	U	0.250	0.0252	mg/L		05/23/22 22:12	5
1,1,2,2-Tetrachloroethane	0.0142	U	0.0500	0.0142			05/23/22 22:12	5
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0182		0.500	0.0182	-		05/23/22 22:12	5
1,1,2-Trichloroethane	0.0114	U	0.0500	0.0114	mg/L		05/23/22 22:12	5
1,1-Dichloroethane	0.0122		0.0500	0.0122	-		05/23/22 22:12	5
1,1-Dichloroethene	0.0108	U	0.0500	0.0108	-		05/23/22 22:12	5
1,2,4-Trichlorobenzene	0.100		0.250	0.100	-		05/23/22 22:12	5
1,2-Dibromo-3-Chloropropane	0.0160		0.250	0.0160	-		05/23/22 22:12	5
1,2-Dibromoethane	0.0168		0.250	0.0168	-		05/23/22 22:12	5
1,2-Dichlorobenzene	0.0118		0.0500	0.0118	-		05/23/22 22:12	5
1,2-Dichloroethane	0.0143		0.0500	0.0143	-		05/23/22 22:12	5
1,2-Dichloropropane	0.0198		0.250	0.0198	-		05/23/22 22:12	5
1,3-Dichlorobenzene	0.00983		0.0500	0.00983	-		05/23/22 22:12	5
1,4-Dichlorobenzene	0.00994		0.0500	0.00994	-		05/23/22 22:12	5
2-Butanone (MEK)	0.00994		2.50	0.00994	-		05/23/22 22:12	5
2-Hexanone	0.0395		2.50	0.0395	-		05/23/22 22:12	5
4-Methyl-2-pentanone (MIBK)	0.0533		2.50	0.0532	-		05/23/22 22:12	5
Acetone	0.0532		5.00	0.0532	-		05/23/22 22:12	5
					5			
Benzene	0.0107		0.0500	0.0107	-		05/23/22 22:12	5
Chlorobromomethane	0.0105		0.0500	0.0105	-		05/23/22 22:12	5
Bromodichloromethane	0.0115		0.0500	0.0115			05/23/22 22:12	5
Bromoform	0.0315		0.250	0.0315	-		05/23/22 22:12	5
Bromomethane	0.0527		0.250	0.0527	-		05/23/22 22:12	5
Carbon disulfide	0.0187		0.250	0.0187			05/23/22 22:12	5
Carbon tetrachloride	0.0211		0.250	0.0211	•		05/23/22 22:12	5
Chlorobenzene	0.00795		0.0500	0.00795	-		05/23/22 22:12	5
Chloroethane	0.0216		0.500	0.0216			05/23/22 22:12	5
Chloroform	0.0129		0.0500	0.0129	-		05/23/22 22:12	5
Chloromethane	0.0159		0.500	0.0159	•		05/23/22 22:12	5
Cyclohexane	0.0237	U	0.250	0.0237			05/23/22 22:12	5
Dibromochloromethane	0.0370	U	0.250	0.0370	-		05/23/22 22:12	5
Dichlorodifluoromethane	0.0158	U	0.0500	0.0158	mg/L		05/23/22 22:12	5
Ethylbenzene	0.0257	U	0.0500	0.0257	mg/L		05/23/22 22:12	į
Methyl tert-butyl ether	0.0285	U	0.250	0.0285	mg/L		05/23/22 22:12	5
Methylene Chloride	0.0956	U	0.250	0.0956	mg/L		05/23/22 22:12	5
Styrene	0.0312	U	0.0500	0.0312	mg/L		05/23/22 22:12	5
Tetrachloroethene	0.0250	U	0.0500	0.0250	mg/L		05/23/22 22:12	5
Toluene	1.19		0.0500	0.0250	mg/L		05/23/22 22:12	5
Trichloroethene	0.0212	U	0.250	0.0212	mg/L		05/23/22 22:12	į
/inyl acetate	0.178	U	1.00	0.178	mg/L		05/23/22 22:12	
/inyl chloride	0.0117	U	0.100	0.0117	mg/L		05/23/22 22:12	5
(ylenes, Total	0.0221	J	0.500	0.0165	-		05/23/22 22:12	į
sis-1,2-Dichloroethene	0.00870		0.0500	0.00870			05/23/22 22:12	
cis-1,3-Dichloropropene	0.0345		0.250	0.0345	-		05/23/22 22:12	
sopropylbenzene	0.00803		0.0500	0.00803	-		05/23/22 22:12	į
n-Xylene & p-Xylene	0.0221		0.500	0.0165			05/23/22 22:12	
p-Xylene	0.00958		0.0500	0.00958	-		05/23/22 22:12	5
trans-1,2-Dichloroethene	0.0128		0.0500	0.0128	-		05/23/22 22:12	5
trans-1,3-Dichloropropene	0.0126		0.250	0.0128			05/23/22 22:12	

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Client Sample ID: IDW-WS01-051922 Lab Sample ID: 860-26460-1

Date Collected: 05/19/22 11:30 Matrix: Solid
Date Received: 05/19/22 12:37

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	63 - 144	$\overline{}$	05/23/22 22:12	50
4-Bromofluorobenzene (Surr)	98	74 - 124	C	05/23/22 22:12	50
Dibromofluoromethane (Surr)	100	75 - 131	C	05/23/22 22:12	50
Toluene-d8 (Surr)	99	80 - 117	C	05/23/22 22:12	50

Analyte	Result Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1'-Biphenyl	0.0185 U	0.125	0.0185	mg/L		05/20/22 16:20	05/23/22 16:37	
2,4,5-Trichlorophenol	0.0234 U	0.125	0.0234	mg/L		05/20/22 16:20	05/23/22 16:37	
2,4,6-Trichlorophenol	0.0237 U	0.125	0.0237	mg/L		05/20/22 16:20	05/23/22 16:37	
2,4-Dichlorophenol	0.0261 U	0.125	0.0261	mg/L		05/20/22 16:20	05/23/22 16:37	
2,4-Dimethylphenol	0.0223 U	0.125	0.0223	mg/L		05/20/22 16:20	05/23/22 16:37	
2,4-Dinitrophenol	0.0154 U	0.250	0.0154	mg/L		05/20/22 16:20	05/23/22 16:37	
2,4-Dinitrotoluene	0.0238 U	0.125	0.0238	mg/L		05/20/22 16:20	05/23/22 16:37	
2,6-Dinitrotoluene	0.0277 U	0.250	0.0277	mg/L		05/20/22 16:20	05/23/22 16:37	
2-Chloronaphthalene	0.0202 U	0.125	0.0202	mg/L		05/20/22 16:20	05/23/22 16:37	
2-Chlorophenol	0.0210 U	0.125	0.0210	mg/L		05/20/22 16:20	05/23/22 16:37	
2-Methylnaphthalene	0.0195 U	0.125	0.0195	mg/L		05/20/22 16:20	05/23/22 16:37	
2-Nitroaniline	0.0268 U	0.250	0.0268	mg/L		05/20/22 16:20	05/23/22 16:37	
2-Nitrophenol	0.0242 U	0.125	0.0242			05/20/22 16:20	05/23/22 16:37	
2-Methylphenol	0.0229 U	0.125	0.0229	-		05/20/22 16:20	05/23/22 16:37	
8 & 4 Methylphenol	0.0261 U	0.250	0.0261	mg/L		05/20/22 16:20	05/23/22 16:37	
3,3'-Dichlorobenzidine	0.0155 U	0.250	0.0155	mg/L		05/20/22 16:20	05/23/22 16:37	
3-Nitroaniline	0.0197 U	0.250	0.0197	-		05/20/22 16:20	05/23/22 16:37	
,6-Dinitro-2-methylphenol	0.0218 U	0.250	0.0218	mg/L		05/20/22 16:20	05/23/22 16:37	
-Bromophenyl phenyl ether	0.0237 U	0.125	0.0237	mg/L		05/20/22 16:20	05/23/22 16:37	
I-Chloroaniline	0.0152 U	0.250	0.0152	-		05/20/22 16:20	05/23/22 16:37	
I-Chlorophenyl phenyl ether	0.0217 U	0.125	0.0217	mg/L		05/20/22 16:20	05/23/22 16:37	
1-Nitroaniline	0.0291 U	0.250	0.0291	mg/L		05/20/22 16:20	05/23/22 16:37	
l-Nitrophenol	0.0403 U	0.250	0.0403	mg/L		05/20/22 16:20	05/23/22 16:37	
I-Chloro-3-methylphenol	0.0326 U	0.250	0.0326	-		05/20/22 16:20	05/23/22 16:37	
Acenaphthene	0.0219 U	0.125	0.0219			05/20/22 16:20	05/23/22 16:37	
Acenaphthylene	0.0222 U	0.125	0.0222	-		05/20/22 16:20	05/23/22 16:37	
Acetophenone	0.0233 U	0.125	0.0233	-		05/20/22 16:20	05/23/22 16:37	
Anthracene	0.0221 U	0.125	0.0221	mg/L		05/20/22 16:20	05/23/22 16:37	
Benzo[a]anthracene	0.0250 U	0.125	0.0250	-		05/20/22 16:20	05/23/22 16:37	
Benzo[a]pyrene	0.0250 U	0.125	0.0250	mg/L		05/20/22 16:20	05/23/22 16:37	
Benzo[b]fluoranthene	0.0448 U	0.125	0.0448	mg/L		05/20/22 16:20	05/23/22 16:37	
Benzo[g,h,i]perylene	0.0314 U	0.125	0.0314	mg/L		05/20/22 16:20	05/23/22 16:37	
Benzo[k]fluoranthene	0.0340 U	0.125	0.0340	mg/L		05/20/22 16:20	05/23/22 16:37	
Butyl benzyl phthalate	0.0297 U	0.125	0.0297	mg/L		05/20/22 16:20	05/23/22 16:37	
Carbazole	0.0214 U	0.125	0.0214	mg/L		05/20/22 16:20	05/23/22 16:37	
Chrysene	0.0250 U	0.125	0.0250			05/20/22 16:20	05/23/22 16:37	
Dibenz(a,h)anthracene	0.0315 U	0.125	0.0315				05/23/22 16:37	
Dibenzofuran	0.0238 U	0.125	0.0238				05/23/22 16:37	
Diethyl phthalate	0.0308 U	0.125	0.0308	-		05/20/22 16:20	05/23/22 16:37	
Dimethyl phthalate	0.0293 U	0.125	0.0293	5			05/23/22 16:37	
Fluoranthene	0.0237 U	0.125	0.0237	-		05/20/22 16:20	05/23/22 16:37	
Fluorene	0.0235 U	0.125	0.0235	-			05/23/22 16:37	
Hexachlorobenzene	0.0269 U	0.125	0.0269				05/23/22 16:37	

Eurofins Houston

3

Job ID: 860-26460-1

А

5

O

0

10

12

4

6

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Client Sample ID: IDW-WS01-051922

Lab Sample ID: 860-26460-1 Date Collected: 05/19/22 11:30

Matrix: Solid Date Received: 05/19/22 12:37

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorobutadiene	0.0177	U	0.125	0.0177	mg/L		05/20/22 16:20	05/23/22 16:37	5
Hexachlorocyclopentadiene	0.0153	U	0.125	0.0153	mg/L		05/20/22 16:20	05/23/22 16:37	5
Hexachloroethane	0.0197	U	0.125	0.0197	mg/L		05/20/22 16:20	05/23/22 16:37	5
Indeno[1,2,3-cd]pyrene	0.0274	U	0.125	0.0274	mg/L		05/20/22 16:20	05/23/22 16:37	5
Isophorone	0.0251	U	0.125	0.0251	mg/L		05/20/22 16:20	05/23/22 16:37	5
N-Nitrosodi-n-propylamine	0.0331	U	0.125	0.0331	mg/L		05/20/22 16:20	05/23/22 16:37	5
N-Nitrosodiphenylamine	0.0290	U	0.125	0.0290	mg/L		05/20/22 16:20	05/23/22 16:37	5
Naphthalene	0.0188	U	0.125	0.0188	mg/L		05/20/22 16:20	05/23/22 16:37	5
Nitrobenzene	0.0240	U	0.125	0.0240	mg/L		05/20/22 16:20	05/23/22 16:37	5
Pentachlorophenol	0.0279	U	0.250	0.0279	mg/L		05/20/22 16:20	05/23/22 16:37	5
Phenanthrene	0.0244	U	0.125	0.0244	mg/L		05/20/22 16:20	05/23/22 16:37	5
Phenol	0.0290	U	0.250	0.0290	mg/L		05/20/22 16:20	05/23/22 16:37	5
Pyrene	0.0213	U	0.125	0.0213	mg/L		05/20/22 16:20	05/23/22 16:37	5
Bis(2-chloroethoxy)methane	0.0310	U	0.125	0.0310	mg/L		05/20/22 16:20	05/23/22 16:37	5
Bis(2-chloroethyl)ether	0.0270	U	0.125	0.0270	mg/L		05/20/22 16:20	05/23/22 16:37	5
bis (2-Chloroisopropyl) ether	0.0363	U	0.125	0.0363	mg/L		05/20/22 16:20	05/23/22 16:37	5
Bis(2-ethylhexyl) phthalate	0.0470	U	0.125	0.0470	mg/L		05/20/22 16:20	05/23/22 16:37	5
Di-n-butyl phthalate	0.0283	U	0.125	0.0283	mg/L		05/20/22 16:20	05/23/22 16:37	5
Di-n-octyl phthalate	0.0370	U	0.125	0.0370	mg/L		05/20/22 16:20	05/23/22 16:37	5
Pyridine	0.0122	U *	0.250	0.0122	mg/L		05/20/22 16:20	05/23/22 16:37	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	96		31 - 132				05/20/22 16:20	05/23/22 16:37	5
2-Fluorobiphenyl	60		29 - 112				05/20/22 16:20	05/23/22 16:37	5
2-Fluorophenol	47		21 - 114				05/20/22 16:20	05/23/22 16:37	5
Nitrobenzene-d5	54		26 - 110				05/20/22 16:20	05/23/22 16:37	5
p-Terphenyl-d14 (Surr)	73		20 - 141				05/20/22 16:20	05/23/22 16:37	5
Phenol-d5 (Surr)	36		16 - 117				05/20/22 16:20	05/23/22 16:37	5

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)											
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac		
C6-C12	21.0	U	49.8	21.0	mg/Kg		05/20/22 12:48	05/20/22 21:19	1		
>C12-C28	21.0	U	49.8	21.0	mg/Kg		05/20/22 12:48	05/20/22 21:19	1		
>C28-C35	21.0	U	49.8	21.0	mg/Kg		05/20/22 12:48	05/20/22 21:19	1		
Total Petroleum Hydrocarbons (C6-C35)	21.0	U	49.8	21.0	mg/Kg			05/23/22 17:46	1		

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	85		70 - 130	05/20/22 12:48	05/20/22 21:19	1
o-Terphenyl (Surr)	92		70 - 130	05/20/22 12:48	05/20/22 21:19	1

Method: 6010C - Meta	Is (ICP) - TCLP								
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0275	U	0.0500	0.0275	mg/L		05/23/22 08:45	05/24/22 21:51	1
Barium	1.71	b	0.0500	0.00674	mg/L		05/23/22 08:45	05/24/22 21:51	1
Cadmium	0.0122	U	0.0250	0.0122	mg/L		05/23/22 08:45	05/24/22 21:51	1
Chromium	0.00405	U	0.0500	0.00405	mg/L		05/23/22 08:45	05/24/22 21:51	1
Lead	0.0118	U	0.0500	0.0118	mg/L		05/23/22 08:45	05/24/22 21:51	1
Manganese	0.634		0.100	0.0158	mg/L		05/23/22 08:45	05/24/22 21:51	1
Nickel	0.0154	U	0.0500	0.0154	mg/L		05/23/22 08:45	05/24/22 21:51	1
Selenium	0.0219	U	0.150	0.0219	mg/L		05/23/22 08:45	05/24/22 21:51	1

Eurofins Houston

Page 9 of 58

Job ID: 860-26460-1

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Client Sample ID: IDW-WS01-051922

Date Collected: 05/19/22 11:30 Date Received: 05/19/22 12:37 Lab Sample ID: 860-26460-1

Matrix: Solid

Job ID: 860-26460-1

Met	hod: 6010C - Metals (ICP) -	TCLP (Co	ntinued)							
Analy	yte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Silve	r	0.0279	U	0.100	0.0279	mg/L		05/23/22 08:45	05/24/22 21:51	1
Antin	nony	0.0294	U	0.100	0.0294	mg/L		05/23/22 08:45	05/24/22 21:51	1
Beryl	llium	0.00245	U	0.0200	0.00245	mg/L		05/23/22 08:45	05/24/22 21:51	1
Met	hod: 7470A - Mercury (CVA	A) - TCLP								
Analy	yte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Merc	ury	0.0000263	U	0.000200	0.0000263	mg/L		05/23/22 07:20	05/23/22 12:38	1

General ChemistryAnalyteResult Percent MoistureQualifier NQL (Adj)SDL VIIIUnit WD Prepared NoistureAnalyzed Dil Factoria

Client Sample ID: IDW-WS02-051922 Lab Sample ID: 860-26460-2

Date Collected: 05/19/22 11:50 Matrix: Solid

Date Received: 05/19/22 12:37

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.0252	U	0.250	0.0252	mg/L			05/23/22 22:32	50
1,1,2,2-Tetrachloroethane	0.0142	U	0.0500	0.0142	mg/L			05/23/22 22:32	50
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0182	U	0.500	0.0182	mg/L			05/23/22 22:32	50
1,1,2-Trichloroethane	0.0114	U	0.0500	0.0114	mg/L			05/23/22 22:32	50
1,1-Dichloroethane	0.0122	U	0.0500	0.0122	mg/L			05/23/22 22:32	50
1,1-Dichloroethene	0.0108	U	0.0500	0.0108	mg/L			05/23/22 22:32	50
1,2,4-Trichlorobenzene	0.100	U	0.250	0.100	mg/L			05/23/22 22:32	50
1,2-Dibromo-3-Chloropropane	0.0160	U	0.250	0.0160	mg/L			05/23/22 22:32	50
1,2-Dibromoethane	0.0168	U	0.250	0.0168	mg/L			05/23/22 22:32	50
1,2-Dichlorobenzene	0.0118	U	0.0500	0.0118	mg/L			05/23/22 22:32	50
1,2-Dichloroethane	0.0143	U	0.0500	0.0143	mg/L			05/23/22 22:32	50
1,2-Dichloropropane	0.0198	U	0.250	0.0198	mg/L			05/23/22 22:32	50
1,3-Dichlorobenzene	0.00983	U	0.0500	0.00983	mg/L			05/23/22 22:32	50
1,4-Dichlorobenzene	0.00994	U	0.0500	0.00994	mg/L			05/23/22 22:32	50
2-Butanone (MEK)	0.135	U	2.50	0.135	mg/L			05/23/22 22:32	50
2-Hexanone	0.0395	U	2.50	0.0395	mg/L			05/23/22 22:32	50
4-Methyl-2-pentanone (MIBK)	0.0532	U	2.50	0.0532	mg/L			05/23/22 22:32	50
Acetone	0.616	U	5.00	0.616	mg/L			05/23/22 22:32	50
Benzene	0.0107	U	0.0500	0.0107	mg/L			05/23/22 22:32	50
Chlorobromomethane	0.0105	U	0.0500	0.0105	mg/L			05/23/22 22:32	50
Bromodichloromethane	0.0115	U	0.0500	0.0115	mg/L			05/23/22 22:32	50
Bromoform	0.0315	U	0.250	0.0315	mg/L			05/23/22 22:32	50
Bromomethane	0.0527	U	0.250	0.0527	mg/L			05/23/22 22:32	50
Carbon disulfide	0.0187	U	0.250	0.0187	mg/L			05/23/22 22:32	50
Carbon tetrachloride	0.0211	U	0.250	0.0211	mg/L			05/23/22 22:32	50
Chlorobenzene	0.00795	U	0.0500	0.00795	mg/L			05/23/22 22:32	50
Chloroethane	0.0216	U	0.500	0.0216	mg/L			05/23/22 22:32	50
Chloroform	0.0129	U	0.0500	0.0129	mg/L			05/23/22 22:32	50
Chloromethane	0.0159	U	0.500	0.0159	mg/L			05/23/22 22:32	50
Cyclohexane	0.0237	U	0.250	0.0237	mg/L			05/23/22 22:32	50
Dibromochloromethane	0.0370	U	0.250	0.0370	mg/L			05/23/22 22:32	50
Dichlorodifluoromethane	0.0158	U	0.0500	0.0158	mg/L			05/23/22 22:32	50

Eurofins Houston

3

4

6

8

9

11

4.6

4

16

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Client Sample ID: IDW-WS02-051922

Date Collected: 05/19/22 11:50 Date Received: 05/19/22 12:37 Lab Sample ID: 860-26460-2

Matrix: Solid

Job ID: 860-26460-1

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	0.0257	U	0.0500	0.0257	mg/L			05/23/22 22:32	50
Methyl tert-butyl ether	0.0285	U	0.250	0.0285	mg/L			05/23/22 22:32	50
Methylene Chloride	0.0956	U	0.250	0.0956	mg/L			05/23/22 22:32	50
Styrene	0.0312	U	0.0500	0.0312	mg/L			05/23/22 22:32	50
Tetrachloroethene	0.0250	U	0.0500	0.0250	mg/L			05/23/22 22:32	50
Toluene	0.0250	U	0.0500	0.0250	mg/L			05/23/22 22:32	50
Trichloroethene	0.0212	U	0.250	0.0212	mg/L			05/23/22 22:32	50
Vinyl acetate	0.178	U	1.00	0.178	mg/L			05/23/22 22:32	50
Vinyl chloride	0.0117	U	0.100	0.0117	mg/L			05/23/22 22:32	50
Xylenes, Total	0.0165	U	0.500	0.0165	mg/L			05/23/22 22:32	50
cis-1,2-Dichloroethene	0.00870	U	0.0500	0.00870	mg/L			05/23/22 22:32	50
cis-1,3-Dichloropropene	0.0345	U	0.250	0.0345	mg/L			05/23/22 22:32	50
Isopropylbenzene	0.00803	U	0.0500	0.00803	mg/L			05/23/22 22:32	50
m-Xylene & p-Xylene	0.0165	U	0.500	0.0165	mg/L			05/23/22 22:32	50
o-Xylene	0.00958	U	0.0500	0.00958	mg/L			05/23/22 22:32	50
trans-1,2-Dichloroethene	0.0128	U	0.0500	0.0128	mg/L			05/23/22 22:32	50
trans-1,3-Dichloropropene	0.0376	U	0.250	0.0376	mg/L			05/23/22 22:32	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		63 - 144			=		05/23/22 22:32	50
4-Bromofluorobenzene (Surr)	97		74 - 124					05/23/22 22:32	50
Dibromofluoromethane (Surr)	98		75 - 131					05/23/22 22:32	50
Toluene-d8 (Surr)	99		80 - 117					05/23/22 22:32	50

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	0.0185	U	0.125	0.0185	mg/L		05/20/22 16:20	05/23/22 17:01	5
2,4,5-Trichlorophenol	0.0234	U	0.125	0.0234	mg/L		05/20/22 16:20	05/23/22 17:01	5
2,4,6-Trichlorophenol	0.0237	U	0.125	0.0237	mg/L		05/20/22 16:20	05/23/22 17:01	5
2,4-Dichlorophenol	0.0261	U	0.125	0.0261	mg/L		05/20/22 16:20	05/23/22 17:01	5
2,4-Dimethylphenol	0.0223	U	0.125	0.0223	mg/L		05/20/22 16:20	05/23/22 17:01	5
2,4-Dinitrophenol	0.0154	U	0.250	0.0154	mg/L		05/20/22 16:20	05/23/22 17:01	5
2,4-Dinitrotoluene	0.0238	U	0.125	0.0238	mg/L		05/20/22 16:20	05/23/22 17:01	5
2,6-Dinitrotoluene	0.0277	U	0.250	0.0277	mg/L		05/20/22 16:20	05/23/22 17:01	5
2-Chloronaphthalene	0.0202	U	0.125	0.0202	mg/L		05/20/22 16:20	05/23/22 17:01	5
2-Chlorophenol	0.0210	U	0.125	0.0210	mg/L		05/20/22 16:20	05/23/22 17:01	5
2-Methylnaphthalene	0.0195	U	0.125	0.0195	mg/L		05/20/22 16:20	05/23/22 17:01	5
2-Nitroaniline	0.0268	U	0.250	0.0268	mg/L		05/20/22 16:20	05/23/22 17:01	5
2-Nitrophenol	0.0242	U	0.125	0.0242	mg/L		05/20/22 16:20	05/23/22 17:01	5
2-Methylphenol	0.0229	U	0.125	0.0229	mg/L		05/20/22 16:20	05/23/22 17:01	5
3 & 4 Methylphenol	0.0261	U	0.250	0.0261	mg/L		05/20/22 16:20	05/23/22 17:01	5
3,3'-Dichlorobenzidine	0.0155	U	0.250	0.0155	mg/L		05/20/22 16:20	05/23/22 17:01	5
3-Nitroaniline	0.0197	U	0.250	0.0197	mg/L		05/20/22 16:20	05/23/22 17:01	5
4,6-Dinitro-2-methylphenol	0.0218	U	0.250	0.0218	mg/L		05/20/22 16:20	05/23/22 17:01	5
4-Bromophenyl phenyl ether	0.0237	U	0.125	0.0237	mg/L		05/20/22 16:20	05/23/22 17:01	5
4-Chloroaniline	0.0152	U	0.250	0.0152	mg/L		05/20/22 16:20	05/23/22 17:01	5
4-Chlorophenyl phenyl ether	0.0217	U	0.125	0.0217	mg/L		05/20/22 16:20	05/23/22 17:01	5
4-Nitroaniline	0.0291	U	0.250	0.0291	mg/L		05/20/22 16:20	05/23/22 17:01	5
4-Nitrophenol	0.0403	U	0.250	0.0403	mg/L		05/20/22 16:20	05/23/22 17:01	5
4-Chloro-3-methylphenol	0.0326	U	0.250	0.0326	mg/L		05/20/22 16:20	05/23/22 17:01	5

Eurofins Houston

3

4

6

8

10

. . 12

14

15

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Client Sample ID: IDW-WS02-051922 Lab Sample ID: 860-26460-2

Date Collected: 05/19/22 11:50

Date Received: 05/19/22 12:37

Matrix: Solid

Method: 8270D - Semivolatile Organic Compounds (GC/MS) - TCLP (Continued) Dil Fac Analyte Result Qualifier MQL (Adj) SDL Unit D Prepared Analyzed Acenaphthene 0.0219 U 0.125 0.0219 mg/L 05/20/22 16:20 05/23/22 17:01 5 5 Acenaphthylene 0.0222 U 0.125 0.0222 mg/L 05/20/22 16:20 05/23/22 17:01 Acetophenone 0.0233 U 0.125 0.0233 mg/L 05/20/22 16:20 05/23/22 17:01 5 0.0221 U 0.0221 mg/L 5 Anthracene 0.125 05/20/22 16:20 05/23/22 17:01 0.0250 U 0.0250 mg/L 05/20/22 16:20 05/23/22 17:01 5 Benzo[a]anthracene 0.125 5 Benzo[a]pyrene 0.0250 U 0 125 0.0250 mg/L 05/20/22 16:20 05/23/22 17:01 Benzo[b]fluoranthene 0.0448 U 0.125 0.0448 mg/L 05/20/22 16:20 05/23/22 17:01 5 0.125 0.0314 mg/L 05/20/22 16:20 05/23/22 17:01 5 Benzo[g,h,i]perylene 0.0314 U 5 Benzo[k]fluoranthene 0.0340 U 0.125 0.0340 mg/L 05/20/22 16:20 05/23/22 17:01 Butyl benzyl phthalate 0.0297 U 0.125 0.0297 mg/L 05/20/22 16:20 05/23/22 17:01 5 Carbazole 0.0214 U 0.125 0.0214 mg/L 05/20/22 16:20 05/23/22 17:01 5 Chrysene 0.0250 U 0.125 0.0250 mg/L 05/20/22 16:20 05/23/22 17:01 5 Dibenz(a,h)anthracene 0.0315 U 0.125 0.0315 mg/L 05/20/22 16:20 05/23/22 17:01 5 Dibenzofuran 0.0238 U 0.125 0.0238 mg/L 05/20/22 16:20 05/23/22 17:01 5 5 Diethyl phthalate 0.125 0.0308 mg/L 05/20/22 16:20 05/23/22 17:01 0.0308 U 5 Dimethyl phthalate 0.0293 U 0.125 0.0293 mg/L 05/20/22 16:20 05/23/22 17:01 Fluoranthene 0.0237 U 0.125 0.0237 mg/L 05/20/22 16:20 05/23/22 17:01 5 Fluorene 0.0235 U 0.125 0.0235 mg/L 05/20/22 16:20 05/23/22 17:01 5 5 Hexachlorobenzene 0.125 0.0269 mg/L 05/20/22 16:20 05/23/22 17:01 0.0269 U Hexachlorobutadiene 0.0177 U 0.125 0.0177 mg/L 05/20/22 16:20 05/23/22 17:01 5 Hexachlorocyclopentadiene 0.125 0.0153 mg/L 05/20/22 16:20 05/23/22 17:01 5 0.0153 U 5 Hexachloroethane 0.0197 U 0.125 0.0197 mg/L 05/20/22 16:20 05/23/22 17:01 05/20/22 16:20 05/23/22 17:01 5 Indeno[1,2,3-cd]pyrene 0.0274 U 0 125 0.0274 mg/L Isophorone 0.0251 U 0.125 0.0251 mg/L 05/20/22 16:20 05/23/22 17:01 5 N-Nitrosodi-n-propylamine 0.0331 U 0.125 0.0331 mg/L 05/20/22 16:20 05/23/22 17:01 5 0.0290 5 N-Nitrosodiphenylamine 0.0290 U 0.125 mg/L 05/20/22 16:20 05/23/22 17:01 Naphthalene 0.0188 U 0.125 0.0188 mg/L 05/20/22 16:20 05/23/22 17:01 5 0.0240 mg/L 5 Nitrobenzene 0.0240 U 0.125 05/20/22 16:20 05/23/22 17:01 0.0279 mg/L 5 Pentachlorophenol 0.0279 U 0.250 05/20/22 16:20 05/23/22 17:01 5 Phenanthrene 0.0244 U 0.125 0.0244 mg/L 05/20/22 16:20 05/23/22 17:01 Phenol 0.0290 U 0.250 0.0290 mg/L 05/20/22 16:20 05/23/22 17:01 5 Pyrene 0.125 0.0213 mg/L 05/20/22 16:20 05/23/22 17:01 5 0.0213 U 0.125 0.0310 mg/L 05/20/22 16:20 05/23/22 17:01 5 Bis(2-chloroethoxy)methane 0.0310 U 5 Bis(2-chloroethyl)ether 0.0270 U 0.125 0.0270 mg/L 05/20/22 16:20 05/23/22 17:01 bis (2-Chloroisopropyl) ether 0.0363 U 0.125 0.0363 mg/L 05/20/22 16:20 05/23/22 17:01 5 Bis(2-ethylhexyl) phthalate 0.0470 U 0.125 0.0470 mg/L 05/20/22 16:20 05/23/22 17:01 5 0.0283 mg/L 5 Di-n-butyl phthalate 0.0283 U 0.125 05/20/22 16:20 05/23/22 17:01 Di-n-octyl phthalate 0.0370 U 0.125 0.0370 mg/L 05/20/22 16:20 05/23/22 17:01 5 Pyridine 0.0122 U* 0.250 0.0122 mg/L 05/20/22 16:20 05/23/22 17:01 5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	83		31 - 132	05/20/22 16:20	05/23/22 17:01	5
2-Fluorobiphenyl	50		29 - 112	05/20/22 16:20	05/23/22 17:01	5
2-Fluorophenol	48		21 - 114	05/20/22 16:20	05/23/22 17:01	5
Nitrobenzene-d5	41		26 - 110	05/20/22 16:20	05/23/22 17:01	5
p-Terphenyl-d14 (Surr)	67		20 - 141	05/20/22 16:20	05/23/22 17:01	5
Phenol-d5 (Surr)	37		16 - 117	05/20/22 16:20	05/23/22 17:01	5

Eurofins Houston

3

Job ID: 860-26460-1

4

6

8

10

12

14

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Client Sample ID: IDW-WS02-051922 Lab Sample ID: 860-26460-2

Date Collected: 05/19/22 11:50 Matrix: Solid
Date Received: 05/19/22 12:37

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12	21.1	U	50.0	21.1	mg/Kg		05/20/22 12:48	05/20/22 19:05	1
>C12-C28	21.1	U	50.0	21.1	mg/Kg		05/20/22 12:48	05/20/22 19:05	1
>C28-C35	21.1	U	50.0	21.1	mg/Kg		05/20/22 12:48	05/20/22 19:05	1
Total Petroleum Hydrocarbons (C6-C35)	21.1	U	50.0	21.1	mg/Kg			05/23/22 17:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	93		70 - 130				05/20/22 12:48	05/20/22 19:05	1
o-Terphenyl (Surr)	103		70 - 130				05/20/22 12:48	05/20/22 19:05	1
Method: 6010C - Metals (IC	P) - TCLP								
Analyte	•	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0281	J	0.0500	0.0275	mg/L		05/23/22 08:45	05/24/22 21:54	1
Barium	1.20	b	0.0500	0.00674	mg/L		05/23/22 08:45	05/24/22 21:54	1
Cadmium	0.0122	U	0.0250	0.0122	mg/L		05/23/22 08:45	05/24/22 21:54	1
Chromium	0.00405	U	0.0500	0.00405	mg/L		05/23/22 08:45	05/24/22 21:54	1
Lead	0.0118	U	0.0500	0.0118	mg/L		05/23/22 08:45	05/24/22 21:54	1
Manganese	0.369		0.100	0.0158	mg/L		05/23/22 08:45	05/24/22 21:54	1
Nickel	0.0154	U	0.0500	0.0154	mg/L		05/23/22 08:45	05/24/22 21:54	1
Selenium	0.0219	U	0.150	0.0219	mg/L		05/23/22 08:45	05/24/22 21:54	1
Silver	0.0279	U	0.100	0.0279	mg/L		05/23/22 08:45	05/24/22 21:54	1
Antimony	0.0294	U	0.100	0.0294	mg/L		05/23/22 08:45	05/24/22 21:54	1
Beryllium	0.00245	U	0.0200	0.00245	mg/L		05/23/22 08:45	05/24/22 21:54	1
Method: 7470A - Mercury (CVAA) - TCLP								
Analyte	•	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0000263	U	0.000200	0.0000263	mg/L		05/23/22 07:20	05/23/22 12:39	1
General Chemistry									
Analyte	Result	Qualifier	MQL (Adj)	SDI	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: IDW-WS03-051922

Date Collected: 05/19/22 12:00

Lab Sample ID: 860-26460-3

Matrix: Solid

6.2

Date Received: 05/19/22 12:37

Percent Moisture

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.0252	U	0.250	0.0252	mg/L			05/23/22 22:53	50
1,1,2,2-Tetrachloroethane	0.0142	U	0.0500	0.0142	mg/L			05/23/22 22:53	50
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0182	U	0.500	0.0182	mg/L			05/23/22 22:53	50
1,1,2-Trichloroethane	0.0114	U	0.0500	0.0114	mg/L			05/23/22 22:53	50
1,1-Dichloroethane	0.0122	U	0.0500	0.0122	mg/L			05/23/22 22:53	50
1,1-Dichloroethene	0.0108	U	0.0500	0.0108	mg/L			05/23/22 22:53	50
1,2,4-Trichlorobenzene	0.100	U	0.250	0.100	mg/L			05/23/22 22:53	50
1,2-Dibromo-3-Chloropropane	0.0160	U	0.250	0.0160	mg/L			05/23/22 22:53	50
1,2-Dibromoethane	0.0168	U	0.250	0.0168	mg/L			05/23/22 22:53	50
1,2-Dichlorobenzene	0.0118	U	0.0500	0.0118	mg/L			05/23/22 22:53	50
1,2-Dichloroethane	0.0143	U	0.0500	0.0143	mg/L			05/23/22 22:53	50
1,2-Dichloropropane	0.0198	U	0.250	0.0198	mg/L			05/23/22 22:53	50
1,3-Dichlorobenzene	0.00983	U	0.0500	0.00983	mg/L			05/23/22 22:53	50

Eurofins Houston

05/24/22 09:58

Page 13 of 58

6/24/2022 (Rev. 1)

3

Job ID: 860-26460-1

<u>+</u>

6

Ŏ

11

12

14

16

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Client Sample ID: IDW-WS03-051922

Method: 8260C - Volatile Organic Compounds by GC/MS - TCLP (Continued)

100

98

Date Collected: 05/19/22 12:00 Date Received: 05/19/22 12:37

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 860-26460-3

Matrix: Solid

Job ID: 860-26460-1

Dil Fac

Analyte		Qualifier	MQL (Adj)		Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.00994	U	0.0500	0.00994	mg/L			05/23/22 22:53	50
2-Butanone (MEK)	0.135	U	2.50	0.135	·			05/23/22 22:53	50
2-Hexanone	0.0395	U	2.50	0.0395	mg/L			05/23/22 22:53	50
4-Methyl-2-pentanone (MIBK)	0.0532	U	2.50	0.0532	mg/L			05/23/22 22:53	50
Acetone	0.616	U	5.00	0.616	mg/L			05/23/22 22:53	50
Benzene	0.0107	U	0.0500	0.0107	mg/L			05/23/22 22:53	50
Chlorobromomethane	0.0105	U	0.0500	0.0105	mg/L			05/23/22 22:53	50
Bromodichloromethane	0.0115	U	0.0500	0.0115	mg/L			05/23/22 22:53	50
Bromoform	0.0315	U	0.250	0.0315	mg/L			05/23/22 22:53	50
Bromomethane	0.0527	U	0.250	0.0527	mg/L			05/23/22 22:53	50
Carbon disulfide	0.0187	U	0.250	0.0187	mg/L			05/23/22 22:53	50
Carbon tetrachloride	0.0211	U	0.250	0.0211	mg/L			05/23/22 22:53	50
Chlorobenzene	0.00795	U	0.0500	0.00795	mg/L			05/23/22 22:53	50
Chloroethane	0.0216	U	0.500	0.0216	mg/L			05/23/22 22:53	50
Chloroform	0.0129	U	0.0500	0.0129	mg/L			05/23/22 22:53	50
Chloromethane	0.0159	U	0.500	0.0159	mg/L			05/23/22 22:53	50
Cyclohexane	0.0237	U	0.250	0.0237	mg/L			05/23/22 22:53	50
Dibromochloromethane	0.0370	U	0.250	0.0370	mg/L			05/23/22 22:53	50
Dichlorodifluoromethane	0.0158	U	0.0500	0.0158	mg/L			05/23/22 22:53	50
Ethylbenzene	0.0257	U	0.0500	0.0257	mg/L			05/23/22 22:53	50
Methyl tert-butyl ether	0.0285	U	0.250	0.0285	mg/L			05/23/22 22:53	50
Methylene Chloride	0.0956	U	0.250	0.0956	mg/L			05/23/22 22:53	50
Styrene	0.0312	U	0.0500	0.0312	mg/L			05/23/22 22:53	50
Tetrachloroethene	0.0250	U	0.0500	0.0250	mg/L			05/23/22 22:53	50
Toluene	0.0250	U	0.0500	0.0250	mg/L			05/23/22 22:53	50
Trichloroethene	0.0212	U	0.250	0.0212	mg/L			05/23/22 22:53	50
Vinyl acetate	0.178	U	1.00	0.178	mg/L			05/23/22 22:53	50
Vinyl chloride	0.0117	U	0.100	0.0117	mg/L			05/23/22 22:53	50
Xylenes, Total	0.0165	U	0.500	0.0165	mg/L			05/23/22 22:53	50
cis-1,2-Dichloroethene	0.00870	U	0.0500	0.00870	mg/L			05/23/22 22:53	50
cis-1,3-Dichloropropene	0.0345	U	0.250	0.0345	mg/L			05/23/22 22:53	50
Isopropylbenzene	0.00803	U	0.0500	0.00803	mg/L			05/23/22 22:53	50
m-Xylene & p-Xylene	0.0165	U	0.500	0.0165				05/23/22 22:53	50
o-Xylene	0.00958	U	0.0500	0.00958	-			05/23/22 22:53	50
trans-1,2-Dichloroethene	0.0128	U	0.0500	0.0128	·			05/23/22 22:53	50
trans-1,3-Dichloropropene	0.0376	U	0.250	0.0376				05/23/22 22:53	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	_	63 - 144			-		05/23/22 22:53	50
4-Bromofluorobenzene (Surr)	98		74 - 124					05/23/22 22:53	50

Method: 8270D - Semivolatile Organic Compounds (GC/MS) - TCLP										
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,1'-Biphenyl	0.0185	U	0.125	0.0185	mg/L		05/20/22 16:20	05/23/22 17:24	5	
2,4,5-Trichlorophenol	0.0234	U	0.125	0.0234	mg/L		05/20/22 16:20	05/23/22 17:24	5	
2,4,6-Trichlorophenol	0.0237	U	0.125	0.0237	mg/L		05/20/22 16:20	05/23/22 17:24	5	
2,4-Dichlorophenol	0.0261	U	0.125	0.0261	mg/L		05/20/22 16:20	05/23/22 17:24	5	
2,4-Dimethylphenol	0.0223	U	0.125	0.0223	mg/L		05/20/22 16:20	05/23/22 17:24	5	

75 - 131

80 - 117

Eurofins Houston

05/23/22 22:53

05/23/22 22:53

50

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Client Sample ID: IDW-WS03-051922 Lab Sample ID: 860-26460-3

Date Collected: 05/19/22 12:00 Matrix: Solid
Date Received: 05/19/22 12:37

Analyte	Result Qualifi	ier MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4-Dinitrophenol	0.0154 U	0.250	0.0154	mg/L		05/20/22 16:20	05/23/22 17:24	
2,4-Dinitrotoluene	0.0238 U	0.125	0.0238	mg/L		05/20/22 16:20	05/23/22 17:24	
2,6-Dinitrotoluene	0.0277 U	0.250	0.0277	mg/L		05/20/22 16:20	05/23/22 17:24	
2-Chloronaphthalene	0.0202 U	0.125	0.0202	mg/L		05/20/22 16:20	05/23/22 17:24	
-Chlorophenol	0.0210 U	0.125	0.0210	mg/L		05/20/22 16:20	05/23/22 17:24	
-Methylnaphthalene	0.0195 U	0.125	0.0195	mg/L		05/20/22 16:20	05/23/22 17:24	
2-Nitroaniline	0.0268 U	0.250	0.0268	mg/L		05/20/22 16:20	05/23/22 17:24	
-Nitrophenol	0.0242 U	0.125	0.0242	mg/L		05/20/22 16:20	05/23/22 17:24	
-Methylphenol	0.0229 U	0.125	0.0229	-		05/20/22 16:20	05/23/22 17:24	
& 4 Methylphenol	0.0261 U	0.250	0.0261	-		05/20/22 16:20	05/23/22 17:24	
3,3'-Dichlorobenzidine	0.0155 U	0.250	0.0155			05/20/22 16:20	05/23/22 17:24	
-Nitroaniline	0.0197 U	0.250	0.0197	-			05/23/22 17:24	
,6-Dinitro-2-methylphenol	0.0218 U	0.250	0.0218	-			05/23/22 17:24	
-Bromophenyl phenyl ether	0.0237 U	0.125	0.0237				05/23/22 17:24	
-Chloroaniline	0.0152 U	0.250	0.0152	-			05/23/22 17:24	
-Chlorophenyl phenyl ether	0.0217 U	0.125	0.0217	-			05/23/22 17:24	
-Nitroaniline	0.0217 U	0.250	0.0217				05/23/22 17:24	
-Nitrophenol	0.0403 U	0.250	0.0403	-			05/23/22 17:24	
-Chloro-3-methylphenol	0.0326 U	0.250	0.0403	-			05/23/22 17:24	
cenaphthene	0.0320 U	0.125	0.0320					
•				-			05/23/22 17:24	
cenaphthylene	0.0222 U	0.125	0.0222	-		05/20/22 16:20		
cetophenone	0.0233 U	0.125	0.0233			05/20/22 16:20		
nthracene	0.0221 U	0.125		mg/L		05/20/22 16:20		
enzo[a]anthracene	0.0250 U	0.125	0.0250	-		05/20/22 16:20		
enzo[a]pyrene	0.0250 U	0.125	0.0250			05/20/22 16:20		
lenzo[b]fluoranthene	0.0448 U	0.125	0.0448	-			05/23/22 17:24	
Benzo[g,h,i]perylene	0.0314 U	0.125	0.0314	Ū		05/20/22 16:20		
Benzo[k]fluoranthene	0.0340 U	0.125	0.0340				05/23/22 17:24	
Butyl benzyl phthalate	0.0297 U	0.125	0.0297	-			05/23/22 17:24	
Carbazole	0.0214 U	0.125	0.0214	-			05/23/22 17:24	
Chrysene	0.0250 U	0.125	0.0250			05/20/22 16:20	05/23/22 17:24	
ibenz(a,h)anthracene	0.0315 U	0.125	0.0315	mg/L		05/20/22 16:20	05/23/22 17:24	
Dibenzofuran	0.0238 U	0.125	0.0238	mg/L		05/20/22 16:20	05/23/22 17:24	
Diethyl phthalate	0.0308 U	0.125	0.0308	mg/L		05/20/22 16:20	05/23/22 17:24	
imethyl phthalate	0.0293 U	0.125	0.0293	mg/L		05/20/22 16:20	05/23/22 17:24	
luoranthene	0.0237 U	0.125	0.0237	mg/L		05/20/22 16:20	05/23/22 17:24	
luorene	0.0235 U	0.125	0.0235	mg/L		05/20/22 16:20	05/23/22 17:24	
lexachlorobenzene	0.0269 U	0.125	0.0269	mg/L		05/20/22 16:20	05/23/22 17:24	
lexachlorobutadiene	0.0177 U	0.125	0.0177	mg/L		05/20/22 16:20	05/23/22 17:24	
lexachlorocyclopentadiene	0.0153 U	0.125	0.0153	-		05/20/22 16:20	05/23/22 17:24	
lexachloroethane	0.0197 U	0.125	0.0197			05/20/22 16:20	05/23/22 17:24	
ndeno[1,2,3-cd]pyrene	0.0274 U	0.125	0.0274	-		05/20/22 16:20	05/23/22 17:24	
sophorone	0.0251 U	0.125	0.0251	-			05/23/22 17:24	
-Nitrosodi-n-propylamine	0.0331 U	0.125	0.0331				05/23/22 17:24	
-Nitrosodiphenylamine	0.0290 U	0.125	0.0290	-			05/23/22 17:24	
laphthalene	0.0188 U	0.125	0.0188	-			05/23/22 17:24	
litrobenzene	0.0240 U	0.125	0.0100				05/23/22 17:24	
Pentachlorophenol	0.0279 U	0.123	0.0240	-		05/20/22 16:20		
Phenanthrene	0.0279 U 0.0244 U	0.250	0.0279	-			05/23/22 17:24	

Eurofins Houston

2

Job ID: 860-26460-1

5

<u>გ</u>

10

12

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

General Chemistry

Percent Moisture

Analyte

Date Collected: 05/19/22 12:00 Matrix: Solid
Date Received: 05/19/22 12:37

Method: 8270D - Semivolat Analyte		Qualifier	MQL (Adj)		Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.0290	U	0.250	0.0290	mg/L		05/20/22 16:20	05/23/22 17:24	5
Pyrene	0.0213	U	0.125	0.0213	mg/L		05/20/22 16:20	05/23/22 17:24	5
Bis(2-chloroethoxy)methane	0.0310	U	0.125	0.0310	mg/L		05/20/22 16:20	05/23/22 17:24	5
Bis(2-chloroethyl)ether	0.0270	U	0.125	0.0270	mg/L		05/20/22 16:20	05/23/22 17:24	5
bis (2-Chloroisopropyl) ether	0.0363	U	0.125	0.0363	mg/L		05/20/22 16:20	05/23/22 17:24	5
Bis(2-ethylhexyl) phthalate	0.0470	U	0.125	0.0470	mg/L		05/20/22 16:20	05/23/22 17:24	5
Di-n-butyl phthalate	0.0283	U	0.125	0.0283	mg/L		05/20/22 16:20	05/23/22 17:24	5
Di-n-octyl phthalate	0.0370	U	0.125	0.0370	mg/L		05/20/22 16:20	05/23/22 17:24	5
Pyridine	0.0122	U *	0.250	0.0122	mg/L		05/20/22 16:20	05/23/22 17:24	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	100		31 - 132				05/20/22 16:20	05/23/22 17:24	5
2-Fluorobiphenyl	67		29 - 112				05/20/22 16:20	05/23/22 17:24	5
2-Fluorophenol	51		21 - 114				05/20/22 16:20	05/23/22 17:24	5
Nitrobenzene-d5	59		26 - 110				05/20/22 16:20	05/23/22 17:24	5
p-Terphenyl-d14 (Surr)	80		20 - 141				05/20/22 16:20	05/23/22 17:24	5
Phenol-d5 (Surr)	41		16 - 117				05/20/22 16:20	05/23/22 17:24	5
Method: TX 1005 - Texas -	Total Petroleur	n Hvdroca	arbon (GC)						
Analyte		Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12	21.1	U	50.0	21.1	mg/Kg		05/20/22 12:48	05/20/22 20:02	1
>C12-C28	21.1	U	50.0	21.1	mg/Kg		05/20/22 12:48	05/20/22 20:02	1
>C28-C35	21.1	U	50.0	21.1	mg/Kg		05/20/22 12:48	05/20/22 20:02	1
Total Petroleum Hydrocarbons (C6-C35)	21.1	U	50.0	21.1	mg/Kg			05/23/22 17:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	91		70 - 130				05/20/22 12:48	05/20/22 20:02	1
o-Terphenyl (Surr)	101		70 - 130				05/20/22 12:48	05/20/22 20:02	1
Method: 6010C - Metals (IC	P) - TCLP								
Analyte	Result	Qualifier	MQL (Adj)		Unit	_ D	Prepared	Analyzed	Dil Fac
Arsenic	0.0326	J	0.0500	0.0275	mg/L		05/23/22 08:45	05/24/22 21:58	1
Barium	1.17	b	0.0500	0.00674	mg/L		05/23/22 08:45	05/24/22 21:58	1
Cadmium	0.0122	U	0.0250	0.0122	mg/L		05/23/22 08:45	05/24/22 21:58	1
Chromium	0.00405	U	0.0500	0.00405	mg/L		05/23/22 08:45	05/24/22 21:58	1
Lead	0.0118	U	0.0500	0.0118	mg/L		05/23/22 08:45	05/24/22 21:58	1
Manganese	1.64		0.100	0.0158	mg/L		05/23/22 08:45	05/24/22 21:58	1
Nickel	0.0154	U	0.0500	0.0154	mg/L		05/23/22 08:45	05/24/22 21:58	1
Selenium	0.0219	U	0.150	0.0219	mg/L		05/23/22 08:45	05/24/22 21:58	1
Silver	0.0279	U	0.100	0.0279	mg/L		05/23/22 08:45	05/24/22 21:58	1
Antimony	0.0294	U	0.100	0.0294	mg/L		05/23/22 08:45	05/24/22 21:58	1
D - m dli	0.00245	U	0.0200	0.00245	-		05/23/22 08:45	05/24/22 21:58	1
Beryllium									
	CVAA) - TCLP								
Beryllium : Method: 7470A - Mercury (Ganalyte	•	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Houston

Dil Fac

Analyzed

05/24/22 09:58

Prepared

Job ID: 860-26460-1

MQL (Adj)

SDL Unit

%

Result Qualifier

20.5

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26460-1

Project/Site: STC Silber Rd IDW

Method: 8260C - Volatile Organic Compounds by GC/MS - TCLP

Leach: 1311				
Analyte	MQL	MDL	Units	
1,1,1-Trichloroethane	0.00500	0.000504	mg/L	
1,1,2,2-Tetrachloroethane	0.00100	0.000284	mg/L	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0100	0.000364	mg/L	
1,1,2-Trichloroethane	0.00100	0.000228	mg/L	
1,1-Dichloroethane	0.00100	0.000244	mg/L	
1,1-Dichloroethene	0.00100	0.000216	mg/L	
1,2,4-Trichlorobenzene	0.00500	0.00200	mg/L	
1,2-Dibromo-3-Chloropropane	0.00500	0.000319	mg/L	
1,2-Dibromoethane	0.00500	0.000337	mg/L	
1,2-Dichlorobenzene	0.00100	0.000236	mg/L	
1,2-Dichloroethane	0.00100	0.000285	mg/L	
1,2-Dichloropropane	0.00500	0.000396	mg/L	
1,3-Dichlorobenzene	0.00100	0.000197	mg/L	
1,4-Dichlorobenzene	0.00100	0.000199	mg/L	
2-Butanone (MEK)	0.0500	0.00270	mg/L	
2-Hexanone	0.0500	0.000789	mg/L	
4-Methyl-2-pentanone (MIBK)	0.0500	0.00106	mg/L	
Acetone	0.100	0.0123	mg/L	
Benzene	0.00100	0.000214		
Bromodichloromethane	0.00100	0.000214	mg/L	
Bromoform	0.00100	0.000231	mg/L	
Bromomethane		0.000030	mg/L	
	0.00500		mg/L	
Carbon disulfide	0.00500	0.000373	mg/L	
Carbon tetrachloride	0.00500	0.000423	mg/L	
Chlorobenzene	0.00100	0.000159	mg/L	
Chloroptomomethane	0.00100	0.000209	mg/L	
Chloroethane	0.0100	0.000433	mg/L	
Chloroform	0.00100	0.000259	mg/L	
Chloromethane	0.0100	0.000318	mg/L	
cis-1,2-Dichloroethene	0.00100	0.000174	mg/L	
cis-1,3-Dichloropropene	0.00500	0.000690	mg/L	
Cyclohexane	0.00500	0.000474	mg/L	
Dibromochloromethane	0.00500	0.000739	mg/L	
Dichlorodifluoromethane	0.00100	0.000316	mg/L	
Ethylbenzene	0.00100	0.000515	mg/L	
Isopropylbenzene	0.00100	0.000161	mg/L	
Methyl tert-butyl ether	0.00500	0.000571	mg/L	
Methylene Chloride	0.00500	0.00191	mg/L	
m-Xylene & p-Xylene	0.0100	0.000330	mg/L	
o-Xylene	0.00100	0.000192	mg/L	
Styrene	0.00100	0.000623	mg/L	
Tetrachloroethene	0.00100	0.000500	mg/L	
Toluene	0.00100	0.000500	mg/L	
trans-1,2-Dichloroethene	0.00100	0.000256	mg/L	
trans-1,3-Dichloropropene	0.00500	0.000752	mg/L	
Trichloroethene	0.00500	0.000424	mg/L	
Vinyl acetate	0.0200	0.00357	mg/L	
Vinyl chloride	0.00200	0.000234	mg/L	
Xylenes, Total	0.00100	0.000192	mg/L	
<u></u>				

Method: 8270D - Semivolatile Organic Compounds (GC/MS) - TCLP

Prep: 3510C

Eurofins Houston

2

5

4

6

_

9

10

12

14

15

<u> 17</u>

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26460-1

Project/Site: STC Silber Rd IDW

Method: 8270D - Semivolatile Organic Compounds (GC/MS) - TCLP

Prep: 3510C Leach: 1311

Analyte	MQL	MDL	Units
1,1'-Biphenyl	0.00500	0.000741	mg/L
2,4,5-Trichlorophenol	0.00500	0.000935	mg/L
2,4,6-Trichlorophenol	0.00500	0.000946	mg/L
2,4-Dichlorophenol	0.00500	0.00104	mg/L
2,4-Dimethylphenol	0.00500	0.000891	mg/L
2,4-Dinitrophenol	0.0100	0.000616	mg/L
2,4-Dinitrotoluene	0.00500	0.000953	mg/L
2,6-Dinitrotoluene	0.0100	0.00111	mg/L
2-Chloronaphthalene	0.00500	0.000809	mg/L
2-Chlorophenol	0.00500	0.000842	mg/L
2-Methylnaphthalene	0.00500	0.000778	mg/L
2-Methylphenol	0.00500	0.000914	mg/L
2-Nitroaniline	0.0100	0.00107	mg/L
2-Nitrophenol	0.00500	0.000966	mg/L
3 & 4 Methylphenol	0.0100	0.00104	mg/L
3,3'-Dichlorobenzidine	0.0100	0.000618	mg/L
3-Nitroaniline	0.0100	0.000787	mg/L
4,6-Dinitro-2-methylphenol	0.0100	0.000870	mg/L
4-Bromophenyl phenyl ether	0.00500	0.000948	mg/L
4-Chloro-3-methylphenol	0.0100	0.00131	mg/L
4-Chloroaniline	0.0100	0.000609	mg/L
1-Chlorophenyl phenyl ether	0.00500	0.000868	mg/L
1-Nitroaniline	0.0100	0.00116	mg/L
4-Nitrophenol	0.0100	0.00161	mg/L
Acenaphthene	0.00500	0.000876	mg/L
Acenaphthylene	0.00500	0.000886	mg/L
Acetophenone	0.00500	0.000932	mg/L
Anthracene	0.00500	0.000884	mg/L
Benzo[a]anthracene	0.00500	0.00100	mg/L
Benzo[a]pyrene	0.00500	0.00100	mg/L
Benzo[b]fluoranthene	0.00500	0.00179	mg/L
Benzo[g,h,i]perylene	0.00500	0.00125	mg/L
Benzo[k]fluoranthene	0.00500	0.00136	mg/L
ois (2-Chloroisopropyl) ether	0.00500	0.00145	mg/L
Bis(2-chloroethoxy)methane	0.00500	0.00124	mg/L
Bis(2-chloroethyl)ether	0.00500	0.00108	mg/L
Bis(2-ethylhexyl) phthalate	0.00500	0.00188	mg/L
Butyl benzyl phthalate	0.00500	0.00119	mg/L
Carbazole	0.00500	0.000855	mg/L
Chrysene	0.00500	0.00100	mg/L
Dibenz(a,h)anthracene	0.00500	0.00126	mg/L
Dibenzofuran	0.00500	0.000951	mg/L
Diethyl phthalate	0.00500	0.00123	mg/L
Dimethyl phthalate	0.00500	0.00120	mg/L
Di-n-butyl phthalate	0.00500	0.00117	mg/L
Di-n-octyl phthalate	0.00500	0.00113	mg/L
Fluoranthene	0.00500	0.000148	mg/L
Fluorene	0.00500	0.000948	mg/L
Hexachlorobenzene	0.00500	0.000938	
nexachlorobenzene Hexachlorobutadiene	0.00500	0.00107	mg/L
			mg/L
Hexachlorocyclopentadiene	0.00500	0.000614	mg/L

Unadjusted Detection Limits

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd IDW

Method: 8270D - Semivolatile Organic Compounds (GC/MS) - TCLP (Continued)

Prep: 3510C Leach: 1311

Analyte	MQL	MDL	Units	
Hexachloroethane	0.00500	0.000787	mg/L	
Indeno[1,2,3-cd]pyrene	0.00500	0.00110	mg/L	
Isophorone	0.00500	0.00101	mg/L	
Naphthalene	0.00500	0.000751	mg/L	
Nitrobenzene	0.00500	0.000961	mg/L	
N-Nitrosodi-n-propylamine	0.00500	0.00133	mg/L	
N-Nitrosodiphenylamine	0.00500	0.00116	mg/L	
Pentachlorophenol	0.0100	0.00112	mg/L	
Phenanthrene	0.00500	0.000975	mg/L	
Phenol	0.0100	0.00116	mg/L	
Pyrene	0.00500	0.000852	mg/L	
Pyridine	0.0100	0.000487	mg/L	

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Analyte	MQL	MDL	Units
Total Petroleum Hydrocarbons (C6-C35)	50.0	21.1	mg/Kg

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Prep: TX_1005_S_Prep

Analyte	MQL	MDL	Units
>C12-C28	50.0	21.1	mg/Kg
>C28-C35	50.0	21.1	mg/Kg
C6-C12	50.0	21.1	mg/Kg

Method: 6010C - Metals (ICP) - TCLP

Prep: 3010A Leach: 1311

Analyte	MQL	MDL	Units
Antimony	0.0200	0.00589	mg/L
Arsenic	0.0100	0.00550	mg/L
Barium	0.0100	0.00135	mg/L
Beryllium	0.00400	0.000490	mg/L
Cadmium	0.00500	0.00243	mg/L
Chromium	0.0100	0.000811	mg/L
Lead	0.0100	0.00237	mg/L
Manganese	0.0200	0.00316	mg/L
Nickel	0.0100	0.00307	mg/L
Selenium	0.0300	0.00439	mg/L
Silver	0.0200	0.00559	mg/L

Method: 7470A - Mercury (CVAA) - TCLP

Prep: 7470A Leach: 1311

Analyte	MQL	MDL	Units
Mercury	0.000200	0.0000263	mg/L

Eurofins Houston

Job ID: 860-26460-1

3

6

_

9

44

12

13

14

16

17

Ш

Surrogate Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-117)
LCS 860-53937/3	Lab Control Sample	94	99	99	97
LCS 860-54052/3	Lab Control Sample	95	96	99	99
LCSD 860-53937/4	Lab Control Sample Dup	94	95	99	97
LCSD 860-54052/4	Lab Control Sample Dup	93	98	98	98
MB 860-53937/10	Method Blank	97	97	99	97
MB 860-54052/9	Method Blank	96	97	97	98
Surrogate Legend					

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: TCLP

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-117)
860-26460-1	IDW-WS01-051922	97	98	100	99
860-26460-2	IDW-WS02-051922	98	97	98	99
860-26460-3	IDW-WS03-051922	97	98	100	98
LB 860-53848/1-A	Method Blank	97	97	98	99

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		TBP	FBP	2FP	NBZ	TPHd14	PHL		
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(21-114)	(26-110)	(20-141)	(16-117)		
LCS 860-53840/2-A	Lab Control Sample	51	58	24	56	57	16		
LCSD 860-53840/3-A	Lab Control Sample Dup	57	63	28	61	60	20		
MB 860-53840/1-A	Method Blank	59	63	29	66	65	17		

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Eurofins Houston

2

4

6

0

9

11

13

15

16

17

Surrogate Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: TCLP

		Percent Surrogate Recovery (Acceptance Limits)								
		TBP	FBP	2FP	NBZ	TPHd14	PHL			
Lab Sample ID	Client Sample ID	(31-132)	(29-112)	(21-114)	(26-110)	(20-141)	(16-117)			
860-26460-1	IDW-WS01-051922	96	60	47	54	73	36			
860-26460-2	IDW-WS02-051922	83	50	48	41	67	37			
860-26460-3	IDW-WS03-051922	100	67	51	59	80	41			
LB 860-53687/1-B	Method Blank	18 X	23 X	16 X	23 X	21	13 X			

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrog	gate Recovery (Acceptance Limits)
		1CO	ОТРН	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
860-26460-1	IDW-WS01-051922	85	92	
860-26460-2	IDW-WS02-051922	93	103	
860-26460-2 MS	IDW-WS02-051922	108	99	
860-26460-2 MSD	IDW-WS02-051922	105	94	
860-26460-3	IDW-WS03-051922	91	101	
LCS 860-53809/2-A	Lab Control Sample	106	96	
LCSD 860-53809/3-A	Lab Control Sample Dup	107	98	
MB 860-53809/1-A	Method Blank	92	98	

Surrogate Legend

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Eurofins Houston

Job ID: 860-26460-1

5

0

10

12

4 4

15

17

Client: Jacobs Engineering Group, Inc. Job ID: 860-26460-1

Project/Site: STC Silber Rd IDW

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-53937/10

Matrix: Solid

Analysis Batch: 53937

Client Sample ID: Method Blank

Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.000504	U	0.00500	0.000504	mg/L			05/23/22 09:53	1
1,1,2,2-Tetrachloroethane	0.000284	U	0.00100	0.000284	mg/L			05/23/22 09:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.000364	U	0.0100	0.000364	mg/L			05/23/22 09:53	1
1,1,2-Trichloroethane	0.000228	U	0.00100	0.000228	mg/L			05/23/22 09:53	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/23/22 09:53	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/23/22 09:53	1
1,2,4-Trichlorobenzene	0.00200	U	0.00500	0.00200	mg/L			05/23/22 09:53	1
1,2-Dibromo-3-Chloropropane	0.000319	U	0.00500	0.000319	mg/L			05/23/22 09:53	1
1,2-Dibromoethane	0.000337	U	0.00500	0.000337	mg/L			05/23/22 09:53	1
1,2-Dichlorobenzene	0.000236	U	0.00100	0.000236	mg/L			05/23/22 09:53	1
1,2-Dichloroethane	0.000285	U	0.00100	0.000285	mg/L			05/23/22 09:53	1
1,2-Dichloropropane	0.000396	U	0.00500	0.000396	mg/L			05/23/22 09:53	1
1,3-Dichlorobenzene	0.000197	U	0.00100	0.000197	mg/L			05/23/22 09:53	1
1,4-Dichlorobenzene	0.000199	U	0.00100		-			05/23/22 09:53	1
2-Butanone (MEK)	0.00270	U	0.0500	0.00270	mg/L			05/23/22 09:53	1
2-Hexanone	0.000789	U	0.0500	0.000789				05/23/22 09:53	1
4-Methyl-2-pentanone (MIBK)	0.00106	U	0.0500	0.00106	-			05/23/22 09:53	1
Acetone	0.0123	U	0.100	0.0123	-			05/23/22 09:53	1
Benzene	0.000214	U	0.00100	0.000214	mg/L			05/23/22 09:53	1
Chlorobromomethane	0.000209	U	0.00100	0.000209	mg/L			05/23/22 09:53	1
Bromodichloromethane	0.000231	U	0.00100	0.000231	_			05/23/22 09:53	1
Bromoform	0.000630	U	0.00500	0.000630				05/23/22 09:53	1
Bromomethane	0.00105	U	0.00500	0.00105	-			05/23/22 09:53	1
Carbon disulfide	0.000373	U	0.00500	0.000373	-			05/23/22 09:53	1
Carbon tetrachloride	0.000423	U	0.00500	0.000423				05/23/22 09:53	1
Chlorobenzene	0.000159	U	0.00100	0.000159	_			05/23/22 09:53	1
Chloroethane	0.000433	U	0.0100	0.000433	-			05/23/22 09:53	1
Chloroform	0.000259	U	0.00100	0.000259				05/23/22 09:53	1
Chloromethane	0.000318		0.0100	0.000318	-			05/23/22 09:53	1
Cyclohexane	0.000474	U	0.00500	0.000474	-			05/23/22 09:53	1
Dibromochloromethane	0.000739	U	0.00500	0.000739				05/23/22 09:53	1
Dichlorodifluoromethane	0.000316	U	0.00100	0.000316	-			05/23/22 09:53	1
Ethylbenzene	0.000515		0.00100	0.000515	-			05/23/22 09:53	1
Methyl tert-butyl ether	0.000571		0.00500	0.000571				05/23/22 09:53	1
Methylene Chloride	0.00191		0.00500	0.00191	Ū			05/23/22 09:53	1
Styrene	0.000623		0.00100	0.000623	_			05/23/22 09:53	1
Tetrachloroethene	0.000500		0.00100	0.000500				05/23/22 09:53	
Toluene	0.000500		0.00100	0.000500	-			05/23/22 09:53	1
Trichloroethene	0.000424		0.00500	0.000424	-			05/23/22 09:53	1
Vinyl acetate	0.00357		0.0200	0.00357				05/23/22 09:53	
Vinyl chloride	0.000234		0.00200	0.000234	-			05/23/22 09:53	1
Xylenes, Total	0.000330		0.0100	0.000330	-			05/23/22 09:53	1
cis-1,2-Dichloroethene	0.000174		0.00100	0.000174				05/23/22 09:53	
cis-1,3-Dichloropropene	0.000174		0.00500	0.000690	-			05/23/22 09:53	1
Isopropylbenzene	0.000161		0.00300	0.000161	•			05/23/22 09:53	1
m-Xylene & p-Xylene	0.000330		0.0100	0.000330				05/23/22 09:53	
o-Xylene	0.000330		0.00100	0.000330	-			05/23/22 09:53	1
trans-1,2-Dichloroethene	0.000152		0.00100	0.000152	_			05/23/22 09:53	1

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 860-53937/10

Lab Sample ID: LCS 860-53937/3

Matrix: Solid

Ethylbenzene

Methyl tert-butyl ether

Methylene Chloride

Analysis Batch: 53937

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	0.000752	Ū	0.00500	0.000752	mg/L			05/23/22 09:53	1

	MB	МВ			
Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		63 - 144	05/23/22 09:53	1
4-Bromofluorobenzene (Surr)	97		74 - 124	05/23/22 09:53	1
Dibromofluoromethane (Surr)	99		75 - 131	05/23/22 09:53	1
Toluene-d8 (Surr)	97		80 - 117	05/23/22 09:53	1

Client Sample ID: Lab Control Sample

Matrix: Solid							Prep Type: Total/N
Analysis Batch: 53937							
	Spike	LCS I			_		%Rec
Analyte	Added	Result (Qualifier	Unit	<u>D</u>	%Rec	Limits
1,1,1-Trichloroethane	0.0500	0.05197		mg/L		104	75 - 125
1,1,2,2-Tetrachloroethane	0.0500	0.04828		mg/L		97	74 - 125
1,1,2-Trichloro-1,2,2-trifluoroetha	0.0500	0.05297		mg/L		106	60 - 140
ne	0.0500	0.05040				101	75 - 127
1,1,2-Trichloroethane	0.0500 0.0500	0.05049 0.04952		mg/L		101 99	75 - 127 72 - 125
1,1-Dichloroethane				mg/L			
1,1-Dichloroethene	0.0500	0.05350		mg/L		107	59 - 172
1,2,4-Trichlorobenzene	0.0500	0.05001		mg/L		100	75 - 135 59 - 125
1,2-Dibromo-3-Chloropropane	0.0500	0.05248		mg/L		105	73 - 125
1,2-Dibromoethane	0.0500	0.05223		mg/L		104	
1,2-Dichlorobenzene	0.0500	0.05090		mg/L		102	75 ₋ 125
1,2-Dichloroethane	0.0500	0.05015		mg/L		100	68 - 127
1,2-Dichloropropane	0.0500	0.05106		mg/L		102	74 - 125
1,3-Dichlorobenzene	0.0500	0.05078		mg/L		102	75 - 125
1,4-Dichlorobenzene	0.0500	0.04972		mg/L		99	75 - 125
2-Butanone (MEK)	0.250	0.2558		mg/L		102	60 - 140
2-Hexanone	0.250	0.2471		mg/L		99	60 - 140
4-Methyl-2-pentanone (MIBK)	0.250	0.2491		mg/L		100	60 - 140
Acetone	0.250	0.2250		mg/L		90	60 - 140
Benzene	0.0500	0.05211		mg/L		104	66 - 142
Chlorobromomethane	0.0500	0.05196		mg/L		104	60 - 140
Bromodichloromethane	0.0500	0.05277		mg/L		106	75 - 125
Bromoform	0.0500	0.05483		mg/L		110	75 - 125
Bromomethane	0.0500	0.05033		mg/L		101	60 - 140
Carbon disulfide	0.0500	0.04947		mg/L		99	60 - 140
Carbon tetrachloride	0.0500	0.04577		mg/L		92	62 - 125
Chlorobenzene	0.0500	0.05201		mg/L		104	60 - 133
Chloroethane	0.0500	0.05310		mg/L		106	60 - 140
Chloroform	0.0500	0.05204		mg/L		104	70 - 130
Chloromethane	0.0500	0.05236		mg/L		105	60 - 140
Cyclohexane	0.0500	0.04583		mg/L		92	70 - 130
Dibromochloromethane	0.0500	0.05346		mg/L		107	73 - 125
Dichlorodifluoromethane	0.0500	0.05713		mg/L		114	70 - 130
		0.05040				404	75 405

Eurofins Houston

104

100

99

mg/L

mg/L

mg/L

75 - 125

65 - 135

75 - 125

0.05218

0.04985

0.04968

0.0500

0.0500

0.0500

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 860-53937/3

Matrix: Solid

Analysis Batch: 53937

Client Sample ID: Lab Control Sample

Prep Type: Total/NA %Rec

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Styrene	0.0500	0.05316		mg/L		106	75 - 125	
Tetrachloroethene	0.0500	0.05397		mg/L		108	71 - 125	
Toluene	0.0500	0.05190		mg/L		104	59 - 139	
Trichloroethene	0.0500	0.05326		mg/L		107	62 - 137	
Vinyl acetate	0.250	0.2480		mg/L		99	60 - 140	
Vinyl chloride	0.0500	0.05368		mg/L		107	60 - 140	
Xylenes, Total	0.100	0.1038		mg/L		104	75 - 125	
cis-1,2-Dichloroethene	0.0500	0.05169		mg/L		103	75 - 125	
cis-1,3-Dichloropropene	0.0500	0.05295		mg/L		106	74 - 125	
Isopropylbenzene	0.0500	0.05290		mg/L		106	75 - 125	
m-Xylene & p-Xylene	0.0500	0.05212		mg/L		104	75 - 125	
o-Xylene	0.0500	0.05169		mg/L		103	75 - 125	
trans-1,2-Dichloroethene	0.0500	0.05110		mg/L		102	75 - 125	
trans-1,3-Dichloropropene	0.0500	0.05186		mg/L		104	66 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		63 - 144
4-Bromofluorobenzene (Surr)	99		74 - 124
Dibromofluoromethane (Surr)	99		75 - 131
Toluene-d8 (Surr)	97		80 - 117

Lab Sample ID: LCSD 860-53937/4

Matrix: Solid

Analysis Batch: 53937

Client Sample	ID: Lab	Control	Sample	Dup
		Prep Ty	pe: Tota	I/NA

Analysis Daton. 33307	0 11						0/ 🗖		222
	Spike	_	LCSD		_		%Rec		RPD
Analyte	Added		Qualifier	Unit	D .	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	0.0500	0.05238		mg/L		105	75 - 125	1	25
1,1,2,2-Tetrachloroethane	0.0500	0.04567		mg/L		91	74 - 125	6	25
1,1,2-Trichloro-1,2,2-trifluoroetha	0.0500	0.05459		mg/L		109	60 - 140	3	25
ne									
1,1,2-Trichloroethane	0.0500	0.04948		mg/L		99	75 - 127	2	25
1,1-Dichloroethane	0.0500	0.05128		mg/L		103	72 - 125	3	25
1,1-Dichloroethene	0.0500	0.05448		mg/L		109	59 - 172	2	25
1,2,4-Trichlorobenzene	0.0500	0.04754		mg/L		95	75 - 135	5	25
1,2-Dibromo-3-Chloropropane	0.0500	0.04810		mg/L		96	59 - 125	9	25
1,2-Dibromoethane	0.0500	0.04993		mg/L		100	73 - 125	4	25
1,2-Dichlorobenzene	0.0500	0.04813		mg/L		96	75 - 125	6	25
1,2-Dichloroethane	0.0500	0.04962		mg/L		99	68 - 127	1	25
1,2-Dichloropropane	0.0500	0.05091		mg/L		102	74 - 125	0	25
1,3-Dichlorobenzene	0.0500	0.04870		mg/L		97	75 - 125	4	25
1,4-Dichlorobenzene	0.0500	0.04760		mg/L		95	75 - 125	4	25
2-Butanone (MEK)	0.250	0.2514		mg/L		101	60 - 140	2	25
2-Hexanone	0.250	0.2424		mg/L		97	60 - 140	2	25
4-Methyl-2-pentanone (MIBK)	0.250	0.2421		mg/L		97	60 - 140	3	25
Acetone	0.250	0.2255		mg/L		90	60 - 140	0	25
Benzene	0.0500	0.05145		mg/L		103	66 - 142	1	25
Chlorobromomethane	0.0500	0.05154		mg/L		103	60 - 140	1	25
Bromodichloromethane	0.0500	0.05131		mg/L		103	75 - 125	3	25
Bromoform	0.0500	0.05354		mg/L		107	75 - 125	2	25

Eurofins Houston

Page 24 of 58

6/24/2022 (Rev. 1)

Client: Jacobs Engineering Group, Inc. Job ID: 860-26460-1 Project/Site: STC Silber Rd IDW

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-53937/4

Matrix: Solid Analysis Batch: 53937 **Client Sample ID: Lab Control Sample Dup**

Prep Type: Total/NA

	Spike	LCSD LCS	SD				%Rec		RPD
Analyte	Added	Result Qua	alifier	Unit	D	%Rec	Limits	RPD	Limit
Bromomethane	0.0500	0.05209		mg/L		104	60 - 140	3	25
Carbon disulfide	0.0500	0.05080		mg/L		102	60 - 140	3	25
Carbon tetrachloride	0.0500	0.04671		mg/L		93	62 - 125	2	25
Chlorobenzene	0.0500	0.05112		mg/L		102	60 - 133	2	25
Chloroethane	0.0500	0.05550		mg/L		111	60 - 140	4	25
Chloroform	0.0500	0.05101		mg/L		102	70 - 130	2	25
Chloromethane	0.0500	0.05459		mg/L		109	60 - 140	4	25
Cyclohexane	0.0500	0.04697		mg/L		94	70 - 130	2	25
Dibromochloromethane	0.0500	0.05172		mg/L		103	73 - 125	3	25
Dichlorodifluoromethane	0.0500	0.05797		mg/L		116	70 - 130	1	25
Ethylbenzene	0.0500	0.05190		mg/L		104	75 - 125	1	25
Methyl tert-butyl ether	0.0500	0.04957		mg/L		99	65 - 135	1	25
Methylene Chloride	0.0500	0.04966		mg/L		99	75 - 125	0	25
Styrene	0.0500	0.05149		mg/L		103	75 - 125	3	25
Tetrachloroethene	0.0500	0.05475		mg/L		110	71 - 125	1	25
Toluene	0.0500	0.05109		mg/L		102	59 - 139	2	25
Trichloroethene	0.0500	0.05426		mg/L		109	62 - 137	2	25
Vinyl acetate	0.250	0.2445		mg/L		98	60 - 140	1	25
Vinyl chloride	0.0500	0.05617		mg/L		112	60 - 140	5	25
Xylenes, Total	0.100	0.1032		mg/L		103	75 - 125	1	25
cis-1,2-Dichloroethene	0.0500	0.05116		mg/L		102	75 - 125	1	25
cis-1,3-Dichloropropene	0.0500	0.05129		mg/L		103	74 - 125	3	25
Isopropylbenzene	0.0500	0.05338		mg/L		107	75 - 125	1	25
m-Xylene & p-Xylene	0.0500	0.05260		mg/L		105	75 - 125	1	25
o-Xylene	0.0500	0.05057		mg/L		101	75 - 125	2	25
trans-1,2-Dichloroethene	0.0500	0.05171		mg/L		103	75 - 125	1	25
trans-1,3-Dichloropropene	0.0500	0.05029		mg/L		101	66 - 125	3	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		63 - 144
4-Bromofluorobenzene (Surr)	95		74 - 124
Dibromofluoromethane (Surr)	99		75 - 131
Toluene-d8 (Surr)	97		80 - 117

Lab Sample ID: MB 860-54052/9

Matrix: Solid

Analysis Batch: 54052

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.000504	U	0.00500	0.000504	mg/L			05/23/22 21:10	1
1,1,2,2-Tetrachloroethane	0.000284	U	0.00100	0.000284	mg/L			05/23/22 21:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.000364	U	0.0100	0.000364	mg/L			05/23/22 21:10	1
1,1,2-Trichloroethane	0.000228	U	0.00100	0.000228	mg/L			05/23/22 21:10	1
1,1-Dichloroethane	0.000244	U	0.00100	0.000244	mg/L			05/23/22 21:10	1
1,1-Dichloroethene	0.000216	U	0.00100	0.000216	mg/L			05/23/22 21:10	1
1,2,4-Trichlorobenzene	0.00200	U	0.00500	0.00200	mg/L			05/23/22 21:10	1
1,2-Dibromo-3-Chloropropane	0.000319	U	0.00500	0.000319	mg/L			05/23/22 21:10	1
1,2-Dibromoethane	0.000337	U	0.00500	0.000337	mg/L			05/23/22 21:10	1

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26460-1

Project/Site: STC Silber Rd IDW

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

%Recovery Qualifier

96

97

97

98

Lab Sample ID: MB 860-54052/9 Client Sample ID: Method Blank

Matrix: Solid

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analysis Batch: 54052

·	enone campio is: motifica siaint
	Prep Type: Total/NA

		MB				_			
Analyte		Qualifier	MQL (Adj)		Unit	<u>D</u> .	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	0.000236		0.00100	0.000236				05/23/22 21:10	1
1,2-Dichloroethane	0.000285		0.00100	0.000285	J			05/23/22 21:10	1
1,2-Dichloropropane	0.000396		0.00500	0.000396				05/23/22 21:10	1
1,3-Dichlorobenzene	0.000197		0.00100	0.000197	-			05/23/22 21:10	1
1,4-Dichlorobenzene	0.000199		0.00100	0.000199	J			05/23/22 21:10	1
2-Butanone (MEK)	0.00270		0.0500	0.00270				05/23/22 21:10	1
2-Hexanone	0.000789		0.0500	0.000789	-			05/23/22 21:10	1
4-Methyl-2-pentanone (MIBK)	0.00106		0.0500	0.00106	U			05/23/22 21:10	1
Acetone	0.0123	U	0.100	0.0123				05/23/22 21:10	1
Benzene	0.000214		0.00100	0.000214	mg/L			05/23/22 21:10	1
Chlorobromomethane	0.000209	U	0.00100	0.000209	mg/L			05/23/22 21:10	1
Bromodichloromethane	0.000231	U	0.00100	0.000231	mg/L			05/23/22 21:10	1
Bromoform	0.000630	U	0.00500	0.000630	mg/L			05/23/22 21:10	1
Bromomethane	0.00105	U	0.00500	0.00105	mg/L			05/23/22 21:10	1
Carbon disulfide	0.000373	U	0.00500	0.000373	mg/L			05/23/22 21:10	1
Carbon tetrachloride	0.000423	U	0.00500	0.000423	mg/L			05/23/22 21:10	1
Chlorobenzene	0.000159	U	0.00100	0.000159	mg/L			05/23/22 21:10	1
Chloroethane	0.000433	U	0.0100	0.000433	mg/L			05/23/22 21:10	1
Chloroform	0.000259	U	0.00100	0.000259	mg/L			05/23/22 21:10	1
Chloromethane	0.000318	U	0.0100	0.000318	mg/L			05/23/22 21:10	1
Cyclohexane	0.000474	U	0.00500	0.000474	mg/L			05/23/22 21:10	1
Dibromochloromethane	0.000739	U	0.00500	0.000739	mg/L			05/23/22 21:10	1
Dichlorodifluoromethane	0.000316	U	0.00100	0.000316	mg/L			05/23/22 21:10	1
Ethylbenzene	0.000515	U	0.00100	0.000515	mg/L			05/23/22 21:10	1
Methyl tert-butyl ether	0.000571	U	0.00500	0.000571	mg/L			05/23/22 21:10	1
Methylene Chloride	0.00191	U	0.00500	0.00191	mg/L			05/23/22 21:10	1
Styrene	0.000623	U	0.00100	0.000623	-			05/23/22 21:10	1
Tetrachloroethene	0.000500		0.00100	0.000500				05/23/22 21:10	1
Toluene	0.000500		0.00100	0.000500	Ū			05/23/22 21:10	1
Trichloroethene	0.000424		0.00500	0.000424	-			05/23/22 21:10	1
Vinyl acetate	0.00357		0.0200	0.00357				05/23/22 21:10	1
Vinyl chloride	0.000234		0.00200	0.000234	J			05/23/22 21:10	1
Xylenes, Total	0.000330		0.0100	0.000330	-			05/23/22 21:10	1
cis-1,2-Dichloroethene	0.000174		0.00100	0.000174				05/23/22 21:10	· · · · · · · · · · · · · · · · · · ·
cis-1,3-Dichloropropene	0.000690		0.00100	0.000690	Ū			05/23/22 21:10	1
Isopropylbenzene	0.000161		0.00300	0.000030	-			05/23/22 21:10	1
m-Xylene & p-Xylene	0.000330		0.00100	0.000330				05/23/22 21:10	
o-Xylene	0.000330		0.0100	0.000330	J			05/23/22 21:10	1
•	0.000192		0.00100	0.000192	J			05/23/22 21:10	1 1
trans-1,2-Dichloroethene									1
trans-1,3-Dichloropropene	0.000752	U	0.00500	0.000752	mg/L			05/23/22 21:10	1
	MB	MB							
Surrogato	% Pocovory	Qualifier	Limite				Droparod	Analyzod	Dil Esc

Limits

63 - 144

74 - 124

75 - 131

80 - 117

Eurofins Houston

Dil Fac

Analyzed

05/23/22 21:10

05/23/22 21:10

05/23/22 21:10

05/23/22 21:10

Prepared

3

4

6

8

9

11

13

15

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 860-54052/3

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 54052						riop type: rotal
	Spike	LCS			- ~-	%Rec
Analyte	Added _		Qualifier	Unit	<u>D</u> %Rec	Limits
1,1,1-Trichloroethane	0.0500	0.05736		mg/L	115	75 - 125
1,1,2,2-Tetrachloroethane	0.0500	0.05227		mg/L	105	74 - 125
1,1,2-Trichloro-1,2,2-trifluoroetha	0.0500	0.05552		mg/L	111	60 - 140
ne 1,1,2-Trichloroethane	0.0500	0.05543		mg/L	111	75 - 127
1,1-Dichloroethane	0.0500	0.05678		mg/L	114	72 - 125
1,1-Dichloroethene	0.0500	0.05831		mg/L	117	59 - 172
1,2,4-Trichlorobenzene	0.0500	0.05301		mg/L	106	75 - 135
1,2-Dibromo-3-Chloropropane	0.0500	0.05328		mg/L	107	59 - 125
1,2-Dibromoethane	0.0500	0.05608		mg/L	112	73 - 125
1,2-Dichlorobenzene	0.0500	0.05427		mg/L	109	75 - 125
1,2-Dichloroethane	0.0500	0.05490		mg/L	110	68 - 127
1,2-Dichloropropane	0.0500	0.05761		mg/L	115	74 - 125
1,3-Dichlorobenzene	0.0500	0.05499		mg/L	110	75 - 125
1,4-Dichlorobenzene	0.0500	0.05378		mg/L	108	75 - 125
2-Butanone (MEK)	0.250	0.2728		mg/L	109	60 - 140
2-Hexanone	0.250	0.2675		mg/L	107	60 - 140
4-Methyl-2-pentanone (MIBK)	0.250	0.2702		mg/L	108	60 - 140
Acetone	0.250	0.2411		mg/L	96	60 - 140
Benzene	0.0500	0.05742		mg/L	115	66 - 142
Chlorobromomethane	0.0500	0.05688		mg/L	114	60 - 140
Bromodichloromethane	0.0500	0.05728		mg/L	115	75 - 125
Bromoform	0.0500	0.05911		mg/L	118	75 - 125
Bromomethane	0.0500	0.05628		mg/L	113	60 - 140
Carbon disulfide	0.0500	0.05299		mg/L	106	60 - 140
Carbon tetrachloride	0.0500	0.05006		mg/L	100	62 - 125
Chlorobenzene	0.0500	0.05726		mg/L	115	60 - 133
Chloroethane	0.0500	0.05756		mg/L	115	60 - 140
Chloroform	0.0500	0.05752		mg/L	115	70 - 130
Chloromethane	0.0500	0.05676		mg/L	114	60 - 140
Cyclohexane	0.0500	0.04535		mg/L	91	70 - 130
Dibromochloromethane	0.0500	0.05804		mg/L	116	73 - 125
Dichlorodifluoromethane	0.0500	0.05233			105	70 - 130
	0.0500	0.05233		mg/L	116	70 - 130 75 - 125
Ethylbenzene Methyl text but diether				mg/L		
Methyl tert-butyl ether Methylene Chloride	0.0500	0.05449		mg/L	109	65 - 135 75 - 125
•	0.0500	0.05564		mg/L	111	
Styrene	0.0500	0.05854		mg/L	117	75 - 125
Tetrachloroethene	0.0500	0.05873		mg/L	117	71 - 125
Toluene	0.0500	0.05701		mg/L	114	59 - 139
Trichloroethene	0.0500	0.05881		mg/L	118	62 - 137
Vinyl acetate	0.250	0.2701		mg/L	108	60 - 140
Vinyl chloride	0.0500	0.05711		mg/L	114	60 - 140
Xylenes, Total	0.100	0.1155		mg/L	116	75 - 125
cis-1,2-Dichloroethene	0.0500	0.05688		mg/L	114	75 - 125
cis-1,3-Dichloropropene	0.0500	0.05647		mg/L	113	74 - 125
Isopropylbenzene	0.0500	0.05857		mg/L	117	75 - 125
m-Xylene & p-Xylene	0.0500	0.05781		mg/L	116	75 - 125
o-Xylene	0.0500	0.05772		mg/L	115	75 - 125
trans-1,2-Dichloroethene	0.0500	0.05660		mg/L	113	75 - 125

Eurofins Houston

3

4

6

8

J

11

13

15

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 860-54052/3

Lab Sample ID: LCSD 860-54052/4

Matrix: Solid

Analysis Batch: 54052

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS %Rec Spike Added Result Qualifier Unit %Rec Limits 0.0500 trans-1,3-Dichloropropene 0.05506 mg/L 110 66 - 125

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 95 63 - 144 4-Bromofluorobenzene (Surr) 96 74 - 124 Dibromofluoromethane (Surr) 99 75 - 131 Toluene-d8 (Surr) 99 80 - 117

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 54052

Analysis Baton: 04002	Spike	I CCD	LCSD				%Rec		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	0.0500	0.05732	- Cuamor	mg/L		115	75 - 125	0	25
1,1,2,2-Tetrachloroethane	0.0500	0.05288		mg/L		106	74 - 125	1	25
1,1,2-Trichloro-1,2,2-trifluoroetha	0.0500	0.05428		mg/L		109	60 - 140	2	25
ne				9/ =				_	
1,1,2-Trichloroethane	0.0500	0.05595		mg/L		112	75 - 127	1	25
1,1-Dichloroethane	0.0500	0.05701		mg/L		114	72 - 125	0	25
1,1-Dichloroethene	0.0500	0.05873		mg/L		117	59 - 172	1	25
1,2,4-Trichlorobenzene	0.0500	0.05453		mg/L		109	75 - 135	3	25
1,2-Dibromo-3-Chloropropane	0.0500	0.05534		mg/L		111	59 - 125	4	25
1,2-Dibromoethane	0.0500	0.05555		mg/L		111	73 - 125	1	25
1,2-Dichlorobenzene	0.0500	0.05503		mg/L		110	75 - 125	1	25
1,2-Dichloroethane	0.0500	0.05384		mg/L		108	68 - 127	2	25
1,2-Dichloropropane	0.0500	0.05707		mg/L		114	74 - 125	1	25
1,3-Dichlorobenzene	0.0500	0.05571		mg/L		111	75 - 125	1	25
1,4-Dichlorobenzene	0.0500	0.05471		mg/L		109	75 - 125	2	25
2-Butanone (MEK)	0.250	0.2703		mg/L		108	60 - 140	1	25
2-Hexanone	0.250	0.2651		mg/L		106	60 - 140	1	25
4-Methyl-2-pentanone (MIBK)	0.250	0.2706		mg/L		108	60 - 140	0	25
Acetone	0.250	0.2410		mg/L		96	60 - 140	0	25
Benzene	0.0500	0.05729		mg/L		115	66 - 142	0	25
Chlorobromomethane	0.0500	0.05662		mg/L		113	60 - 140	0	25
Bromodichloromethane	0.0500	0.05771		mg/L		115	75 - 125	1	25
Bromoform	0.0500	0.05881		mg/L		118	75 - 125	1	25
Bromomethane	0.0500	0.05556		mg/L		111	60 - 140	1	25
Carbon disulfide	0.0500	0.05332		mg/L		107	60 - 140	1	25
Carbon tetrachloride	0.0500	0.04941		mg/L		99	62 - 125	1	25
Chlorobenzene	0.0500	0.05734		mg/L		115	60 - 133	0	25
Chloroethane	0.0500	0.05784		mg/L		116	60 - 140	0	25
Chloroform	0.0500	0.05755		mg/L		115	70 - 130	0	25
Chloromethane	0.0500	0.05658		mg/L		113	60 - 140	0	25
Cyclohexane	0.0500	0.04635		mg/L		93	70 - 130	2	25
Dibromochloromethane	0.0500	0.05728		mg/L		115	73 - 125	1	25
Dichlorodifluoromethane	0.0500	0.05232		mg/L		105	70 - 130	0	25
Ethylbenzene	0.0500	0.05761		mg/L		115	75 - 125	1	25
Methyl tert-butyl ether	0.0500	0.05497		mg/L		110	65 - 135	1	25
Methylene Chloride	0.0500	0.05572		mg/L		111	75 - 125	0	25

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-54052/4

Matrix: Solid

Analysis Batch: 54052

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualific	er Unit	D	%Rec	Limits	RPD	Limit
Styrene	0.0500	0.05799	mg/L		116	75 - 125	1	25
Tetrachloroethene	0.0500	0.05737	mg/L		115	71 - 125	2	25
Toluene	0.0500	0.05669	mg/L		113	59 - 139	1	25
Trichloroethene	0.0500	0.05807	mg/L		116	62 - 137	1	25
Vinyl acetate	0.250	0.2709	mg/L		108	60 - 140	0	25
Vinyl chloride	0.0500	0.05858	mg/L		117	60 - 140	3	25
Xylenes, Total	0.100	0.1147	mg/L		115	75 - 125	1	25
cis-1,2-Dichloroethene	0.0500	0.05675	mg/L		113	75 - 125	0	25
cis-1,3-Dichloropropene	0.0500	0.05708	mg/L		114	74 - 125	1	25
Isopropylbenzene	0.0500	0.05848	mg/L		117	75 - 125	0	25
m-Xylene & p-Xylene	0.0500	0.05764	mg/L		115	75 - 125	0	25
o-Xylene	0.0500	0.05710	mg/L		114	75 - 125	1	25
trans-1,2-Dichloroethene	0.0500	0.05759	mg/L		115	75 - 125	2	25
trans-1,3-Dichloropropene	0.0500	0.05518	mg/L		110	66 - 125	0	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		63 - 144
4-Bromofluorobenzene (Surr)	98		74 - 124
Dibromofluoromethane (Surr)	98		75 - 131
Toluene-d8 (Surr)	98		80 - 117

Lab Sample ID: LB 860-53848/1-A

Matrix: Solid

Analysis Batch: 53937

Client Sample ID: Method Blank

Prep Type: TCLP

	LB	LB							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.00252	U	0.0250	0.00252	mg/L			05/23/22 10:14	5
1,1,2,2-Tetrachloroethane	0.00142	U	0.00500	0.00142	mg/L			05/23/22 10:14	5
1,1,2-Trichloro-1,2,2-trifluoroethane	0.00182	U	0.0500	0.00182	mg/L			05/23/22 10:14	5
1,1,2-Trichloroethane	0.00114	U	0.00500	0.00114	mg/L			05/23/22 10:14	5
1,1-Dichloroethane	0.00122	U	0.00500	0.00122	mg/L			05/23/22 10:14	5
1,1-Dichloroethene	0.00108	U	0.00500	0.00108	mg/L			05/23/22 10:14	5
1,2,4-Trichlorobenzene	0.0100	U	0.0250	0.0100	mg/L			05/23/22 10:14	5
1,2-Dibromo-3-Chloropropane	0.00160	U	0.0250	0.00160	mg/L			05/23/22 10:14	5
1,2-Dibromoethane	0.00168	U	0.0250	0.00168	mg/L			05/23/22 10:14	5
1,2-Dichlorobenzene	0.00118	U	0.00500	0.00118	mg/L			05/23/22 10:14	5
1,2-Dichloroethane	0.00143	U	0.00500	0.00143	mg/L			05/23/22 10:14	5
1,2-Dichloropropane	0.00198	U	0.0250	0.00198	mg/L			05/23/22 10:14	5
1,3-Dichlorobenzene	0.000983	U	0.00500	0.000983	mg/L			05/23/22 10:14	5
1,4-Dichlorobenzene	0.000994	U	0.00500	0.000994	mg/L			05/23/22 10:14	5
2-Butanone (MEK)	0.0135	U	0.250	0.0135	mg/L			05/23/22 10:14	5
2-Hexanone	0.00395	U	0.250	0.00395	mg/L			05/23/22 10:14	5
4-Methyl-2-pentanone (MIBK)	0.00532	U	0.250	0.00532	mg/L			05/23/22 10:14	5
Acetone	0.0616	U	0.500	0.0616	mg/L			05/23/22 10:14	5
Benzene	0.00107	U	0.00500	0.00107	mg/L			05/23/22 10:14	5
Chlorobromomethane	0.00105	U	0.00500	0.00105	mg/L			05/23/22 10:14	5
Bromodichloromethane	0.00115	U	0.00500	0.00115	mg/L			05/23/22 10:14	5
Bromoform	0.00315	U	0.0250	0.00315	mg/L			05/23/22 10:14	5

MQL (Adi)

SDL Unit

Client: Jacobs Engineering Group, Inc. Job ID: 860-26460-1

Project/Site: STC Silber Rd IDW

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LB LB

Result Qualifier

Lab Sample ID: LB 860-53848/1-A

Matrix: Solid

Analyte

Analysis Batch: 53937

Client Sample ID: Method Blank

Prepared

Prep Type: TCLP

		5
Analyzad	Dil Fac	
Analyzed	DII Fac	

Analyte	Result	Qualifier	WQL (Auj)	SDL	Ullit	U	riepaieu	Allalyzeu	DII Fac
Bromomethane	0.00527	U	0.0250	0.00527	mg/L			05/23/22 10:14	5
Carbon disulfide	0.00187	U	0.0250	0.00187	mg/L			05/23/22 10:14	5
Carbon tetrachloride	0.00211	U	0.0250	0.00211	mg/L			05/23/22 10:14	5
Chlorobenzene	0.000795	U	0.00500	0.000795	mg/L			05/23/22 10:14	5
Chloroethane	0.00216	U	0.0500	0.00216	mg/L			05/23/22 10:14	5
Chloroform	0.00129	U	0.00500	0.00129	mg/L			05/23/22 10:14	5
Chloromethane	0.00159	U	0.0500	0.00159	mg/L			05/23/22 10:14	5
Cyclohexane	0.00237	U	0.0250	0.00237	mg/L			05/23/22 10:14	5
Dibromochloromethane	0.00370	U	0.0250	0.00370	mg/L			05/23/22 10:14	5
Dichlorodifluoromethane	0.00158	U	0.00500	0.00158	mg/L			05/23/22 10:14	5
Ethylbenzene	0.00257	U	0.00500	0.00257	mg/L			05/23/22 10:14	5
Methyl tert-butyl ether	0.00285	U	0.0250	0.00285	mg/L			05/23/22 10:14	5
Methylene Chloride	0.00956	U	0.0250	0.00956	mg/L			05/23/22 10:14	5
Styrene	0.00312	U	0.00500	0.00312	mg/L			05/23/22 10:14	5
Tetrachloroethene	0.00250	U	0.00500	0.00250	mg/L			05/23/22 10:14	5
Toluene	0.00250	U	0.00500	0.00250	mg/L			05/23/22 10:14	5
Trichloroethene	0.00212	U	0.0250	0.00212	mg/L			05/23/22 10:14	5
Vinyl acetate	0.0178	U	0.100	0.0178	mg/L			05/23/22 10:14	5
Vinyl chloride	0.00117	U	0.0100	0.00117	mg/L			05/23/22 10:14	5
Xylenes, Total	0.00165	U	0.0500	0.00165	mg/L			05/23/22 10:14	5
cis-1,2-Dichloroethene	0.000870	U	0.00500	0.000870	mg/L			05/23/22 10:14	5
cis-1,3-Dichloropropene	0.00345	U	0.0250	0.00345	mg/L			05/23/22 10:14	5
Isopropylbenzene	0.000803	U	0.00500	0.000803	mg/L			05/23/22 10:14	5
m-Xylene & p-Xylene	0.00165	U	0.0500	0.00165	mg/L			05/23/22 10:14	5
o-Xylene	0.000958	U	0.00500	0.000958	mg/L			05/23/22 10:14	5

LB LB

0.00128 U

0.00376 U

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	63 - 144		05/23/22 10:14	5
4-Bromofluorobenzene (Surr)	97	74 - 124		05/23/22 10:14	5
Dibromofluoromethane (Surr)	98	75 - 131		05/23/22 10:14	5
Toluene-d8 (Surr)	99	80 - 117		05/23/22 10:14	5

0.00500

0.0250

0.00128 mg/L

0.00376 mg/L

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-53840/1-A

Matrix: Solid

Analysis Batch: 53944

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Client Sample ID: Method Blank
Prep Type: Total/NA
Drop Ratch: 52940

05/23/22 10:14

05/23/22 10:14

Prep Batch: 53840

	MB MB							
Analyte Res	ult Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl 0.000	741 U	0.00500	0.000741	mg/L		05/20/22 15:26	05/23/22 13:36	1
2,4,5-Trichlorophenol 0.0009	935 U	0.00500	0.000935	mg/L		05/20/22 15:26	05/23/22 13:36	1
2,4,6-Trichlorophenol 0.0009	946 U	0.00500	0.000946	mg/L		05/20/22 15:26	05/23/22 13:36	1
2,4-Dichlorophenol 0.00	104 U	0.00500	0.00104	mg/L		05/20/22 15:26	05/23/22 13:36	1
2,4-Dimethylphenol 0.0008	891 U	0.00500	0.000891	mg/L		05/20/22 15:26	05/23/22 13:36	1
2,4-Dinitrophenol 0.0006	316 U	0.0100	0.000616	mg/L		05/20/22 15:26	05/23/22 13:36	1
2,4-Dinitrotoluene 0.0009	953 U	0.00500	0.000953	mg/L		05/20/22 15:26	05/23/22 13:36	1
2,6-Dinitrotoluene 0.00	111 U	0.0100	0.00111	mg/L		05/20/22 15:26	05/23/22 13:36	1

Eurofins Houston

Page 30 of 58

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26460-1

Project/Site: STC Silber Rd IDW

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 860-53840/1-A

Matrix: Solid

Analysis Batch: 53944

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 53840

Analysis Batch: 53944	MD	MD						Prep Batch: 538	
Analyte		MB Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Chloronaphthalene	0.000809	U	0.00500	0.000809	mg/L		05/20/22 15:26	05/23/22 13:36	
2-Chlorophenol	0.000842	U	0.00500	0.000842	mg/L		05/20/22 15:26	05/23/22 13:36	
2-Methylnaphthalene	0.000778	U	0.00500	0.000778	mg/L		05/20/22 15:26	05/23/22 13:36	
2-Nitroaniline	0.00107	U	0.0100	0.00107	mg/L		05/20/22 15:26	05/23/22 13:36	
2-Nitrophenol	0.000966	U	0.00500	0.000966	mg/L		05/20/22 15:26	05/23/22 13:36	
2-Methylphenol	0.000914	U	0.00500	0.000914	mg/L		05/20/22 15:26	05/23/22 13:36	
3 & 4 Methylphenol	0.00104	U	0.0100	0.00104	mg/L		05/20/22 15:26	05/23/22 13:36	
3,3'-Dichlorobenzidine	0.000618	U	0.0100	0.000618	mg/L		05/20/22 15:26	05/23/22 13:36	
3-Nitroaniline	0.000787	U	0.0100	0.000787	-		05/20/22 15:26	05/23/22 13:36	
4,6-Dinitro-2-methylphenol	0.000870	U	0.0100	0.000870	-		05/20/22 15:26	05/23/22 13:36	
4-Bromophenyl phenyl ether	0.000948	U	0.00500	0.000948	mg/L		05/20/22 15:26	05/23/22 13:36	
4-Chloroaniline	0.000609	U	0.0100	0.000609	mg/L		05/20/22 15:26	05/23/22 13:36	
4-Chlorophenyl phenyl ether	0.000868	U	0.00500	0.000868	Ū		05/20/22 15:26	05/23/22 13:36	
4-Nitroaniline	0.00116	U	0.0100	0.00116	mg/L		05/20/22 15:26	05/23/22 13:36	
4-Nitrophenol	0.00161	U	0.0100	0.00161	-			05/23/22 13:36	
4-Chloro-3-methylphenol	0.00131		0.0100	0.00131	•			05/23/22 13:36	
Acenaphthene	0.000876		0.00500	0.000876				05/23/22 13:36	
Acenaphthylene	0.000886		0.00500	0.000886	•			05/23/22 13:36	
Acetophenone	0.000932		0.00500	0.000932	•			05/23/22 13:36	
Anthracene	0.000884		0.00500	0.000884				05/23/22 13:36	
Benzo[a]anthracene	0.00100		0.00500	0.00100	•			05/23/22 13:36	
Benzo[a]pyrene	0.00100		0.00500	0.00100	-			05/23/22 13:36	
Benzo[b]fluoranthene	0.00179		0.00500	0.00179				05/23/22 13:36	
Benzo[g,h,i]perylene	0.00179		0.00500	0.00179	-			05/23/22 13:36	
Benzo[k]fluoranthene	0.00123		0.00500	0.00123	•			05/23/22 13:36	
Butyl benzyl phthalate	0.00130		0.00500	0.00130				05/23/22 13:36	
Carbazole	0.000855		0.00500	0.000119	-			05/23/22 13:36	
	0.00100		0.00500	0.000655	Ū			05/23/22 13:36	
Chrysene Dibonz (a h) anthropone	0.00100			0.00100				05/23/22 13:36	
Dibenz(a,h)anthracene			0.00500		-				
Dibenzofuran Diathyl phthalata	0.000951		0.00500	0.000951	Ū			05/23/22 13:36	
Diethyl phthalate	0.00123		0.00500	0.00123				05/23/22 13:36	
Dimethyl phthalate	0.00117		0.00500	0.00117	-			05/23/22 13:36	•
Fluoranthene	0.000948		0.00500	0.000948	•			05/23/22 13:36	
Fluorene	0.000938		0.00500	0.000938				05/23/22 13:36	
Hexachlorobenzene	0.00107		0.00500	0.00107	Ū			05/23/22 13:36	
Hexachlorobutadiene	0.000709		0.00500	0.000709	-			05/23/22 13:36	
Hexachlorocyclopentadiene	0.000614		0.00500	0.000614				05/23/22 13:36	
Hexachloroethane	0.000787		0.00500	0.000787	-			05/23/22 13:36	
Indeno[1,2,3-cd]pyrene	0.00110		0.00500	0.00110	-			05/23/22 13:36	
Isophorone	0.00101		0.00500	0.00101				05/23/22 13:36	
N-Nitrosodi-n-propylamine	0.00133		0.00500	0.00133	-			05/23/22 13:36	
N-Nitrosodiphenylamine	0.00116		0.00500	0.00116	-			05/23/22 13:36	
Naphthalene	0.000751		0.00500	0.000751				05/23/22 13:36	
Nitrobenzene	0.000961	U	0.00500	0.000961	-			05/23/22 13:36	
Pentachlorophenol	0.00112	U	0.0100	0.00112	-		05/20/22 15:26	05/23/22 13:36	
Phenanthrene	0.000975	U	0.00500	0.000975			05/20/22 15:26	05/23/22 13:36	
Phenol	0.00116	U	0.0100	0.00116	-		05/20/22 15:26	05/23/22 13:36	
Pyrene	0.000852	U	0.00500	0.000852	mg/L		05/20/22 15:26	05/23/22 13:36	
Bis(2-chloroethoxy)methane	0.00124	U	0.00500	0.00124	mg/L		05/20/22 15:26	05/23/22 13:36	

Eurofins Houston

3

4

6

9

10

12

4

6

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 860-53840/1-A

Matrix: Solid

Analysis Batch: 53944

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 53840

	•	MB	MB						•	
	Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
	Bis(2-chloroethyl)ether	0.00108	U	0.00500	0.00108	mg/L		05/20/22 15:26	05/23/22 13:36	1
ı	bis (2-Chloroisopropyl) ether	0.00145	U	0.00500	0.00145	mg/L		05/20/22 15:26	05/23/22 13:36	1
	Bis(2-ethylhexyl) phthalate	0.00188	U	0.00500	0.00188	mg/L		05/20/22 15:26	05/23/22 13:36	1
ı	Di-n-butyl phthalate	0.00113	U	0.00500	0.00113	mg/L		05/20/22 15:26	05/23/22 13:36	1
	Di-n-octyl phthalate	0.00148	U	0.00500	0.00148	mg/L		05/20/22 15:26	05/23/22 13:36	1
	Pyridine	0.000487	U	0.0100	0.000487	mg/L		05/20/22 15:26	05/23/22 13:36	1
	Bis(2-chloroethyl)ether bis (2-Chloroisopropyl) ether Bis(2-ethylhexyl) phthalate Di-n-butyl phthalate Di-n-octyl phthalate	0.00108 0.00145 0.00188 0.00113 0.00148	U U U U	0.00500 0.00500 0.00500 0.00500 0.00500	0.00108 0.00145 0.00188 0.00113 0.00148	mg/L mg/L mg/L mg/L mg/L	<u> </u>	05/20/22 15:26 05/20/22 15:26 05/20/22 15:26 05/20/22 15:26 05/20/22 15:26	05/23/22 13:36 05/23/22 13:36 05/23/22 13:36 05/23/22 13:36 05/23/22 13:36	

	MB MB				
Surrogate %Re	covery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	59	31 - 132	05/20/22 15:26	05/23/22 13:36	1
2-Fluorobiphenyl	63	29 - 112	05/20/22 15:26	05/23/22 13:36	1
2-Fluorophenol	29	21 - 114	05/20/22 15:26	05/23/22 13:36	1
Nitrobenzene-d5	66	26 - 110	05/20/22 15:26	05/23/22 13:36	1
p-Terphenyl-d14 (Surr)	65	20 - 141	05/20/22 15:26	05/23/22 13:36	1
Phenol-d5 (Surr)	17	16 - 117	05/20/22 15:26	05/23/22 13:36	1

Client Sample ID: Lab Control Sample

Prep Batch: 53840

Lab Sample ID: LCS 860-53840/2-A **Matrix: Solid Prep Type: Total/NA Analysis Batch: 53944**

Analysis Batch. 00044	Spike	LCS L	cs		%Rec
Analyte	Added	Result Q	ualifier Unit	D %Rec	Limits
1,1'-Biphenyl	0.0400	0.02317	mg/L		41 - 117
2,4,5-Trichlorophenol	0.0400	0.02389	mg/L	60	39 - 125
2,4,6-Trichlorophenol	0.0400	0.02443	mg/L	61	42 - 125
2,4-Dichlorophenol	0.0400	0.02462	mg/L	62	38 - 120
2,4-Dimethylphenol	0.0400	0.02215	mg/L	55	39 - 117
2,4-Dinitrophenol	0.0400	0.01626	mg/L	41	13 - 152
2,4-Dinitrotoluene	0.0400	0.02627	mg/L	66	41 - 128
2,6-Dinitrotoluene	0.0400	0.02491	mg/L	62	42 - 127
2-Chloronaphthalene	0.0400	0.02323	mg/L	58	40 - 118
2-Chlorophenol	0.0400	0.02201	mg/L	55	41 - 108
2-Methylnaphthalene	0.0400	0.02242	mg/L	56	37 - 112
2-Nitroaniline	0.0400	0.02565	mg/L	64	34 - 121
2-Nitrophenol	0.0400	0.02309	mg/L	58	38 - 125
2-Methylphenol	0.0400	0.01852	mg/L	46	36 - 105
3 & 4 Methylphenol	0.0400	0.01683	mg/L	42	35 - 116
3,3'-Dichlorobenzidine	0.0400	0.02193	mg/L	55	29 - 141
3-Nitroaniline	0.0400	0.02033	mg/L	51	42 - 123
4,6-Dinitro-2-methylphenol	0.0400	0.02329	mg/L	58	12 - 157
4-Bromophenyl phenyl ether	0.0400	0.02419	mg/L	60	40 - 126
4-Chloroaniline	0.0400	0.02030	mg/L	51	39 - 111
4-Chlorophenyl phenyl ether	0.0400	0.02464	mg/L	62	40 - 122
4-Nitroaniline	0.0400	0.02098	mg/L	52	42 - 125
4-Nitrophenol	0.0400	0.005983 J	mg/L	15	14 - 136
4-Chloro-3-methylphenol	0.0400	0.02363	mg/L	59	40 - 119
Acenaphthene	0.0400	0.02439	mg/L	61	41 - 116
Acenaphthylene	0.0400	0.02518	mg/L	63	41 - 118
Acetophenone	0.0400	0.02452	mg/L	61	23 - 175
Anthracene	0.0400	0.02627	mg/L	66	39 - 127

QC Sample Results

Client: Jacobs Engineering Group, Inc.
Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-53840/2-A

Matrix: Solid

Analysis Batch: 53944

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 53840

Analyte	Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec Limits
Benzo[a]anthracene	0.0400	0.02593	- Guainioi	mg/L		65	40 - 129
Benzo[a]pyrene	0.0400	0.02702		mg/L		68	36 - 141
Benzo[b]fluoranthene	0.0400	0.02785		mg/L		70	34 - 139
Benzo[g,h,i]perylene	0.0400	0.02693		mg/L		67	32 - 141
Benzo[k]fluoranthene	0.0400	0.02689		mg/L		67	31 - 139
Butyl benzyl phthalate	0.0400	0.02891		mg/L		72	44 - 133
Carbazole	0.0400	0.02698		mg/L		67	62 - 98
Chrysene	0.0400	0.02757		mg/L		69	41 - 124
Dibenz(a,h)anthracene	0.0400	0.02818		mg/L		70	35 - 143
Dibenzofuran	0.0400	0.02525		mg/L		63	41 - 119
Diethyl phthalate	0.0400	0.02633		mg/L		66	41 - 125
Dimethyl phthalate	0.0400	0.02457		mg/L		61	42 - 123
Fluoranthene	0.0400	0.02590		mg/L		65	38 - 132
Fluorene	0.0400	0.02550		mg/L		64	41 - 121
Hexachlorobenzene	0.0400	0.02260		mg/L		57	39 - 128
Hexachlorobutadiene	0.0400	0.01682		mg/L		42	31 - 120
Hexachlorocyclopentadiene	0.0400	0.01697		mg/L		42	15 - 117
Hexachloroethane	0.0400	0.01746		mg/L		44	37 - 109
Indeno[1,2,3-cd]pyrene	0.0400	0.02791		mg/L		70	35 - 141
Isophorone	0.0400	0.02431		mg/L		61	40 - 115
N-Nitrosodi-n-propylamine	0.0400	0.02693		mg/L		67	38 - 117
N-Nitrosodiphenylamine	0.0400	0.02636		mg/L		66	40 - 127
Naphthalene	0.0400	0.02200		mg/L		55	37 - 113
Nitrobenzene	0.0400	0.02349		mg/L		59	37 - 114
Pentachlorophenol	0.0400	0.02095		mg/L		52	10 - 137
Phenanthrene	0.0400	0.02576		mg/L		64	39 - 126
Phenol	0.0400	0.008428	J	mg/L		21	15 - 125
Pyrene	0.0400	0.02758		mg/L		69	40 - 130
Bis(2-chloroethoxy)methane	0.0400	0.02455		mg/L		61	36 - 113
Bis(2-chloroethyl)ether	0.0400	0.02567		mg/L		64	38 - 111
bis (2-Chloroisopropyl) ether	0.0400	0.02966		mg/L		74	32 - 110
Bis(2-ethylhexyl) phthalate	0.0400	0.03083		mg/L		77	44 - 136
Di-n-butyl phthalate	0.0400	0.02780		mg/L		70	41 - 133
Di-n-octyl phthalate	0.0400	0.02964		mg/L		74	34 - 145
Pyridine	0.0400	0.001593	J *	mg/L		4	16 - 135

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	51		31 - 132
2-Fluorobiphenyl	58		29 - 112
2-Fluorophenol	24		21 - 114
Nitrobenzene-d5	56		26 - 110
p-Terphenyl-d14 (Surr)	57		20 - 141
Phenol-d5 (Surr)	16		16 - 117

6/24/2022 (Rev. 1)

-

4

6

8

40

11

13

15

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 860-53840/3-A

Matrix: Solid

Client	Sampl	e ID:	Lab	Contro	I Sam	ple [Dup
				Prep T	ype:	Total	/NA
				D	D-4-1		0.40

Analysis Batch: 53944							Prep Batch: 53840		
, ,	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1'-Biphenyl	0.0400	0.02437		mg/L		61	41 - 117	5	30
2,4,5-Trichlorophenol	0.0400	0.02686		mg/L		67	39 - 125	12	30
2,4,6-Trichlorophenol	0.0400	0.02626		mg/L		66	42 - 125	7	30
2,4-Dichlorophenol	0.0400	0.02675		mg/L		67	38 - 120	8	30
2,4-Dimethylphenol	0.0400	0.02520		mg/L		63	39 - 117	13	30
2,4-Dinitrophenol	0.0400	0.01818		mg/L		45	13 - 152	11	40
2,4-Dinitrotoluene	0.0400	0.02913		mg/L		73	41 - 128	10	30
2,6-Dinitrotoluene	0.0400	0.02772		mg/L		69	42 - 127	11	30
2-Chloronaphthalene	0.0400	0.02585		mg/L		65	40 - 118	11	30
2-Chlorophenol	0.0400	0.02407		mg/L		60	41 - 108	9	30
2-Methylnaphthalene	0.0400	0.02551		mg/L		64	37 - 112	13	30
2-Nitroaniline	0.0400	0.02879		mg/L		72	34 - 121	12	40
2-Nitrophenol	0.0400	0.02599		mg/L		65	38 - 125	12	30
2-Methylphenol	0.0400	0.02149		mg/L		54	36 - 105	15	30
3 & 4 Methylphenol	0.0400	0.02062		mg/L		52	35 - 116	20	30
3,3'-Dichlorobenzidine	0.0400	0.02233		mg/L		56	29 - 141	2	40
3-Nitroaniline	0.0400	0.02337		mg/L		58	42 - 123	14	40
4,6-Dinitro-2-methylphenol	0.0400	0.02585		mg/L		65	12 - 157	10	40
4-Bromophenyl phenyl ether	0.0400	0.02564		mg/L		64	40 - 126	6	30
4-Chloroaniline	0.0400	0.02332		mg/L		58	39 - 111	14	40
4-Chlorophenyl phenyl ether	0.0400	0.02712		mg/L		68	40 - 122	10	30
4-Nitroaniline	0.0400	0.02402		mg/L		60	42 - 125	14	40
4-Nitrophenol	0.0400	0.007514	J	mg/L		19	14 - 136	23	40
4-Chloro-3-methylphenol	0.0400	0.02689		mg/L		67	40 - 119	13	30
Acenaphthene	0.0400	0.02605		mg/L		65	41 - 116	7	30
Acenaphthylene	0.0400	0.02737		mg/L		68	41 - 118	8	30
Acetophenone	0.0400	0.02841		mg/L		71	23 - 175	15	30
Anthracene	0.0400	0.02836		mg/L		71	39 - 127	8	30
Benzo[a]anthracene	0.0400	0.02636		mg/L		66	40 - 129	2	30
Benzo[a]pyrene	0.0400	0.02800		mg/L		70	36 - 141	4	30
Benzo[b]fluoranthene	0.0400	0.02788		mg/L		70	34 - 139	0	30
Benzo[g,h,i]perylene	0.0400	0.02838		mg/L		71	32 - 141	5	30
Benzo[k]fluoranthene	0.0400	0.02818		mg/L		70	31 - 139	5	30
Butyl benzyl phthalate	0.0400	0.03012		mg/L		75	44 - 133	4	30
Carbazole	0.0400	0.03026		mg/L		76	62 - 98	11	30
Chrysene	0.0400	0.02852		mg/L		71	41 - 124	3	30
Dibenz(a,h)anthracene	0.0400	0.02850		mg/L		71	35 - 143	1	30
Dibenzofuran	0.0400	0.02758		mg/L		69	41 - 119	9	30
Diethyl phthalate	0.0400	0.02891		mg/L		72	41 - 125	9	30
Dimethyl phthalate	0.0400	0.02767		mg/L		69	42 - 123	12	30
Fluoranthene	0.0400	0.02934		mg/L		73	38 - 132	12	30
Fluorene	0.0400	0.02759		mg/L		69	41 - 121	8	30
Hexachlorobenzene	0.0400	0.02397		mg/L		60	39 - 128	6	30
Hexachlorobutadiene	0.0400	0.01750		mg/L		44	31 - 120	4	30
Hexachlorocyclopentadiene	0.0400	0.01677		mg/L		42	15 - 117	1	30
Hexachloroethane	0.0400	0.01817		mg/L		45	37 - 109	4	30
Indeno[1,2,3-cd]pyrene	0.0400	0.02811		mg/L		70	35 - 141	1	30
Isophorone	0.0400	0.02729		mg/L		68	40 - 115	12	30

Eurofins Houston

7

5

7

9

11

14

14

16

. .

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 860-53840/3-A

Matrix: Solid

Analysis Batch: 53944

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 53840

7									
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
N-Nitrosodi-n-propylamine	0.0400	0.03111		mg/L		78	38 - 117	14	30
N-Nitrosodiphenylamine	0.0400	0.02777		mg/L		69	40 - 127	5	30
Naphthalene	0.0400	0.02280		mg/L		57	37 - 113	4	30
Nitrobenzene	0.0400	0.02561		mg/L		64	37 - 114	9	30
Pentachlorophenol	0.0400	0.02293		mg/L		57	10 - 137	9	40
Phenanthrene	0.0400	0.02806		mg/L		70	39 - 126	9	30
Phenol	0.0400	0.01018		mg/L		25	15 - 125	19	40
Pyrene	0.0400	0.02769		mg/L		69	40 - 130	0	30
Bis(2-chloroethoxy)methane	0.0400	0.02652		mg/L		66	36 - 113	8	30
Bis(2-chloroethyl)ether	0.0400	0.02789		mg/L		70	38 - 111	8	30
bis (2-Chloroisopropyl) ether	0.0400	0.03350		mg/L		84	32 - 110	12	30
Bis(2-ethylhexyl) phthalate	0.0400	0.03229		mg/L		81	44 - 136	5	30
Di-n-butyl phthalate	0.0400	0.03056		mg/L		76	41 - 133	9	30
Di-n-octyl phthalate	0.0400	0.03109		mg/L		78	34 - 145	5	30
Pyridine	0.0400	0.0006298	J *	mg/L		2	16 - 135	87	40

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	57		31 - 132
2-Fluorobiphenyl	63		29 - 112
2-Fluorophenol	28		21 - 114
Nitrobenzene-d5	61		26 - 110
p-Terphenyl-d14 (Surr)	60		20 - 141
Phenol-d5 (Surr)	20		16 - 117

Lab Sample ID: LB 860-53687/1-B

Matrix: Solid

Analysis Batch: 53944

Client Sample ID: Method Blank **Prep Type: TCLP**

Prep Batch: 53840

	LB	LB							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1'-Biphenyl	0.00370	U	0.0250	0.00370	mg/L		05/20/22 16:20	05/23/22 13:56	1
2,4,5-Trichlorophenol	0.00468	U	0.0250	0.00468	mg/L		05/20/22 16:20	05/23/22 13:56	1
2,4,6-Trichlorophenol	0.00473	U	0.0250	0.00473	mg/L		05/20/22 16:20	05/23/22 13:56	1
2,4-Dichlorophenol	0.00521	U	0.0250	0.00521	mg/L		05/20/22 16:20	05/23/22 13:56	1
2,4-Dimethylphenol	0.00445	U	0.0250	0.00445	mg/L		05/20/22 16:20	05/23/22 13:56	1
2,4-Dinitrophenol	0.00308	U	0.0500	0.00308	mg/L		05/20/22 16:20	05/23/22 13:56	1
2,4-Dinitrotoluene	0.00477	U	0.0250	0.00477	mg/L		05/20/22 16:20	05/23/22 13:56	1
2,6-Dinitrotoluene	0.00553	U	0.0500	0.00553	mg/L		05/20/22 16:20	05/23/22 13:56	1
2-Chloronaphthalene	0.00404	U	0.0250	0.00404	mg/L		05/20/22 16:20	05/23/22 13:56	1
2-Chlorophenol	0.00421	U	0.0250	0.00421	mg/L		05/20/22 16:20	05/23/22 13:56	1
2-Methylnaphthalene	0.00389	U	0.0250	0.00389	mg/L		05/20/22 16:20	05/23/22 13:56	1
2-Nitroaniline	0.00535	U	0.0500	0.00535	mg/L		05/20/22 16:20	05/23/22 13:56	1
2-Nitrophenol	0.00483	U	0.0250	0.00483	mg/L		05/20/22 16:20	05/23/22 13:56	1
2-Methylphenol	0.00457	U	0.0250	0.00457	mg/L		05/20/22 16:20	05/23/22 13:56	1
3 & 4 Methylphenol	0.00521	U	0.0500	0.00521	mg/L		05/20/22 16:20	05/23/22 13:56	1
3,3'-Dichlorobenzidine	0.00309	U	0.0500	0.00309	mg/L		05/20/22 16:20	05/23/22 13:56	1
3-Nitroaniline	0.00394	U	0.0500	0.00394	mg/L		05/20/22 16:20	05/23/22 13:56	1
4,6-Dinitro-2-methylphenol	0.00435	U	0.0500	0.00435	mg/L		05/20/22 16:20	05/23/22 13:56	1
4-Bromophenyl phenyl ether	0.00474	U	0.0250	0.00474	mg/L		05/20/22 16:20	05/23/22 13:56	1

Eurofins Houston

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB 860-53687/1-B

Matrix: Solid

2-Fluorobiphenyl

Analysis Batch: 53944

Client Sample ID: Method Blank Prep Type: TCLP

Prep Batch: 53840

Analysis Batch. 33944	IB	LB						Frep Batch.	
Analyte		Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chloroaniline	0.00304	U	0.0500	0.00304	mg/L		05/20/22 16:20	05/23/22 13:56	1
4-Chlorophenyl phenyl ether	0.00434	U	0.0250	0.00434	mg/L		05/20/22 16:20	05/23/22 13:56	1
4-Nitroaniline	0.00582	U	0.0500	0.00582	mg/L		05/20/22 16:20	05/23/22 13:56	1
4-Nitrophenol	0.00806	U	0.0500	0.00806	mg/L		05/20/22 16:20	05/23/22 13:56	1
4-Chloro-3-methylphenol	0.00653	U	0.0500	0.00653	mg/L		05/20/22 16:20	05/23/22 13:56	1
Acenaphthene	0.00438	U	0.0250	0.00438	mg/L		05/20/22 16:20	05/23/22 13:56	1
Acenaphthylene	0.00443	U	0.0250	0.00443	mg/L		05/20/22 16:20	05/23/22 13:56	1
Acetophenone	0.00466	U	0.0250	0.00466	mg/L		05/20/22 16:20	05/23/22 13:56	1
Anthracene	0.00442	U	0.0250	0.00442	mg/L		05/20/22 16:20	05/23/22 13:56	1
Benzo[a]anthracene	0.00500	U	0.0250	0.00500	mg/L		05/20/22 16:20	05/23/22 13:56	1
Benzo[a]pyrene	0.00500	U	0.0250	0.00500	mg/L		05/20/22 16:20	05/23/22 13:56	1
Benzo[b]fluoranthene	0.00896	U	0.0250	0.00896	mg/L		05/20/22 16:20	05/23/22 13:56	1
Benzo[g,h,i]perylene	0.00627	U	0.0250	0.00627	-		05/20/22 16:20	05/23/22 13:56	1
Benzo[k]fluoranthene	0.00680		0.0250	0.00680	-		05/20/22 16:20	05/23/22 13:56	1
Butyl benzyl phthalate	0.00594		0.0250	0.00594			05/20/22 16:20	05/23/22 13:56	1
Carbazole	0.00427		0.0250	0.00427	•		05/20/22 16:20	05/23/22 13:56	1
Chrysene	0.00500		0.0250	0.00500	U		05/20/22 16:20		1
Dibenz(a,h)anthracene	0.00630		0.0250	0.00630				05/23/22 13:56	
Dibenzofuran	0.00476		0.0250	0.00476	-			05/23/22 13:56	1
Diethyl phthalate	0.00616		0.0250	0.00616	J			05/23/22 13:56	1
Dimethyl phthalate	0.00586		0.0250	0.00586			05/20/22 16:20		· · · · · · · · · · · · · · · · · · · ·
Fluoranthene	0.00474		0.0250	0.00474	•		05/20/22 16:20		1
Fluorene	0.00474		0.0250	0.00474	•		05/20/22 16:20		1
Hexachlorobenzene	0.00537		0.0250	0.00537			05/20/22 16:20		· · · · · · · · · · · · · · · · · · ·
Hexachlorobutadiene	0.00357		0.0250	0.00357	-		05/20/22 16:20	05/23/22 13:56	1
Hexachlorocyclopentadiene	0.00333		0.0250	0.00333	-		05/20/22 16:20	05/23/22 13:56	1
Hexachloroethane	0.00307		0.0250	0.00307			05/20/22 16:20	05/23/22 13:56	
	0.00549		0.0250		mg/L		05/20/22 16:20	05/23/22 13:56	1
Indeno[1,2,3-cd]pyrene Isophorone	0.00549		0.0250	0.00549			05/20/22 16:20		1
N-Nitrosodi-n-propylamine	0.00663		0.0250	0.00663	Ū			05/23/22 13:56	1
N-Nitrosodiphenylamine	0.00580		0.0250	0.00580	-			05/23/22 13:56	1
Naphthalene	0.00376		0.0250	0.00376				05/23/22 13:56	
Nitrobenzene	0.00480		0.0250	0.00480	-			05/23/22 13:56	1
Pentachlorophenol	0.00558		0.0500	0.00558	-			05/23/22 13:56	1
Phenanthrene	0.00487		0.0250	0.00487	.			05/23/22 13:56	
Phenol	0.00580		0.0500	0.00580	_			05/23/22 13:56	1
Pyrene	0.00426		0.0250	0.00426	-			05/23/22 13:56	1
Bis(2-chloroethoxy)methane	0.00620		0.0250	0.00620				05/23/22 13:56	
Bis(2-chloroethyl)ether	0.00539		0.0250	0.00539	-			05/23/22 13:56	1
bis (2-Chloroisopropyl) ether	0.00725		0.0250	0.00725	-			05/23/22 13:56	1
Bis(2-ethylhexyl) phthalate	0.00941		0.0250	0.00941				05/23/22 13:56	1
Di-n-butyl phthalate	0.00565		0.0250	0.00565	-			05/23/22 13:56	1
Di-n-octyl phthalate	0.00739		0.0250	0.00739	-			05/23/22 13:56	1
Pyridine	0.00244	U	0.0500	0.00244	mg/L		05/20/22 16:20	05/23/22 13:56	1
	LB	LB							
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	18		31 - 132				05/20/22 16:20	05/23/22 13:56	1

Eurofins Houston

05/20/22 16:20 05/23/22 13:56

29 - 112

23 X

Client: Jacobs Engineering Group, Inc. Job ID: 860-26460-1 Project/Site: STC Silber Rd IDW

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB 860-53687/1-B

Matrix: Solid

Analysis Batch: 53944

Client Sample ID: Method Blank

Prep Type: TCLP

Prep Batch: 53840

	LB	LB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorophenol	16	X	21 - 114	05/20/22 16:20	05/23/22 13:56	1
Nitrobenzene-d5	23	X	26 - 110	05/20/22 16:20	05/23/22 13:56	1
p-Terphenyl-d14 (Surr)	21		20 - 141	05/20/22 16:20	05/23/22 13:56	1
Phenol-d5 (Surr)	13	X	16 - 117	05/20/22 16:20	05/23/22 13:56	1

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Lab Sample ID: MB 860-53809/1-A

Matrix: Solid

Analysis Batch: 53754

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 53809

MB MB Analyte Result Qualifier MQL (Adj) SDL Unit Prepared Analyzed Dil Fac 21.1 mg/Kg C6-C12 21.1 U 05/20/22 12:48 05/20/22 18:26 50.0 >C12-C28 21.1 U 50.0 21.1 mg/Kg 05/20/22 12:48 05/20/22 18:26 1 >C28-C35 21.1 U 50.0 21.1 mg/Kg 05/20/22 12:48 05/20/22 18:26

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane (Surr) 92 70 - 130 05/20/22 12:48 05/20/22 18:26 o-Terphenyl (Surr) 98 70 - 130 05/20/22 12:48 05/20/22 18:26

Lab Sample ID: LCS 860-53809/2-A

Matrix: Solid

Analysis Batch: 53754

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 53809

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits C6-C12 1000 861.5 mg/Kg 86 75 - 125 >C12-C28 1000 100 75 - 125 996.2 mg/Kg

LCS LCS Qualifier Limits Surrogate %Recovery 1-Chlorooctane (Surr) 106 70 - 130 o-Terphenyl (Surr) 96 70 - 130

Lab Sample ID: LCSD 860-53809/3-A

Matrix: Solid

Analysis Batch: 53754

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 53809

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec C6-C12 1000 943.0 mg/Kg 94 75 - 125 9 20 mg/Kg >C12-C28 1000 1093 109 75 - 125 20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	107		70 - 130
o-Terphenyl (Surr)	98		70 - 130

Eurofins Houston

Client: Jacobs Engineering Group, Inc. Job ID: 860-26460-1

Project/Site: STC Silber Rd IDW

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC) (Continued)

Lab Sample ID: 860-26460-2 MS Client Sample ID: IDW-WS02-051922

Matrix: Solid

Analysis Batch: 53754

Analysis Batch: 53754									Prep I	Batch: 53809
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C12	21.1	U	998	959.2		mg/Kg		96	75 - 125	
>C12-C28	21.1	U	998	1104		mg/Kg		111	75 - 125	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	108		70 - 130
o-Terphenyl (Surr)	99		70 - 130

Lab Sample ID: 860-26460-2 MSD Client Sample ID: IDW-WS02-051922

Matrix: Solid

Analysis Batch: 53754									Prep E	Batch: 5	53809
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C6-C12	21.1	U	1000	933.1		mg/Kg		93	75 - 125	3	20
>C12-C28	21.1	U	1000	1088		mg/Kg		109	75 - 125	1	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	105		70 - 130
o-Terphenyl (Surr)	94		70 - 130

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 860-53954/1-A **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 54342

,									
-	MB	MB							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.00550	U	0.0100	0.00550	mg/L		05/23/22 08:45	05/24/22 20:56	1
Barium	0.00135	U	0.0100	0.00135	mg/L		05/23/22 08:45	05/24/22 20:56	1
Cadmium	0.00243	U	0.00500	0.00243	mg/L		05/23/22 08:45	05/24/22 20:56	1
Chromium	0.001293	J	0.0100	0.000811	mg/L		05/23/22 08:45	05/24/22 20:56	1
Lead	0.00237	U	0.0100	0.00237	mg/L		05/23/22 08:45	05/24/22 20:56	1
Manganese	0.00316	U	0.0200	0.00316	mg/L		05/23/22 08:45	05/24/22 20:56	1
Nickel	0.00307	U	0.0100	0.00307	mg/L		05/23/22 08:45	05/24/22 20:56	1
Selenium	0.004872	J	0.0300	0.00439	mg/L		05/23/22 08:45	05/24/22 20:56	1
Silver	0.00559	U	0.0200	0.00559	mg/L		05/23/22 08:45	05/24/22 20:56	1
Antimony	0.00589	U	0.0200	0.00589	mg/L		05/23/22 08:45	05/24/22 20:56	1
Beryllium	0.000490	U	0.00400	0.000490	mg/L		05/23/22 08:45	05/24/22 20:56	1

Lab Sample ID: LCS 860-53954/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 54342

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	1.00	1.020		mg/L		102	80 - 120	
Barium	1.00	0.9999		mg/L		100	80 - 120	
Cadmium	1.00	1.016		mg/L		102	80 - 120	
Chromium	1.00	1.044		mg/L		104	80 - 120	
Lead	1.00	1.026		mg/L		103	80 - 120	

Eurofins Houston

6/24/2022 (Rev. 1)

Prep Batch: 53954

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 53954

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 860-53954/2-A

Matrix: Solid

Analysis Batch: 54342

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 53954

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Manganese	1.00	1.004		mg/L		100	80 - 120	 _
Nickel	1.00	1.032		mg/L		103	80 - 120	
Selenium	1.00	1.025		mg/L		102	80 - 120	
Silver	0.500	0.4920		mg/L		98	80 - 120	
Antimony	1.00	1.004		mg/L		100	80 - 120	
Beryllium	1.00	1.005		mg/L		100	80 - 120	

Lab Sample ID: LCSD 860-53954/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Analysis Batch: 54342

Prep Type: Total/NA

Prep Batch: 53954

7 maryolo Batom 0-10-12							op =	dicoiii c	,000
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	1.00	1.012		mg/L		101	80 - 120	1	20
Barium	1.00	0.9994		mg/L		100	80 - 120	0	20
Cadmium	1.00	1.016		mg/L		102	80 - 120	0	20
Chromium	1.00	1.042		mg/L		104	80 - 120	0	20
Lead	1.00	1.022		mg/L		102	80 - 120	0	20
Manganese	1.00	1.003		mg/L		100	80 - 120	0	20
Nickel	1.00	1.030		mg/L		103	80 - 120	0	20
Selenium	1.00	1.024		mg/L		102	80 - 120	0	20
Silver	0.500	0.4902		mg/L		98	80 - 120	0	20
Antimony	1.00	1.015		mg/L		102	80 - 120	1	20
Beryllium	1.00	1.006		mg/L		101	80 - 120	0	20

Lab Sample ID: LB 860-53687/1-E Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 54342

Prep Type: TCLP

Prep Batch: 53954

	LB	LB							
Analyte	Result	Qualifier	MQL (Adj)	SDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0275	U	0.0500	0.0275	mg/L		05/23/22 08:45	05/24/22 21:07	1
Barium	0.03102	J	0.0500	0.00674	mg/L		05/23/22 08:45	05/24/22 21:07	1
Cadmium	0.0122	U	0.0250	0.0122	mg/L		05/23/22 08:45	05/24/22 21:07	1
Chromium	0.00405	U	0.0500	0.00405	mg/L		05/23/22 08:45	05/24/22 21:07	1
Lead	0.0118	U	0.0500	0.0118	mg/L		05/23/22 08:45	05/24/22 21:07	1
Manganese	0.0158	U	0.100	0.0158	mg/L		05/23/22 08:45	05/24/22 21:07	1
Nickel	0.0154	U	0.0500	0.0154	mg/L		05/23/22 08:45	05/24/22 21:07	1
Selenium	0.04120	J	0.150	0.0219	mg/L		05/23/22 08:45	05/24/22 21:07	1
Silver	0.0279	U	0.100	0.0279	mg/L		05/23/22 08:45	05/24/22 21:07	1
Antimony	0.0294	U	0.100	0.0294	mg/L		05/23/22 08:45	05/24/22 21:07	1
Beryllium	0.00245	U	0.0200	0.00245	mg/L		05/23/22 08:45	05/24/22 21:07	1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 860-53939/10-A

Matrix: Solid

Analyte

Mercury

Analysis Batch: 54073

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 53939

MB MB Result Qualifier MQL (Adj) SDL Unit **Prepared** Analyzed

0.000200 0.0000263 mg/L

05/23/22 07:20 05/23/22 12:17

Eurofins Houston

0.0000263 U

QC Sample Results

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26460-1

Project/Site: STC Silber Rd IDW

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 860-53939/11-A

Matrix: Solid

Analysis Batch: 54073

Spike

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 53939
%Rec

 Analyte
 Added
 Result
 Qualifier
 Unit
 D
 %Rec
 Limits

 Mercury
 0.00200
 0.002076
 mg/L
 104
 80 - 120

Lab Sample ID: LCSD 860-53939/12-A Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA **Analysis Batch: 54073** Prep Batch: 53939 Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte 0.00200 80 - 120 Mercury 0.001947 mg/L 97 6

Lab Sample ID: LB 860-53687/1-D

Matrix: Solid

Analysis Batch: 54073

Client Sample ID: Method Blank
Prep Type: TCLP
Prep Batch: 53939

 Analyte
 Result Mercury
 Qualifier 0.0000263
 MQL (Adj) U 0.000200
 SDL 0.0000263
 Unit Wight
 D 05/23/22 07:20
 Prepared 05/23/22 07:20
 Analyzed Dil Fac 05/23/22 12:21
 D 05/23/22 07:20

Method: Moisture - Percent Moisture

Lab Sample ID: MB 860-54209/1 Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

Analysis Batch: 54209

MB MB

AnalyteResult
Percent MoistureQualifier
0.03MQL (Adj)SDL
%UnitD
%Prepared
05/24/22 09:58Analyzed
05/24/22 09:58Dil Fac
05/24/22 09:58

Eurofins Houston

3

5

7

8

3

10

12

1 A

15

10

QC Association Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

GC/MS VOA

Leac	h Batc	h: 53	848
Leac	II Date	11. 00	σ

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26460-1	IDW-WS01-051922	TCLP	Solid	1311	
860-26460-2	IDW-WS02-051922	TCLP	Solid	1311	
860-26460-3	IDW-WS03-051922	TCLP	Solid	1311	
LB 860-53848/1-A	Method Blank	TCLP	Solid	1311	

Analysis Batch: 53937

Lab Sample ID LB 860-53848/1-A	Client Sample ID Method Blank	Prep Type TCLP	Matrix Solid	Method 8260C	Prep Batch 53848
MB 860-53937/10	Method Blank	Total/NA	Solid	8260C	
LCS 860-53937/3	Lab Control Sample	Total/NA	Solid	8260C	
LCSD 860-53937/4	Lab Control Sample Dup	Total/NA	Solid	8260C	

Analysis Batch: 54052

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26460-1	IDW-WS01-051922	TCLP	Solid	8260C	53848
860-26460-2	IDW-WS02-051922	TCLP	Solid	8260C	53848
860-26460-3	IDW-WS03-051922	TCLP	Solid	8260C	53848
MB 860-54052/9	Method Blank	Total/NA	Solid	8260C	
LCS 860-54052/3	Lab Control Sample	Total/NA	Solid	8260C	
LCSD 860-54052/4	Lab Control Sample Dup	Total/NA	Solid	8260C	

GC/MS Semi VOA

Leach Batch: 53687

Lab Sample ID 860-26460-1	Client Sample ID IDW-WS01-051922	Prep Type TCLP	Matrix Solid	Method 1311	Prep Batch
860-26460-2	IDW-WS02-051922	TCLP	Solid	1311	
860-26460-3	IDW-WS03-051922	TCLP	Solid	1311	
LB 860-53687/1-B	Method Blank	TCLP	Solid	1311	

Prep Batch: 53840

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26460-1	IDW-WS01-051922	TCLP	Solid	3510C	53687
860-26460-2	IDW-WS02-051922	TCLP	Solid	3510C	53687
860-26460-3	IDW-WS03-051922	TCLP	Solid	3510C	53687
LB 860-53687/1-B	Method Blank	TCLP	Solid	3510C	53687
MB 860-53840/1-A	Method Blank	Total/NA	Solid	3510C	
LCS 860-53840/2-A	Lab Control Sample	Total/NA	Solid	3510C	
LCSD 860-53840/3-A	Lab Control Sample Dup	Total/NA	Solid	3510C	

Analysis Batch: 53944

Lab Sample ID LB 860-53687/1-B	Client Sample ID Method Blank	Prep Type TCLP	Matrix Solid	Method 8270D	Prep Batch 53840
MB 860-53840/1-A	Method Blank	Total/NA	Solid	8270D	53840
LCS 860-53840/2-A	Lab Control Sample	Total/NA	Solid	8270D	53840
LCSD 860-53840/3-A	Lab Control Sample Dup	Total/NA	Solid	8270D	53840

Analysis Batch: 53946

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26460-1	IDW-WS01-051922	TCLP	Solid	8270D	53840
860-26460-2	IDW-WS02-051922	TCLP	Solid	8270D	53840

Eurofins Houston

6/24/2022 (Rev. 1)

Page 41 of 58

2

E

6

Q

4.0

11

12

1 4

15

17

18

Ш

QC Association Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

GC/MS Semi VOA (Continued)

Analysis Batch: 53946 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26460-3	IDW-WS03-051922	TCLP	Solid	8270D	53840

GC Semi VOA

Analysis Batch: 53754

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26460-1	IDW-WS01-051922	Total/NA	Solid	TX 1005	53809
860-26460-2	IDW-WS02-051922	Total/NA	Solid	TX 1005	53809
860-26460-3	IDW-WS03-051922	Total/NA	Solid	TX 1005	53809
MB 860-53809/1-A	Method Blank	Total/NA	Solid	TX 1005	53809
LCS 860-53809/2-A	Lab Control Sample	Total/NA	Solid	TX 1005	53809
LCSD 860-53809/3-A	Lab Control Sample Dup	Total/NA	Solid	TX 1005	53809
860-26460-2 MS	IDW-WS02-051922	Total/NA	Solid	TX 1005	53809
860-26460-2 MSD	IDW-WS02-051922	Total/NA	Solid	TX 1005	53809

Prep Batch: 53809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
860-26460-1	IDW-WS01-051922	Total/NA	Solid	TX_1005_S_Pre
				р
860-26460-2	IDW-WS02-051922	Total/NA	Solid	TX_1005_S_Pre
				p
860-26460-3	IDW-WS03-051922	Total/NA	Solid	TX_1005_S_Pre
MD 000 50000/4 A	M. W. J. Dl	T-1-1/81A	0.1.1	p
MB 860-53809/1-A	Method Blank	Total/NA	Solid	TX_1005_S_Pre
LCS 860-53809/2-A	Lab Control Sample	Total/NA	Solid	p TX 1005 S Pre
200 000 00000/271	Lab Control Campio	1000,117	Cond	p
LCSD 860-53809/3-A	Lab Control Sample Dup	Total/NA	Solid	TX 1005 S Pre
				p
860-26460-2 MS	IDW-WS02-051922	Total/NA	Solid	TX_1005_S_Pre
				р
860-26460-2 MSD	IDW-WS02-051922	Total/NA	Solid	TX_1005_S_Pre
				р

Analysis Batch: 54092

Lab Sample ID 860-26460-1	Client Sample ID IDW-WS01-051922	Prep Type Total/NA	Matrix Solid	Method TX 1005	Prep Batch
860-26460-2	IDW-WS02-051922	Total/NA	Solid	TX 1005	
860-26460-3	IDW-WS03-051922	Total/NA	Solid	TX 1005	

Metals

Leach Batch: 53687

Lab Sample ID 860-26460-1	Client Sample ID IDW-WS01-051922	Prep Type TCLP	Matrix Solid	Method 1311	Prep Batch
860-26460-2	IDW-WS02-051922	TCLP	Solid	1311	
860-26460-3	IDW-WS03-051922	TCLP	Solid	1311	
LB 860-53687/1-D	Method Blank	TCLP	Solid	1311	
LB 860-53687/1-E	Method Blank	TCLP	Solid	1311	

Prep Batch: 53939

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26460-1	IDW-WS01-051922	TCLP	Solid	7470A	53687
860-26460-2	IDW-WS02-051922	TCLP	Solid	7470A	53687

Eurofins Houston

Page 42 of 58

2

3

4

6

TU

12

14

10

17

QC Association Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Metals (Continued)

Prep Batch: 53939 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26460-3	IDW-WS03-051922	TCLP	Solid	7470A	53687
LB 860-53687/1-D	Method Blank	TCLP	Solid	7470A	53687
MB 860-53939/10-A	Method Blank	Total/NA	Solid	7470A	
LCS 860-53939/11-A	Lab Control Sample	Total/NA	Solid	7470A	
LCSD 860-53939/12-A	Lab Control Sample Dup	Total/NA	Solid	7470A	

Prep Batch: 53954

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26460-1	IDW-WS01-051922	TCLP	Solid	3010A	53687
860-26460-2	IDW-WS02-051922	TCLP	Solid	3010A	53687
860-26460-3	IDW-WS03-051922	TCLP	Solid	3010A	53687
LB 860-53687/1-E	Method Blank	TCLP	Solid	3010A	53687
MB 860-53954/1-A	Method Blank	Total/NA	Solid	3010A	
LCS 860-53954/2-A	Lab Control Sample	Total/NA	Solid	3010A	
LCSD 860-53954/3-A	Lab Control Sample Dup	Total/NA	Solid	3010A	

Analysis Batch: 54073

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26460-1	IDW-WS01-051922	TCLP	Solid	7470A	53939
860-26460-2	IDW-WS02-051922	TCLP	Solid	7470A	53939
860-26460-3	IDW-WS03-051922	TCLP	Solid	7470A	53939
LB 860-53687/1-D	Method Blank	TCLP	Solid	7470A	53939
MB 860-53939/10-A	Method Blank	Total/NA	Solid	7470A	53939
LCS 860-53939/11-A	Lab Control Sample	Total/NA	Solid	7470A	53939
LCSD 860-53939/12-A	Lab Control Sample Dup	Total/NA	Solid	7470A	53939

Analysis Batch: 54342

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26460-1	IDW-WS01-051922	TCLP	Solid	6010C	53954
860-26460-2	IDW-WS02-051922	TCLP	Solid	6010C	53954
860-26460-3	IDW-WS03-051922	TCLP	Solid	6010C	53954
LB 860-53687/1-E	Method Blank	TCLP	Solid	6010C	53954
MB 860-53954/1-A	Method Blank	Total/NA	Solid	6010C	53954
LCS 860-53954/2-A	Lab Control Sample	Total/NA	Solid	6010C	53954
LCSD 860-53954/3-A	Lab Control Sample Dup	Total/NA	Solid	6010C	53954

General Chemistry

Analysis Batch: 54209

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
860-26460-1	IDW-WS01-051922	Total/NA	Solid	Moisture	
860-26460-2	IDW-WS02-051922	Total/NA	Solid	Moisture	
860-26460-3	IDW-WS03-051922	Total/NA	Solid	Moisture	
MB 860-54209/1	Method Blank	Total/NA	Solid	Moisture	

Job ID: 860-26460-1

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Client Sample ID: IDW-WS01-051922

Lab Sample ID: 860-26460-1 Date Collected: 05/19/22 11:30 **Matrix: Solid**

Date Received: 05/19/22 12:37

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			1.0 g	1.0 mL	53848	05/20/22 16:00	JRB	XEN STF
TCLP	Analysis	8260C		50	5 mL	5 mL	54052	05/23/22 22:12	A1S	XEN STF
TCLP	Leach	1311			1.0 g	1.0 mL	53687	05/19/22 16:00	EMC	XEN STF
TCLP	Prep	3510C			200 mL	1.0 mL	53840	05/20/22 16:20	DR	XEN STF
TCLP	Analysis	8270D		5	1 mL	1.0 mL	53946	05/23/22 16:37	LPL	XEN STF
Total/NA	Prep	TX_1005_S_Prep			10.05 g	10 mL	53809	05/20/22 12:48	SYH	XEN STF
Total/NA	Analysis	TX 1005		1			53754	05/20/22 21:19	SAR	XEN STF
Total/NA	Analysis	TX 1005		1			54092	05/23/22 17:46	SAR	XEN STF
TCLP	Leach	1311			1.0 g	1.0 mL	53687	05/19/22 16:00	EMC	XEN STF
TCLP	Prep	3010A			10 mL	50 mL	53954	05/23/22 08:45	MD	XEN STF
TCLP	Analysis	6010C		1			54342	05/24/22 21:51	AV	XEN STF
TCLP	Leach	1311			1.0 g	1.0 mL	53687	05/19/22 16:00	EMC	XEN STF
TCLP	Prep	7470A			50 mL	50 mL	53939	05/23/22 07:20	AGR	XEN STF
TCLP	Analysis	7470A		1			54073	05/23/22 12:38	SHZ	XEN STF
Total/NA	Analysis	Moisture		1			54209	05/24/22 09:58	JM	XEN STF

Client Sample ID: IDW-WS02-051922

Date Collected: 05/19/22 11:50

Date Received: 05/19/22 12:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			1.0 g	1.0 mL	53848	05/20/22 16:00	JRB	XEN STF
TCLP	Analysis	8260C		50	5 mL	5 mL	54052	05/23/22 22:32	A1S	XEN STF
TCLP	Leach	1311			1.0 g	1.0 mL	53687	05/19/22 16:00	EMC	XEN STF
TCLP	Prep	3510C			200 mL	1.0 mL	53840	05/20/22 16:20	DR	XEN STF
TCLP	Analysis	8270D		5	1 mL	1.0 mL	53946	05/23/22 17:01	LPL	XEN STF
Total/NA	Prep	TX_1005_S_Prep			10 g	10 mL	53809	05/20/22 12:48	SYH	XEN STF
Total/NA	Analysis	TX 1005		1			53754	05/20/22 19:05	SAR	XEN STF
Total/NA	Analysis	TX 1005		1			54092	05/23/22 17:46	SAR	XEN STF
TCLP	Leach	1311			1.0 g	1.0 mL	53687	05/19/22 16:00	EMC	XEN STF
TCLP	Prep	3010A			10 mL	50 mL	53954	05/23/22 08:45	MD	XEN STF
TCLP	Analysis	6010C		1			54342	05/24/22 21:54	AV	XEN STF
TCLP	Leach	1311			1.0 g	1.0 mL	53687	05/19/22 16:00	EMC	XEN STF
TCLP	Prep	7470A			50 mL	50 mL	53939	05/23/22 07:20	AGR	XEN STF
TCLP	Analysis	7470A		1			54073	05/23/22 12:39	SHZ	XEN STF
Total/NA	Analysis	Moisture		1			54209	05/24/22 09:58	JM	XEN STF

Client Sample ID: IDW-WS03-051922

Date Collected: 05/19/22 12:00

Date Received: 05/19/22 12:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			1.0 g	1.0 mL	53848	05/20/22 16:00	JRB	XEN STF
TCLP	Analysis	8260C		50	5 mL	5 mL	54052	05/23/22 22:53	A1S	XEN STF

Matrix: Solid

Page 44 of 58

Lab Sample ID: 860-26460-2

Lab Sample ID: 860-26460-3

Matrix: Solid

Lab Chronicle

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Lab Sample ID: 860-26460-3

Matrix: Solid

Job ID: 860-26460-1

Client Sample ID: IDW-WS03-051922

Date Collected: 05/19/22 12:00 Date Received: 05/19/22 12:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			1.0 g	1.0 mL	53687	05/19/22 16:00	EMC	XEN STF
TCLP	Prep	3510C			200 mL	1.0 mL	53840	05/20/22 16:20	DR	XEN STF
TCLP	Analysis	8270D		5	1 mL	1.0 mL	53946	05/23/22 17:24	LPL	XEN STF
Total/NA	Prep	TX_1005_S_Prep			10 g	10 mL	53809	05/20/22 12:48	SYH	XEN STF
Total/NA	Analysis	TX 1005		1			53754	05/20/22 20:02	SAR	XEN STF
Total/NA	Analysis	TX 1005		1			54092	05/23/22 17:46	SAR	XEN STF
TCLP	Leach	1311			1.0 g	1.0 mL	53687	05/19/22 16:00	EMC	XEN STF
TCLP	Prep	3010A			10 mL	50 mL	53954	05/23/22 08:45	MD	XEN STF
TCLP	Analysis	6010C		1			54342	05/24/22 21:58	AV	XEN STF
TCLP	Leach	1311			1.0 g	1.0 mL	53687	05/19/22 16:00	EMC	XEN STF
TCLP	Prep	7470A			50 mL	50 mL	53939	05/23/22 07:20	AGR	XEN STF
TCLP	Analysis	7470A		1			54073	05/23/22 12:40	SHZ	XEN STF
Total/NA	Analysis	Moisture		1			54209	05/24/22 09:58	JM	XEN STF

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Jacobs Engineering Group, Inc.

Job ID: 860-26460-1

Project/Site: STC Silber Rd IDW

Laboratory: Eurofins Houston

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	21-038-0	08-04-22
Florida	NELAP	E871002	06-30-22
Louisiana	NELAP	03054	06-30-22
Oklahoma	State	2021-168	08-31-22
Texas	NELAP	T104704215-21-44	06-30-22
Texas	TCEQ Water Supply	T104704215	06-30-22
USDA	US Federal Programs	P330-22-00025	03-02-23

3

4

5

7

9

10

12

14

16

17

Method Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	XEN STF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	XEN STF
TX 1005	Texas - Total Petroleum Hydrocarbon (GC)	TCEQ	XEN STF
6010C	Metals (ICP)	SW846	XEN STF
7470A	Mercury (CVAA)	SW846	XEN STF
Moisture	Percent Moisture	EPA	XEN STF
1311	TCLP Extraction	SW846	XEN STF
3010A	Preparation, Total Metals	SW846	XEN STF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	XEN STF
5030C	Purge and Trap	SW846	XEN STF
7470A	Preparation, Mercury	SW846	XEN STF
TX_1005_S_Prep	Extraction - Texas Total petroleum Hyrdocarbons	TCEQ	XEN STF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TCEQ = Texas Commission of Environmental Quality

Laboratory References:

XEN STF = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

0400 4

4

_

9

11

14

Sample Summary

Client: Jacobs Engineering Group, Inc. Project/Site: STC Silber Rd IDW

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
860-26460-1	IDW-WS01-051922	Solid	05/19/22 11:30	05/19/22 12:37
860-26460-2	IDW-WS02-051922	Solid	05/19/22 11:50	05/19/22 12:37
860-26460-3	IDW-WS03-051922	Solid	05/19/22 12:00	05/19/22 12:37

Job ID: 860-26460-1

Appendix A

Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Job No. 860-26460-1 and consists of:

This signature page, the laboratory review checklist, and the following reportable data:

- ☑ R1- Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. prepatation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified coumpounds (TICs).
- ☑ R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- ☑ R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- ☑ R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- ☑ R10 Other problems or anomalies.
- □ Exception Report for every "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Check, if applicable: ☐ This laboratory meets an exception under 30 TAC §25.6 and was last inspected by ☐ TCEQ or ☐ _____ on __/__/_. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name (Printed)	Signature	Official Title (Printed)	Date

Page 49 of 58

2

3

4

1

9

11

13

15

17

18

6/24/2022 (Rev. 1)

Laboratory Data Package Cover Page - Page 2 of 4

			Date: 06/24/202		00400 4			
			ratory Job Numb	er: 860-2	∠6460-1			
	wer Na							
#¹	A ²	Description		Yes	No	NA ³	NR⁴	ER#⁵
R1	OI	Chain-of-custody (C-O-C)						
		Did samples meet the laboratory's standard conditions of sample ac	ceptability upon	✓				
		receipt?						
		Were all departures from standard conditions described in an excep	tion report?	✓				
R2	OI	Sample and quality control (QC) identification						
		Are all field sample ID numbers cross-referenced to the laboratory ID		✓				
		Are all laboratory ID numbers cross-referenced to the corresponding	QC data?	✓				
R3	OI	Test reports						
		Were all samples prepared and analyzed within holding times?		✓				
		Other than those results < MQL, were all other raw values bracketed	l by calibration	✓				
		standards?						
		Were calculations checked by a peer or supervisor?		√				
		Were all analyte identifications checked by a peer or supervisor?		√				
		Were sample detection limits reported for all analytes not detected? Were all results for soil and sediment samples reported on a dry wei	aht hasis?	✓ ✓				
		Were % moisture (or solids) reported for all soil and sediment samples.	•	✓ ✓				
		, , ,		,		✓		
		Were bulk soils/solids samples for volatile analysis extracted with me SW846 Method 5035?	ғшаногрег					
		If required for the project, are TICs reported?				✓		
R4	0	Surrogate recovery data						
114		Were surrogates added prior to extraction?		✓				
		Were surrogates added prior to extraction: Were surrogate percent recoveries in all samples within the laborato	ry OC limits?	•	/			1
R5	OI	Test reports/summary forms for blank samples	ry &O IIIIIIO:					'
NJ	3 01	Were appropriate type(s) of blanks analyzed?		✓				
		Were blanks analyzed at the appropriate frequency?		· ·				
		Were method blanks taken through the entire analytical process, inc	luding preparation	✓ ·				
		and, if applicable, cleanup procedures?	idding preparation					
		Were blank concentrations < MQL?			✓			2
R6	OI	Laboratory control samples (LCS):						_
	_ O.	Were all COCs included in the LCS?		✓				
		Was each LCS taken through the entire analytical procedure, includi	ng prep and	✓				
		cleanup steps?	ng prop and					
		Were LCSs analyzed at the required frequency?		✓				
		Were LCS (and LCSD, if applicable) %Rs within the laboratory QC li	mits?	✓				
		Does the detectability check sample data document the laboratory's		✓				
		detect the COCs at the MDL used to calculate the SDLs?	. ,					
		Was the LCSD RPD within QC limits?		✓				
R7	OI	Matrix spike (MS) and matrix spike duplicate (MSD)) data					
-	1	Were the project/method specified analytes included in the MS and		√				
		Were MS/MSD analyzed at the appropriate frequency?		✓				
		Were MS (and MSD, if applicable) %Rs within the laboratory QC lim	its?		✓			3
		Were MS/MSD RPDs within laboratory QC limits?		✓				
R8	OI	Analytical duplicate data						
		Were appropriate analytical duplicates analyzed for each matrix?		✓				
		Were analytical duplicates analyzed at the appropriate frequency?		✓				
		Were RPDs or relative standard deviations within the laboratory QC	limits?	√				
R9	OI	Method quantitation limits (MQLs):						
		Are the MQLs for each method analyte included in the laboratory da	ta package?	✓				
		Do the MQLs correspond to the concentration of the lowest non-zero	calibration	✓				
		standard?						
		Are unadjusted MQLs and DCSs included in the laboratory data pac	kage?	✓				
R10	OI	Other problems/anomalies						
		Are all known problems/anomalies/special conditions noted in this Li		✓				
		Was applicable and available technology used to lower the SDL to n	ninimize the matrix	✓				
		interference effects on the sample results?						
		Is the laboratory NELAC-accredited under the Texas Laboratory Acc	reditation Program	✓				
		for the analytes, matrices and methods associated with this laborato	ry data package?					

Laboratory Data Package Cover Page - Page 3 of 4

Laboratory Name: Eurofins Houston

Project Name: STC Silber Rd IDW

Laboratory Job Number: 860-26460-1

Reviewer Name:

			ratory Job Number:	: 860-2	26460-1			
	wer Na	ame						
#¹	A ²	Description	,	Yes	No	NA ³	NR⁴	ER#5
S1	OI	Initial calibration (ICAL)						
		Were response factors and/or relative response factors for each ana	yte within QC	✓				
		limits?						
		Were percent RSDs or correlation coefficient criteria met?		✓				
		Was the number of standards recommended in the method used for	•	√				
		Were all points generated between the lowest and highest standard	used to calculate	✓				
		the curve?						
		Are ICAL data available for all instruments used?		✓ ✓				
		Has the initial calibration curve been verified using an appropriate se	cond source	•				
S2	OI	standard?	and CCVV and					
32	Oi	Initial and continuing calibration verification (ICCV	and CCV) and					
		continuing calibration blank (CCB): Was the CCV analyzed at the method-required frequency?		√				
		Were percent differences for each analyte within the method-required	1 OC limite?	∨ ✓				
		Was the ICAL curve verified for each analyte?	a QC IIIIIIS?	√				
		Was the absolute value of the analyte concentration in the inorganic	CCB < MDL2	· /				
S3	0	Mass spectral tuning	OOD \ INIDE:	•				
- 55		Was the appropriate compound for the method used for tuning?		√				
		Were ion abundance data within the method-required QC limits?		<u>·</u>				
S4	0	Internal standards (IS)						
		Were IS area counts and retention times within the method-required	OC limits?	√				
S5	OI	Raw data (NELAC Section 5.5.10)	QO IIIIII.O.					
00	Oi	Were the raw data (for example, chromatograms, spectral data) review	awed by an	√				
		analyst?	swed by all					
		Were data associated with manual integrations flagged on the raw data	ata?	√				
S6	0	Dual column confirmation						
		Did dual column confirmation results meet the method-required QC?				✓		
S7	0	Tentatively identified compounds (TICs)						
<u> </u>		If TICs were requested, were the mass spectra and TIC data subject	to appropriate			√		
		checks?	to appropriate					
S8	ı	Interference Check Sample (ICS) results						
		Were percent recoveries within method QC limits?		✓				
S9	I	Serial dilutions, post digestion spikes, and method	of standard					
		additions						
		Were percent differences, recoveries, and the linearity within the QC	limits specified	✓				
		in the method?						
S10	OI	Method detection limit (MDL) studies						
		Was a MDL study performed for each reported analyte?		✓				
		Is the MDL either adjusted or supported by the analysis of DCSs?		✓				
S11	OI	Proficiency test reports						
	1	Was the laboratory's performance acceptable on the applicable profi	ciency tests or	✓				
		evaluation studies?						
S12	OI	Standards documentation						
		Are all standards used in the analyses NIST-traceable or obtained from	om other	✓				
		appropriate sources?						
S13	OI	Compound/analyte identification procedures						
		Are the procedures for compound/analyte identification documented	?	✓				
S14	OI	Demonstration of analyst competency (DOC)						
	•	Was DOC conducted consistent with NELAC Chapter 5?		✓				
		Is documentation of the analyst's competency up-to-date and on file?)	✓				
S15	OI	Verification/validation documentation for methods	(NELAC					
		Chapter 5)						
		Are all the methods used to generate the data documented, verified,	and validated,	\checkmark				
		Are all the methods used to generate the data documented, verified, where applicable?	and validated,	✓				
S16	OI	_	and validated,	√				

Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s).
 Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period;

^{2.} O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

^{3.} NA = Not applicable;

NR = Not reviewed;

^{5.} ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Cover Page - Page 4 of 4

Labora	tory Name: Eurofins Houston	LRC Date: 06/24/2022				
Project	Name: STC Silber Rd IDW	Laboratory Job Number: 860-26460-1				
Review	ver Name:					
ER#1	Description					
1	Method 8270D: The surrogate recovery for the blank associated with p	preparation batch 860-53687 and 860-53840 and analytical batch				
	860-53944 was outside the control limits. The surrogate recovery for	the sample passed. Non-target compounds were detected, data can be				
	reported.					
2	Method 6010C: The leachate blank for preparation batch 860-53687 a	nd 860-53954 and analytical batch 860-54342 contained barium and				
	antimony above the method detection limit. This target analyte conce	ntration was less than the reporting limit (RL); therefore, re-extraction				
	and/or re-analysis of samples was not performed.					
	• •	nd analytical batch 860-54342 contained chromium and selenium above the				
	method detection limit. This target analyte concentration was less that	n the reporting limit (RL); therefore, re-extraction and/or re-analysis of				
	samples was not performed.					
3	. , ,	h 860-53848 and analytical batch 860-53937 were outside control limits.				
	Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was					
	within acceptance limits.					
1. ER:	ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).					

4 5

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: TCLP

Prep Method: 5030C-Purge and Trap
Instrument: A292 Detector: MSD/0 Column: DB-624

Instrument: A292	Det Spike	ector: MS	D/0					Column: DB-624
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1,1-Trichloroethane	0.00500	0.00498	J	mg/L	0.00500	0.000504	01/07/2022	860-36806
1,2-Dichlorobenzene	0.00500	0.00514		mg/L	0.00100	0.000236	01/07/2022	860-36806
1,2-Dichloroethane	0.00500	0.00493		mg/L	0.00100	0.000285	01/07/2022	860-36806
1,2-Dichloropropane	0.00500	0.00491	J	mg/L	0.00500	0.000396	01/07/2022	860-36806
1,3-Dichlorobenzene	0.00500	0.00497		mg/L	0.00100	0.000197	01/07/2022	860-36806
1,4-Dichlorobenzene	0.00500	0.00516		mg/L	0.00100	0.000199	01/07/2022	860-36806
2-Butanone (MEK)	0.0250	0.0259	J	mg/L	0.0500	0.00270	01/07/2022	860-36806
2-Hexanone	0.0250	0.0259	J	mg/L	0.0500	0.000789	01/07/2022	860-36806
4-Methyl-2-pentanone (MIBK)	0.0250	0.0250	J	mg/L	0.0500	0.00106	01/07/2022	860-36806
Acetone	0.0250	0.0254	J	mg/L	0.100	0.0123	01/07/2022	860-36806
Benzene	0.00500	0.00492		mg/L	0.00100	0.000214	01/07/2022	860-36806
1,1,2,2-Tetrachloroethane	0.00500	0.00527		mg/L	0.00100	0.000284	01/07/2022	860-36806
Chlorobromomethane	0.00500	0.00472		mg/L	0.00100	0.000209	01/07/2022	860-36806
Bromodichloromethane	0.00500	0.00476		mg/L	0.00100	0.000231	01/07/2022	860-36806
Bromoform	0.00500	0.00490	J	mg/L	0.00500	0.000630	01/07/2022	860-36806
Bromomethane	0.00500	0.00564		mg/L	0.00500	0.00105	01/07/2022	860-36806
Carbon disulfide	0.00500	0.00487	J	mg/L	0.00500	0.000373	01/07/2022	860-36806
Carbon tetrachloride	0.00500	0.00477	J	mg/L	0.00500	0.000423	01/07/2022	860-36806
Chlorobenzene	0.00500	0.00507		mg/L	0.00100	0.000159	01/07/2022	860-36806
Chloroethane	0.00500	0.00477	J	mg/L	0.0100	0.000433	01/07/2022	860-36806
Chloroform	0.00500	0.00495	Ü	mg/L	0.00100	0.000259	01/07/2022	860-36806
Chloromethane	0.00500	0.00483	J	mg/L	0.0100	0.000203	01/07/2022	860-36806
1,1,2-Trichloro-1,2,2-trifluoroetha	0.00500	0.00412	J	mg/L	0.0100	0.000364	01/07/2022	860-36806
ne	0.00000	0.00+12	J	mg/L	0.0100	0.000004	01/01/2022	000 00000
Cyclohexane	0.00500	0.00596		mg/L	0.00500	0.000474	01/07/2022	860-36806
Dibromochloromethane	0.00500	0.00501		mg/L	0.00500	0.000739	01/07/2022	860-36806
Dichlorodifluoromethane	0.00500	0.00446		mg/L	0.00100	0.000316	01/07/2022	860-36806
Ethylbenzene	0.00500	0.00487		mg/L	0.00100	0.000515	01/07/2022	860-36806
Methyl tert-butyl ether	0.00500	0.00517		mg/L	0.00500	0.000571	01/07/2022	860-36806
Methylene Chloride	0.00500	0.00509		mg/L	0.00500	0.00191	01/07/2022	860-36806
Styrene	0.00500	0.00472		mg/L	0.00100	0.000623	01/07/2022	860-36806
Tetrachloroethene	0.00500	0.00523		mg/L	0.00100	0.000500	01/07/2022	860-36806
Toluene	0.00500	0.00509		mg/L	0.00100	0.000500	01/07/2022	860-36806
Trichloroethene	0.00500	0.00484	J	mg/L	0.00500	0.000424	01/07/2022	860-36806
1,1,2-Trichloroethane	0.00500	0.00493		mg/L	0.00100	0.000228	01/07/2022	860-36806
Vinyl acetate	0.0250	0.0240		mg/L	0.0200	0.00357	01/07/2022	860-36806
Vinyl chloride	0.00500	0.00496		mg/L	0.00200	0.000234	01/07/2022	860-36806
Xylenes, Total	0.0100	0.00941	J	mg/L	0.0100	0.000330	01/07/2022	860-36806
cis-1,2-Dichloroethene	0.00500	0.00502	Ü	mg/L	0.00100	0.000174	01/07/2022	860-36806
cis-1,3-Dichloropropene	0.00500	0.00457	J	mg/L	0.00500	0.000690	01/07/2022	860-36806
Isopropylbenzene	0.00500	0.00469		mg/L	0.00100	0.000161	01/07/2022	860-36806
m-Xylene & p-Xylene	0.00500	0.00466	J	mg/L	0.0100	0.000330	01/07/2022	860-36806
o-Xylene	0.00500	0.00475	J	mg/L	0.00100	0.000192	01/07/2022	860-36806
trans-1,2-Dichloroethene	0.00500	0.00504		mg/L	0.00100	0.000192	01/07/2022	860-36806
trans-1,3-Dichloropropene	0.00500	0.00304	J	mg/L	0.00500	0.000230	01/07/2022	860-36806
1,1-Dichloroethane	0.00500	0.00480	J	mg/L	0.00300	0.000732	01/07/2022	860-36806
1,1-Dichloroethene	0.00500	0.00501			0.00100	0.000244	01/07/2022	860-36806
	0.00500	0.00500		mg/L	0.00100	0.000216	01/07/2022	860-36806
1,2,4-Trichlorobenzene				mg/L			01/07/2022	
1,2-Dibromo-3-Chloropropane	0.00500	0.00568		mg/L	0.00500	0.000319	01/01/2022	860-36806

Eurofins Houston

_

3

6

8

10

12

A A

15

Client: Jacobs Engineering Group, Inc. Job ID: 860-26460-1 Project/Site: STC Silber Rd IDW

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Solid Prep Type: TCLP

Prep Method: 5030C-Purge and Trap

Instrument: A292 Detector: MSD/0 Column: DB-624

Spike

Analyte Added Result Qualifier Unit RL MDL **Analysis Date Analysis Batch** 0.00500 0.00500 0.00500 0.000337 01/07/2022 1,2-Dibromoethane mg/L 860-36806

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: TCLP

Prep Method: 3510C-Liquid-Liquid Extraction (Separatory Funnel)

Instrument: A101	Det Spike	D/0				Column: Rxi 5Sil M		
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
1,1'-Biphenyl	0.00400	0.00386	J	mg/L	0.00500	0.000741	01/26/2022	860-38920
2-Chlorophenol	0.00400	0.00322	J	mg/L	0.00500	0.000842	01/26/2022	860-38920
2-Methylnaphthalene	0.00400	0.00351	J	mg/L	0.00500	0.000778	01/26/2022	860-38920
Pyridine	0.00400	0.00114	J	mg/L	0.0100	0.000487	01/26/2022	860-38920
2-Nitroaniline	0.00400	0.00260	J	mg/L	0.0100	0.00107	01/26/2022	860-38920
2-Nitrophenol	0.00400	0.00372	J	mg/L	0.00500	0.000966	01/26/2022	860-38920
2-Methylphenol	0.00400	0.00271	J	mg/L	0.00500	0.000914	01/26/2022	860-38920
3 & 4 Methylphenol	0.00400	0.00221	J	mg/L	0.00500	0.00104	01/26/2022	860-38920
3,3'-Dichlorobenzidine	0.00400	0.00287	J	mg/L	0.0100	0.000618	01/26/2022	860-38920
3-Nitroaniline	0.00400	0.00270	J	mg/L	0.0100	0.000787	01/26/2022	860-38920
4,6-Dinitro-2-methylphenol	0.00400	0.00512	J	mg/L	0.0100	0.000870	01/26/2022	860-38920
4-Bromophenyl phenyl ether	0.00400	0.00416	J	mg/L	0.00500	0.000948	01/26/2022	860-38920
2,4,5-Trichlorophenol	0.00400	0.00333	J	mg/L	0.00500	0.000935	01/26/2022	860-38920
4-Chloroaniline	0.00400	0.00305	J	mg/L	0.0100	0.000609	01/26/2022	860-38920
4-Chlorophenyl phenyl ether	0.00400	0.00398	J	mg/L	0.00500	0.000868	01/26/2022	860-38920
4-Nitroaniline	0.00400	0.00266	J	mg/L	0.0100	0.00116	01/26/2022	860-38920
4-Nitrophenol	0.00400	<0.0100	U	mg/L	0.0100	0.00161	01/26/2022	860-38920
4-Chloro-3-methylphenol	0.00400	0.00306	J	mg/L	0.00500	0.00131	01/26/2022	860-38920
Acenaphthene	0.00400	0.00371	J	mg/L	0.00500	0.000876	01/26/2022	860-38920
Acenaphthylene	0.00400	0.00379	J	mg/L	0.00500	0.000886	01/26/2022	860-38920
Acetophenone	0.00400	0.00373	J	mg/L	0.00500	0.000932	01/26/2022	860-38920
Anthracene	0.00400	0.00389	J	mg/L	0.00500	0.000884	01/26/2022	860-38920
Benzo[a]anthracene	0.00400	0.00373	J	mg/L	0.00500	0.00100	01/26/2022	860-38920
2,4,6-Trichlorophenol	0.00400	0.00343	J	mg/L	0.00500	0.000946	01/26/2022	860-38920
Benzo[a]pyrene	0.00400	0.00367	J	mg/L	0.00500	0.00100	01/26/2022	860-38920
Benzo[b]fluoranthene	0.00400	0.00370	J	mg/L	0.00500	0.00179	01/26/2022	860-38920
Benzo[g,h,i]perylene	0.00400	0.00382	J	mg/L	0.00500	0.00125	01/26/2022	860-38920
Benzo[k]fluoranthene	0.00400	0.00426	J	mg/L	0.00500	0.00136	01/26/2022	860-38920
Butyl benzyl phthalate	0.00400	0.00307	J	mg/L	0.00500	0.00119	01/26/2022	860-38920
Carbazole	0.00400	0.00393	J	mg/L	0.00500	0.000855	01/26/2022	860-38920
Chrysene	0.00400	0.00400	J	mg/L	0.00500	0.00100	01/26/2022	860-38920
Dibenz(a,h)anthracene	0.00400	0.00378	J	mg/L	0.00500	0.00126	01/26/2022	860-38920
Dibenzofuran	0.00400	0.00395	J	mg/L	0.00500	0.000951	01/26/2022	860-38920
Diethyl phthalate	0.00400	0.00398	J	mg/L	0.00500	0.00123	01/26/2022	860-38920
2,4-Dichlorophenol	0.00400	0.00310	J	mg/L	0.00500	0.00104	01/26/2022	860-38920
Dimethyl phthalate	0.00400	0.00415	J	mg/L	0.00500	0.00117	01/26/2022	860-38920
Fluoranthene	0.00400	0.00399	J	mg/L	0.00500	0.000948	01/26/2022	860-38920
Fluorene	0.00400	0.00395	J	mg/L	0.00500	0.000938	01/26/2022	860-38920
Hexachlorobenzene	0.00400	0.00417	J	mg/L	0.00500	0.00107	01/26/2022	860-38920
Hexachlorobutadiene	0.00400	0.00338	J	mg/L	0.00500	0.000709	01/26/2022	860-38920

Eurofins Houston

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid
Prep Type: TCLP
Prep Method: 3510C-Liquid-Liquid Extraction (Separatory Funnel)

Instrument: A101 Detector: MSD/0 Column: Rxi 5Sil MS

Instrument: A101	Dett	ector: MS	טוע				Colu	mn: KXI 55II W
Analyte	Spike Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
Hexachlorocyclopentadiene	0.00400	0.00828	- Guainici	mg/L	0.00500	0.000614	01/26/2022	860-38920
Hexachloroethane	0.00400	0.00300	J	mg/L	0.00500	0.000787	01/26/2022	860-38920
Indeno[1,2,3-cd]pyrene	0.00400	0.00367	J	mg/L	0.00500	0.00110	01/26/2022	860-38920
Isophorone	0.00400	0.00360	J	mg/L	0.00500	0.00101	01/26/2022	860-38920
N-Nitrosodi-n-propylamine	0.00400	0.00337	J	mg/L	0.00500	0.00133	01/26/2022	860-38920
2,4-Dimethylphenol	0.00400	0.00344	J	mg/L	0.00500	0.000891	01/26/2022	860-38920
N-Nitrosodiphenylamine	0.00400	0.00399	J	mg/L	0.00500	0.00116	01/26/2022	860-38920
Naphthalene	0.00400	0.00362	J	mg/L	0.00500	0.000751	01/26/2022	860-38920
Nitrobenzene	0.00400	0.00397	J	mg/L	0.00500	0.000961	01/26/2022	860-38920
Pentachlorophenol	0.00400	0.00787	J	mg/L	0.0100	0.00112	01/26/2022	860-38920
Phenanthrene	0.00400	0.00406	J	mg/L	0.00500	0.000975	01/26/2022	860-38920
Phenol	0.00400	0.00137	J	mg/L	0.0100	0.00116	01/26/2022	860-38920
Pyrene	0.00400	0.00370	J	mg/L	0.00500	0.000852	01/26/2022	860-38920
Bis(2-chloroethoxy)methane	0.00400	0.00373	J	mg/L	0.00500	0.00124	01/26/2022	860-38920
Bis(2-chloroethyl)ether	0.00400	0.00367	J	mg/L	0.00500	0.00108	01/26/2022	860-38920
bis (2-Chloroisopropyl) ether	0.00400	0.00332	J	mg/L	0.00500	0.00145	01/26/2022	860-38920
2,4-Dinitrophenol	0.00400	<0.0100	U	mg/L	0.0100	0.000616	01/26/2022	860-38920
Bis(2-ethylhexyl) phthalate	0.00400	0.00331	J	mg/L	0.00500	0.00188	01/26/2022	860-38920
Di-n-butyl phthalate	0.00400	0.00367	J	mg/L	0.00500	0.00113	01/26/2022	860-38920
Di-n-octyl phthalate	0.00400	0.00341	J	mg/L	0.00500	0.00148	01/26/2022	860-38920
2,4-Dinitrotoluene	0.00400	0.00309	J	mg/L	0.00500	0.000953	01/26/2022	860-38920
2,6-Dinitrotoluene	0.00400	0.00384	J	mg/L	0.00500	0.00111	01/26/2022	860-38920
2-Chloronaphthalene	0.00400	0.00332	J	mg/L	0.00500	0.000809	01/26/2022	860-38920

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Matrix: Solid Prep Type: Total/NA

Prep Method: TX_1005_S_Prep-Extraction - Texas Total petroleum Hyrdocarbons

Instrument: A331_B Detector: FID/0 Column: RXI-5MS

Spike Analyte Added Result Qualifier Unit RL MDL **Analysis Date Analysis Batch** 01/11/2022 C6-C12 29.9 37.0 50.0 21.1 860-37147 mg/Kg >C12-C28 29.9 32.9 mg/Kg 50.0 21.1 01/11/2022 860-37147

Method: 6010C - Metals (ICP)

Matrix: Solid Prep Type: TCLP

Prep Method: 3010A-Preparation, Total Metals Instrument: A261 Detector: AES/0

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
Arsenic	0.0100	<0.0100	U	mg/L	0.0100	0.00550	03/26/2022	860-46543
Antimony	0.0200	0.0199	J	mg/L	0.0200	0.00589	03/28/2022	860-46573
Beryllium	0.00400	0.00373	J	mg/L	0.00400	0.000490	03/28/2022	860-46573
Barium	0.0100	0.00944	J	mg/L	0.0100	0.00135	03/28/2022	860-46573
Cadmium	0.00500	0.00505		mg/L	0.00500	0.00243	03/28/2022	860-46573
Chromium	0.0100	0.0124		mg/L	0.0100	0.000811	03/28/2022	860-46573
Lead	0.0100	0.00918	J	mg/L	0.0100	0.00237	03/28/2022	860-46573

Eurofins Houston

Client: Jacobs Engineering Group, Inc.

Project/Site: STC Silber Rd IDW

Job ID: 860-26460-1

Method: 6010C - Metals (ICP) (Continued)

Matrix: Solid Prep Type: TCLP

Prep Method: 3010A-Preparation, Total Metals Instrument: A261 Detector: AES/0

	Spike							
Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
Manganese	0.0200	0.0406		mg/L	0.0200	0.00316	03/28/2022	860-46573
Nickel	0.0100	0.00962	J	mg/L	0.0100	0.00307	03/28/2022	860-46573
Selenium	0.0300	0.0261	J	mg/L	0.0300	0.00439	03/28/2022	860-46573
Silver	0.0200	0.0121	J	mg/L	0.0200	0.00559	03/28/2022	860-46573

Method: 7470A - Mercury (CVAA)

Matrix: Solid Prep Type: TCLP

Prep Method: 7470A-Preparation, Mercury

Instrument: A336 Detector: AA/0

Spike

Analyte	Added	Result	Qualifier	Unit	RL	MDL	Analysis Date	Analysis Batch
Mercury	0.000200	0.000217		mg/L	0.000200	0.0000263	02/01/2022	860-39871

2

4

5

6

g

10

11

1 1

13

17

Ш

Eurofins Houston

Login Sample Receipt Checklist

Client: Jacobs Engineering Group, Inc.

Job Number: 860-26460-1

Login Number: 26460 List Source: Eurofins Houston

List Number: 1 Creator: Rubio, Yuri

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

3

4

6

9

11

13

15

17

NOD Lab Reports

May 24, 2022

Mr. John Ynfante **Jacobs** 501 N Broadway Ave St. Louis, MO 63102

Subject: Alkaline Persulfate and Permanganate TOD Testing Report for the Siber Road Houston Site (Former Cameron Iron Works).

Mr. Ynfante:

Ursus Remediation Testing & Technologies, LLC (Ursus) is pleased to provide Jacobs this report for Natural Oxidant Demand (TOD) testing for the Siber Road Houston Site (Former Cameron Iron Works).

OBJECTIVE

The objective of the study was to determine the amount of sodium persulfate and permanganate required to overcome the oxidant demand in site soil and groundwater.

BACKGROUND

Alkaline activated persulfate (in the form of sodium persulfate) and permanganate (in the form of potassium permanganate) were evaluated in the TOD study. Ursus performed persulfate analytical procedures as described in Peroxychem/FMC's KlozurTM Treatability Protocol Template and Haselow et. al 2003. Permanganate TOD testing followed methodologies similar to those outlined by Haselow et. al 2003 and the USEPA.

Two soil samples and two groundwater samples were received by Ursus. Soils were received on ice and were refrigerated until testing. Soils were collected in 16 oz soil jars and groundwater in 1-liter bottles. Soil/groundwater slurries were prepared as described in Table 1.

Table 1.
Samples Received for TOD Testing

	Sample	Date	Sample	
Sample	Date	Received	Matrix	Sample Comments
SB14-3035-050322	5/3/2022	5/5/2022	Soil	Minimal headspace in
				sample
SB14-3035-050322	5/3/2022	5/5/2022	Groundwater	Groundwater sample
				SB14-3035-050322
				was slurried with soil
				sample SB14-3035-
				050322 for testing
SB07-1823-051022	5/10/2022	5/11/2022	Soil	Minimal headspace in
				sample
SB07-1823-051022	5/10/2022	5/11/2022	Groundwater	Groundwater sample
				SB07-1823-051022
				was slurried with soil
				sample SB07-1823-
				051022 for testing

MATERIALS AND METHODOLOGY Materials

Sodium Persulfate – Na₂S₂O₈. Fisher reagent grade.

Sodium Hydroxide – NaOH. JT Baker reagent grade.

Potassium Permanganate – KMnO₄. JT Baker reagent grade.

Methodology

Soil was mixed with the DI at a 1:1 ratio (50 g soil/50 mls solution). The soil slurry samples were prepared immediately prior to TOD testing. Samples were exposed to ambient laboratory conditions in tightly capped reaction jars. Sample were shaken once per day during the study. Original soils were refrigerated when not in use.

Acidity, Persulfate TOD, and Permanganate TOD Testing

Acidity testing was conducted on soil to determine the amount of sodium hydroxide required for alkaline activated persulfate. The acidity of the slurry was determined prior to TOD testing. The slurry sample was titrated with a known amount of sodium hydroxide to determine the amount of alkalinity required to maintain the pH above 10.5 for effective alkaline activation. Permanganate does not require an activator.

Jacobs Siber Road Houston (Former Cameron Iron Works) May 24, 2022

Samples were tested for persulfate TOD 48 hours and 96 hours post treatment. Sodium persulfate dosages of 4.0, 8.0, and 10.0 g/kg were tested for slurry sample SB14-3035-050322 and 1.0, 2.5, and 5.0 g/kg for slurry sample SB07-1823-051022.

Samples were tested for permanganate TOD 48 hours and 96 hours post treatment. Permanganate dosages of 5.0, 10.0, and 15.0 g/kg were tested for slurry sample SB14-3035-050322 and 1.0, 2.5, and 5.0 g/kg for slurry sample SB07-1823-051022.

RESULTS Acidity

The amount of sodium hydroxide needed to adjust the sample for alkaline activation includes the mass needed to maintain the pH above 10.5 and the mass needed to compensate for the decomposition of sodium persulfate and formation of sulfuric acid. The baseline acidity for the soil samples was 0.4g NaOH/kg. The required amount of sodium hydroxide for each dosage is shown in Table 2.

Table 2.
Grams of NaOH Added at Each Dosage for Alkaline Persulfate Activation.

Persulfate Dosage (g/kg)	Acidity (g NaOH/kg soil)	Acidity (g 25% NaOH/kg soil)
1.0	0.8	3.2
2.5	1.3	5.2
4.0	1.8	7.2
5.0	2.2	8.8
8.0	3.2	12.8
10.0	3.9	15.6

Persulfate and Permanganate TOD Testing

Persulfate and permanganate TOD were set up on May 9, 2022, for sample SB14-3035-050322. The 48 hour persulfate and permanganate TOD (TOD_{48Hr}) was measured on May 11, 2022 and the 96 hour (TOD_{96Hr}) on May 13, 2022.

Persulfate and permanganate TOD were set up on May 16, 2022, for sample SB07-1823-051022. The 48 hour persulfate and permanganate TOD (TOD_{48Hr}) was measured on May 18, 2022 and the 96 hour (TOD_{96Hr}) on May 20, 2022.

At each test date, the soil slurry was allowed to settle, and an aliquot of the liquid fraction was decanted and analyzed for residual persulfate and permanganate. The data for the TOD is shown in Tables 3 and 4.

TOD results are discussed below.

- 1. The higher the persulfate or permanganate dosage, the higher the TOD.
- 2. The goal of achieving a pH greater than 10.5 for alkaline activated persulfate test was achieved for all dosages.
- 3. Permanganate TOD can be converted to potassium permanganate or sodium permanganate TOD by multiplying the permanganate TOD by 1.33 and 1.19, respectively.

Table 3.
Alkaline Activated Persulfate TOD_{48Hr} and TOD_{96Hr} Results

		TO	D _{48Hr}	TOD96Hr		
Sample	Sodium Persulfate Dosage (g/kg)	рН	TOD g/kg at TOD _{48Hr}	рН	TOD g/kg at TOD _{96Hr}	
	4.0	13.09	0.4	13.01	0.5	
SB14-3035-050322	8.0	13.38	0.8	13.29	1.2	
	10.0	13.49	1.4	13.32	1.7	
	1.0	11.96	0.1	11.04	0.1	
SB07-1823-051022	2.5	12.52	0.1	12.22	0.4	
	5.0	12.93	0.4	12.64	0.6	

Table 4. Permanganate TOD_{48Hr} and TOD_{96Hr} Results

Sample	Permanganate Dosage (g/kg)	TOD g/kg at TOD48Hr	TOD g/kg at TOD96Hr
SB14-3035-050322	5.0	0.6	0.5
	10.0	1.1	1.1
	15.0	1.7	1.6
	1.0	0.2	0.4
SB07-1823-051022	2.5	0.5	1.0
	5.0	0.9	1.5

Jacobs Siber Road Houston (Former Cameron Iron Works) May 24, 2022

REFERENCES

Evonik/Peroxychem. Klozur $^{\text{TM}}$ Activated Persulfate Treatability Protocol Template.

Haselow, J, S., Siegrist, R, L., Crimi, M., and Jarosch, T. 2003. Estimating the Total Oxidant Demand for In Situ Chemical Oxidation Design. Remediation Autumn 2003.

US EPA. Standard Test Method for Determining the Permanganate Soil Oxidant Demand (Screening Phase, PSOD-1)

Sincerely,

Andrew Wenzel

Andrew Wengel

Principal

Acronyms and Abbreviations

CH2M CH2M HILL Engineers, Inc.

CL clay

CME Central Mine Equipment Co.

bgs below ground surface
DPT direct-push technology

Fe iron
ft feet
G gravel

GW groundwater HA hand auger

HSA hollow stem auger MW monitoring well

PID photoionization detector

PPM parts per million

S sand

SB soil boring

SI silt

SS split spoon

tr. trace

USCS Unified Soil Classification System

Soil Boring Logs

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-01	1 of 1

SOIL BORING LOG

LOCATION: Houston Texas PROJECT: Silber Road Pre-Design ELEVATION : DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT WATER LEVELS: 23' START: 5/13/2022 0930 END: 5/12/2022 1134 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) COMMENTS CORE DESCRIPTION INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS. #/TYPE OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. MINERALOGY PPM 0.0 - 0.5 CONCRETE G/S/SI/CL 0.5 - 3.0 Lean CLAY with silt (CL). Dark brown, moist, 0 medium, medium plasticity, gravel throughout, little silt. 5/5 HA-1 0.0 to 3.0 - 4.0 SILT (ML). Black, soft to very soft, non-plastic, 5 0/<5/90/<5 loss of gravel, dry 5 4.0 - 23.0 Fat CLAY (CH). Brown, moist, medium, 0/<5/5/90 5 medium to high plastic, trace orange Fe oxidation, DPT-1 3/3 0.0 to few silt, trace fine sand. 8 6.0 Color change to light gray, increase in tan mottling and Fe oxidation. 10_ 8 DPT-2 0.0 to 10.5 Increase in tan and red mottling, trace black 12 nodules. 4/4 DPT-3 0.0 12 15_ to 16 DPT-4 0.0 16 4/4 to 20_ 20 20 DPT-5 0.0 to 23.0 - 31.5 Poorly graded SAND with silt (SP). Ver 0/80/15/5 24 25_ light gray/white, few orangish tan mottling, trace clay, DPT-6 0.0 24 4/4 fine grained, subrounded to subangular, slightly to cohesive, loose, saturated. 27.0 - 25.0 Starting to be hard drilling. 28 30 28 4/4 DPT-7 0.0 to 32 31.5 - 34.0 Well graded SAND with silt (SW). <5/75/15/5 Orangish tan, loose to very loose, saturated, fine to 32.0 Very hard drilling 32 DPT-8 medium grained, trace pebbles, slightly cohesive 35 to Refusal at 34.0 ft bgs 36 40_ 45_ 50

PROJECT NUMBER
D3542628
BORING NUMBER
SB-02

SOIL BORING LOG

1 of 1

PROJECT : Silber Road Pre-Design

LOCATION : Houston Texas

ELEVATION :

DRILLING CONTRACTOR : Best

DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT

DRILLIN	DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT							
	LEVELS			START:	: 5/12/2022 0830 END : 5/12/2022 1020	LOGGER: D. Rowan		
DEPTH B	ELOW SU	•	T)		CORE DESCRIPTION	COMMENTS		
	INTERVA	RECOVE	RY (FT) #/TYPE	PID READINGS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.		
				PPM	MINERALOGY.			
_	_				0.0 - 0.6" CONCRETE	G/S/SI/CL _		
	0 to 5	5/5	HA-1	0.0	0.6 - 1.0 FILL with gravel 1.0 - 7.0 Fat CLAY (CH). Light gray with dark orangish tan mottling, moist, soft, high plasticity, little silt, less			
5					gravel, mottling increases with depth.			
-	5 to	3/3	DPT-1	0.0	6.0 Few black organic nodules			
_	8				7.0 - 9.0 Silty Lean CLAY (CL). Very light gray with orangish tan mottling, soft to very soft, moist, low to medium plasticity.	_ 0/0/45/55		
10	8 to	4/4	DPT-2	0.0	9.0 - 14.0 Fat CLAY with silt (CH). Very light gray, almost white with ligth tan mottling (less than above)	0/0/20/80		
_ _	12				stiff, high plasticity, dry.	_ _		
15	12 to 16	4/4	DPT-3	0.0	14.0 - 24.0 Silty clayey SAND (SC). Very light gray/	0/40/30/30		
_	16	4/4	DPT-4	0.0	white, with few gray mottling, dense to medium dense, fine sand, cohesive with low to non-plastic, dry, near moist, loss of secondary color.			
20	to 20				17.5 Saturated, less silt. Increase in clay.	- -		
-	20 to	4/4	DPT-5	0.0		22.0 - Hard drilling		
_	24				23.0 Color change to orangish tan/reddish brown.			
25					24.0 - 43.0 SAND with silt (SP-SW). Light tan, wet to	0/80/15/25		
_	24	4/4	DPT-6	0.0	near saturated, loose to very loose, mostly fine grained	_		
_	to 28				to medium, slightly cohesive, trace clay.	-		
_								
30	28	4/4	DPT-7	0.0	29.0 Saturated	29.0 Some slow advancement		
_	to 32					-		
_	32					_		
_	32	4/4	DPT-8	0.0		33.0 Some slow advancement		
35	to					- 		
_	36		+		1	- -		
	36	4/4	DPT-9	0.0]		
-	tp				38.0 Some dark gray/ laminations.	_		
40	40		1		-	- 		
_ _	40 to	3/4	DPT-10	0.0		- -		
_	44				Refusal at 43' bgs	_		
45								
_								
_						-		
_						_		
50					-	_ 		
_						- -		
_						_		
_						_		

PROJECT NUMBER D3542628 BORING NUMBER SB-03

1 of 1

SOIL BORING LOG

PROJEC ELEVAT		Road Pr	e-Design	-	LOCATION : Houston Texas DRILLING CONTRACTOR : Best		
		DD AND I	EQUIPME	NT USED : DPT Ge			
	LEVELS				5/12/2022 1420 END: 5/12/2022 1615	LOGGER: D. Rowan	
DEPTH B	ELOW SU	RFACE (F	T)		CORE DESCRIPTION	COMMENTS	
	INTERVA	RVAL (FT)			SOIL NAME, USCS GROUP SYMBOL, COLOR,	DEPTH OF CASING, DRILLING RATE,	
		RECOVE		PID READINGS	MOISTURE CONTENT, RELATIVE DENSITY,	DRILLING FLUID LOSS,	
			#/TYPE		OR CONSISTENCY, SOIL STRUCTURE,	TESTS, AND INSTRUMENTATION.	
				PPM	MINERALOGY.		
_					0.0 - 0.9 CONCRETE	G/S/SI/CL	
-	0				0.9 - 1.0 GRAVEL. Concrete base	-	
	to	5/5	HA-1		Non-Native Material. Black and gray plastics, oyster shells, plastic sheeting in dark brown clay		
_	ιο	3/3	11/4-1	0.0	3.5 - 4.5 Well graded SAND (SW). Non-native appears to be	-	
	5				20/40 foundation base sand with some small gravel		
_	Ů				4.5 - 5.5 Fat CLAY (CH). Gray with dark brown and tan	-	
5					mottling, soft, moist, high plastic, few sand, little silt	0/5/10/85	
	5				5.5 - 19.0 Silty CLAY (CH/CL). Light gray with tan and red	0/0/35/65 Chemical odor	
	to	3/3	DPT-1	0.0	mottling, dry, stiff, low plasticity, less sand, orangish tan		
	8				oxidation laminations throughout, increase with depth		
_					_		
10	8	4/4	DPT-2	0.0	<u> </u>	_	
_	to				10.0 Becomes fat clay with high plasticity	_	
_	12				=	_	
_					=	_	
_	12	4/4	DPT-3	0.0	=	_	
15	to				_	_	
_	16				_	-	
_					_	-	
_	16	4/4	DPT-4	0.0	_	-	
_	to				_	-	
20	20				19.0 - 35.5 Silty poorly graded SAND (SP). Light gray to	_	
-					white, same dark tan mottling, medium dense to loose,	-	
_	20	4/4	DPT-5	0.0	wet to saturated, slightly cohesive.	-	
_	to				=	-	
_	24				=	-	
25					_	Loss of chemical odor	
_	24	4/4	DPT-6	0.0	=	_	
_	to				=	_	
_	28				_	-	
_					=	-	
30	28	4/4	DPT-7	0.0	_	_	
_	to				_	-	
_	32				=	-	
_					_	-	
_	32	4/4	DPT-8	0.0	_	=	
35	to				25 5 20 5 5-4 01 AV (1974 4 (01)) D. 1 (19 1)	-	
	36				35.5 - 36.5 Fat CLAY with sand (CH). Reddish brown, stiff to very stiff, moist, high plasticity, fine to medium sand.		
_	- 55				36.5 - 38.5 Well graded SAND (SW). Tannish brown,	·	
_	36	4/4	DPT-9	0.0	wet, loose, fine to medium	-	
_		., .			38.5 - 39.5 Fat CLAY with sand (CH). Reddish bown, stiff to	1	
_	to				very stiff, moist, high plasticity, fine to medium sand.	38.0 Hard, slow advance	
40	40				39.5 - 41.5 Well graded SAND (SW). Tannish brown,	_	
_					wet, loose, fine to medium	_	
					41.5 - 42.0 Fat CLAY with sand (CH). Reddish brown, stiff to		
_	40	2/4	DPT-10	0.0	very stiff, moist, high plasticity, fine to medium sand.		
_	to				Refusal at 42 ft bgs	_	
_	44				_	-	
45							
_							
_					_	-	
-					_	-	
					_	-	
50						_	
-					=	-	
-					-	-	
-					-	-	
_					-	-	

PROJECT NUMBER
D3542628

BORING NUMBER
SB-04

SOIL BORING LOG

1 of 1

PROJECT : Silber Road Pre-Design

LOCATION : Houston Texas

ELEVATION :

DRILLING CONTRACTOR : Best

DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT

WATER LEVELS : 17' START : 5/11/2022 0930 END : 5/11/2022 1108 LOGGER : D. Rowan

WATER LEVELS : 17'			START:	5/11/2022 0930 END: 5/11/2022 1108	LOGGER: D. Rowan
DEPTH BELOW SUF	RFACE (F	T)		CORE DESCRIPTION	COMMENTS
	INTERVAL (FT) RECOVERY (FT) #/TYPE			SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
- 0			PPM	MINERALOGY. 0.0 - 0.4 CONCRETE 0.4 - 1.0 FILL clay	G/S/SI/CL _
to	5/5	HA-1	0.0	1.0 - 3.0 Sandy lean CLAY (CL). Very dark gray and tan, dry, medium to low plasticity, medium sand, trace reddish orange mottling, graduational with below	
_ 5 5				3.0 - 6.0 Silty fat CLAY (CH). Black and light gray with tan mottling througout, moist, medium, trace fine sand, medium to high plasticity, trace roots, few black organic nodules and laminations.	
_ 5 _ to _ 8	3/3	DPT-1	0.0	6.0 - 18.5 Silty lean CLAY (CL). Light gray with brownish tan mottling, few gray beds, stiff to very stiff,	0/5/40/55 Much less odor but still present
10 8 _ to _ 12	4/4	DPT-2	0.0	moist, trace roots, few fine sand, gradational with above, stiffness increases with depth 	- - -
_ _ 12 15 to _ 16	4/4	DPT-3	0.0	14.0 - 14.5 Very white clay, looks like calcite but is soft and plyable like a fat clay	- - - -
_ 16	4/4	DPT-4	0.0	16.0 Stange orange oxidation, loss of plasticity 18.5 - 19.5 SILT (ML). Light gray to gray, few reddish tan mottling, saturated, very soft, non plastic,	- -
20to				gradiational with above, few very fine sand, abrupt with below. 19.5 - 24.0 Silty CLAY (CL). Gray with heavy, dark reddish orange oxidation and similar white clay as	0/5/90/5 Faint odor
_ _ 20 _ to _ 24	4/4	DPT-5	0.0	14.0 - 14.5, stiff, low to medium plasticity, trace hard calcite nodules.	22.0 Becoming hard drilling
25 _ 24 _ to _ 28	4/4	DPT-6	0.0	24.0 - 36.0 Silty SAND (SM). Orangish tan to light tan, loose to very loose, saturated to wet, few fat clay lenses, slightly cohesive, fine, trace medium grained sand, near flowing.	0/65/30/5 24.0 - 28.0 Rods came up wet
30 28 _ to _ 32	3/4	DPT-7	0.0	- - -	- - -
32 35 to _ 36	4/4	DPT-8	0.0	-	_ _ 36.0 Hard drilling
36 to 40 40	0/4	DPT-9	0.0	Refusal at 36 ft bgs	- - - -
- - - -				- - -	- - - -
45					 - - -
50				- - -	_
_ _ _				- - -	- - - -

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-05	1 of 1

PROJECT: Silber Road Pre-Design LOCATION: Houston Texas **ELEVATION:** DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT START: 5/16/2022 1025 WATER LEVELS: END: 5/16/2022 1125 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) COMMENTS CORE DESCRIPTION INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, RECOVERY (FT) DRILLING FLUID LOSS. #/TYPE OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. PPM MINERALOGY. 0.0 - 0.7 CONCRETE G/S/SI/CL 0.7 - 2.0 Gravelly Fat CLAY with Silt (CH). Very dark 30/<5/15/50 0 5/5 HA-1 0.0 brown, moist, medium, medium/high plasticity, 0.25 to 5 to 0.50 inch gravel, assumed fill 5 2.0 - 4.0 SILT (ML). Dark and light gray, very soft, 0/<5/90/5 5 dry to moist, non-plastic, loss of gravel, trace sand 3/3 DPT-1 4.0 - 6.0 Silty Lean CLAY (CL). Brown and dark brown 0/5/35/60 to moist, soft, low/medium plasticity, trace snd 6.0 - 9.0 Lean CLAY with Silt (CL). Light gray with 0/15/35/50 10 8 4/4 DPT-2 0.0 heavy tan and reddish brown mottle, dry, firm, to low plasticity. 9.0 - 13.5 Silty Fat CLAY (CH). Light gray with less 0/15/35/50 12 tan/reddish brown mottle, slightly moist, soft/medium. 12 4/4 DPT-3 0.0 medium/high plasticity, very fine to fine grain sand, 15_ to gradational contact with above 16 0/50/35/15 13.5 - 19.8 Silty SAND with Clay (SM). Very light gray near white, few light tan mottle, little dark DPT-4 16 4/4 0.0 orangish tan Fe oxidation laminations, very fine to fine grain sand, medium dense, cohesive, moist, to 20 20 gradational contact with above 17.5' - becomes wet 20 4/4 DPT-5 0.0 19.0' - saturated to 19.5' - less mottle 19.8 - 25.5 Poorly Graded SAND with Silt (SP). 0/80/15/<5 24 25 White, wet, loose to very loose, trace tan mottle, DPT-6 24 4/4 slightly cohesive, very fine and fine grain sand, subrounded to subangular, gradational contact 27.0' - near flowing sands with above, abrupt contact with below 28 25.5 - 40.0 Well Graded SAND with Silt (SW). 0/75/15/10 DPT-7 30_ 28 4/4 0.0 Orangish tan with few gray/light gray laminations, wet, loose, fine to medium grain, subrounded to to 32 subangular, slightly cohesive 26.5' - 0.50 inch of Fat Clay 32 35_ 4/4 DPT-8 0 to 34.0' - 0.75 inch of very stiff Fat Clay 36 36 38.0' - hard, slow drilling 4/4 DPT-9 0 to 40 40 Refusal at 40' in hard pack sand 45 50

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-06	1 of

SOIL BORING LOG PROJECT: Silber Road Pre-Design LOCATION: Houston Texas **ELEVATION:** DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT START: 5/11/2022 1410 END: 5/11/2022 1505 WATER LEVELS: 17' LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) CORE DESCRIPTION COMMENTS INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, RECOVERY (FT) DRILLING FLUID LOSS, #/TYPE OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. PPM MINERALOGY. 0.0 - 1.5 CONCRETE and crushed rock G/S/SI/CL 0 1.5 - 2.0 FILL, gravelly clay 5/5 HA-1 0.0 2.0 - 15.5 Fat CLAY (CH). Dark gray to near black <5/0/10/85 to 5 with dark brownish tan and orangish red mottling, moist to near wet, soft, high plasticity, trace fine 5 pebbles, some silt, mottling increasing with depth. 3/3 DPT-1 0.0 6.0 Color change to light gray. to 8 10_ 8 4/4 DPT-2 0.0 9.0 Increase in stiffness to medium stiff. to 12 4/4 DPT-3 0.0 12 15 to 16 15.5 - 22.8 Silty SAND with clay (SM). Very light gray 0/55/30/15 to white with orangish tan mottling, dry, medium 16 4/4 DPT-4 0.0 dense, very fine to fine sand, slightly cohesive. 18.0 - 23.0 Collect GW sample to 20_ 20 19.0 Near saturated. 19.0 - 19.5 Heavy orangish tan oxidation. 20 DPT-5 22.25 - 22.5 Gravel 22.0 - 23.0 Harder drilling to 22.8 Saturated 23.0 - 29.0 Well graded SAND (SW). Tanish 5/90/10/0 24 25_ white and pink with orangish tan mottling, loose to 23.0 - 27.0 Collect GW sample DPT-6 4/4 0.0 24 very loose, slightly cohesive, fine to medium grained, little silt. 27.0 Hard drilling to 28 27.0 - 32.0 Collect GW sample DPT-7 30 28 1/4 0.0 Refusal in gravelly sand at 29 ft bgs to 32 35_ 40 45_ 50_

PROJECT NUMBER
D3542628
BORING NUMBER
SB-07

SOIL BORING LOG

1 of 1

LOCATION: Houston Texas PROJECT: Silber Road Pre-Design ELEVATION : DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT WATER LEVELS : START: 5/10/2022 1010 END: 5/11/2022 1505 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) COMMENTS CORE DESCRIPTION INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS, OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. PPM MINERALOGY. 0.0 - 0.5 CONCRETE G/S/SI/CL 0.5 - 1.5 Sandy SILT (ML). Tan, dry, very soft, not very 0 cohesive, non plastic, very fine sand, roots. to 5/5 HA-1 1.5 - 7.0 lean CLAY with silt (CL). Dark brown to gray 0/<5/20/75 5 with orangish red mottling, roots, dry, low plasticity medium. 5 3/3 DPT-1 0.0 to 7.0 - 14.0 Fat CLAY with silt (CH). Gray with some 0/<5/15/80 dark brown orange/red and maroon mottling, stiff 10 8 4/4 DPT-2 high plasticity, moist to near dry, trace very fine sand. to 10.0 Color change to light gray slight tan, from stiff 12 to medium. Trace black organic nodules. 12 4/4 DPT-3 0.0 0/65/30/5 15_ to 14.0 - 22.5 Silty SAND (SM). Very light gray and white, 16 dry, medium dense, thin beds and lamination of very dark orange, non cohesive, very fine and fine sand. DPT-4 16 4/4 0.0 to 20 20 20 DPT-5 0.0 22.0 Slower drilling to 22.5 - 25.0 Lean CLAY with gravel (CL). Light gray 24 with maroon mottling, dry to moist, stiff, low to non plastic, 0.15 to 0.25 inch gravel throughout, trace white 25 mottling at bottom. 24 1/4 DPT-6 0.0 Refusal at 25 ft bgs to 28 30 35 40 45 50_

PROJECT NUMBER	BORING NUMBER
D3542628	SB-08

1 of 1

LOCATION: Houston Texas PROJECT: Silber Road Pre-Design ELEVATION DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT WATER LEVELS: 18' START: 5/10/2022 1445 END: 5/10/2022 1120 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) COMMENTS CORE DESCRIPTION INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) MOISTURE CONTENT, RELATIVE DENSITY, PID READINGS DRILLING FLUID LOSS, #/TYPE OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. MINERALOGY PPM 0.0 - 0.5 CONCRETE G/S/SI/CL 0 0.5 - 1.0 FILL 1.0 - 4.0 Lean CLAY (CL). Dark brown and gray, dry 5/5 HA-1 0.0 to medium, low to medium plasticity, some gravel throughout 5 abrupt contact with the below 4.0 - 18.0 Fat CLAY (CH). Black with ligth gray 5 laminations (gray laminations almost looks to be Slight odor (akin to asphalt) DPT-1 3/3 0.0 bentonite), moist medium to soft, high plasticity, trace to 8 sand and pea gravel, few tan mottling, appears non-native. 10_ 8 4/4 DPT-2 0.0 Begin strong chemical odor to 10.0 Wood chips. Looks like a pallet 12 12.0 Color change to olive gray, orange mottling. DPT-3 0.0 12 4/4 still appears non-native. 15_ to 16 16 DPT-4 0.0 18.0 - 24.0 Silty SAND with clay (SM). Olive glay/green to 20 20 with orangish copper mottling, wet, loose, fine grained, cohesive 20 4/4 DPT-5 0.0 18.0 - 18.5 Medoium grained, brownish copper color to 20.0 Saturated 23.0 Color change to mainly tan. 24 25 24.0 - 37.0 Silty SAND (SM). Tanish brown, loose, 24.0 Beginning hard drilling DPT-6 Odor noted from chemical to burnt. 4/4 0.0 24 wet, cohesive, fine to near medium sand, trace light to gray sand nodules, travel gravel at bottom 28 30 28 DPT-7 to 32 32 4/4 DPT-8 Relative loss of odor. Occasional burnt smell. 35_ to 36 36 DPT-9 1/4 to Refusal at 37 ft bgs 40 40 45 50

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-10	1 of 1

PROJECT : Silber Road Pre-Design

LOCATION : Houston Texas

ELEVATION : DRILLING CONTRACTOR : Best

DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT

			EQUIPME	NT USED : DPT Geoprobe 7822DT START : 5/13/2022 1340 END : 5/13/2022 1500 LOGGER : D. Rowan				
WATER LEVELS :				START:		LOGGER: D. Rowan		
DEPTH B	ELOW SU		· [)		CORE DESCRIPTION	COMMENTS		
	INTERVA				SOIL NAME, USCS GROUP SYMBOL, COLOR,	DEPTH OF CASING, DRILLING RATE,		
		RECOVE		PID READINGS	MOISTURE CONTENT, RELATIVE DENSITY,	DRILLING FLUID LOSS,		
			#/TYPE		OR CONSISTENCY, SOIL STRUCTURE,	TESTS, AND INSTRUMENTATION.		
				PPM	MINERALOGY.			
_					0.0 - 0.4 CONCRETE	G/S/SI/CL _		
_	0				0.4 - 0.8 Crushed Caliche Road Base	100/0/0/0		
_	to	5/5	HA-1	0.0	0.8 - 1.2 SILT (ML). Very dark brown near black	_ 0/0/100/0		
_	5				very soft, non-plastic, dry, possible fill for parking lot	_		
5					1.2 - 4.0 Fat CLAY (CH). Dark brown/brown, soft,	0/0/5/95		
_	5				moist, high plasticity	_		
_	to	3/3	DPT-1	0.0	4.0 - 18.0 Fat CLAY (CH). Light gray with strong red			
_	8				and orangish tan mottle, stiff, moist, little silt, high	_		
I _					plasticity, some Fe oxidation, red mottling decrease	_		
10	8	4/4	DPT-2	0.0	with depth, silt increases with depth, abrupt contact			
	to				with above.			
	12				_	_		
I -						loss of odor		
_	12	4/4	DPT-3	0.0	-	_		
15	to	"'	2 5	0.5	-	-		
15_	16				-	-		
_	10	1			_	-		
-	16	4/4	DPT-4	0.0	-	-		
_		4/4	DP1-4	0.0	40.0.00.00% 5 + 01.00(/01)) 11.11	-		
	to				18.0 - 22.0 Silty Fat CLAY (CH). Light gray, loss of	_ 0/5/35/60		
20	20				mottle, medium/high plasticity, few sand, medium/	-		
_					stiff, moist	-		
_	20	4/4	DPT-5	0.0	19.0' - 0.50 inch lamination of heavy orange color	=		
_	to				22.0 - 24.0 Silty Poorly Graded SAND (SP-SM).	_ 0/60/35/5		
_	24				Very light gray to white with few orangish red mottle	=		
25					and laminations, medium dense/loose, wet, very fine	_		
_	24	4/4	DPT-6	0.0	and fine grain sand, cohesive, few clay, trace	_		
_	to				yellowish green laminations	_		
_	28				24.0-38.0 Poorly Graded SAND with Silt (SP). Light	_ 0/75/20/5		
_					tan, loose, wet, fine grained sand, slightly cohesive	_		
30	28	4/4	DPT-7	0.0	<u> </u>	30.0' - hard drilling		
I _	to				_	_		
_	32					_		
						_		
	32				34.0' - color change to reddish maroon			
35	to	4/4	DPT-8	0				
	36			-		36.0' - hard drilling		
I -					_	_		
I -	36					_		
	to	2/4	DPT-9	0	Refusal at 38.0'	7		
40	40		2 0	Ĭ		-		
10_					_	-		
_					-	-		
_					-	-		
_					-	-		
45					-	-		
45								
_								
_					-	-		
-					-	-		
					-	-		
50					_	-		
_					-	-		
_					-	-		
_					-	-		
_					_	_		
						_		

PROJECT NUMBER BORING NUMBER
D3542628 SB-11

SOIL BORING LOG

1 of 1

PROJECT : Silber Road Pre-Design

LOCATION : Houston Texas

ELEVATION :

DRILLING CONTRACTOR : Best

	ELEVATION: DRILLING CONTRACTOR: Best							
			EQUIPME		Geoprobe 7822DT			
WATER				START :	5/5/2022 1330 END : 5/5/2022 1455	LOGGER: D. Rowan		
DEPTH B		,	1)		CORE DESCRIPTION	COMMENTS DEDTH OF CASING DRILLING BATE		
	INTERVA	RECOVE	RY (FT) #/TYPE	PID READINGS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.		
				PPM	MINERALOGY.			
-	0				0.0 - 1.0 TOPSOIL (CL/ML) 1.0 - 2.0 Poorly graded SAND (SP). White, fine	G/S/SI/CL _ _ 0/100/0/0		
-	to 5	5/5	HA-1	0.0	grainded, assumed to be fill. 2.0 - 8.0 Fat CLAY with silt (CH). Light gray with tan	0/0/15/85		
5 <u> </u>	5				and reddish brown mottling, stiff to medium damp medium plasticity, some orangish red Fe oxidation	_		
-	to 8	3/3	DPT-1	0.0	increasing with depth	<u>-</u> -		
10 <u> </u>	8 to 12	4/4	DPT-2	0.0	8.0 - 14.5 Sand SILT with Clay (SM). Light gray with tannish orangish mottling, dry, hard, fine grained sand, orangish Fe oxidation at bottom.	_ 0/35/45/20 		
- - - 15	12 to	4/4	DPT-3	0.0	14.5 - 25.0 Poorly graded SAND (SP). Tannish white			
- - -	16 16 to	4/4	DPT-4	0.0	dry, loose to very loose, fine to very fine sand, trace orangish laminations, slightly cohesive. Orange oxidation increasing with depth	- - -		
20	20	4/4	DPT-5	0.0	22.0 Becoming wet			
25 <u> </u>	to 24 24	4/4	DPT-6	0.0	25.0 - 34.5 Well graded SAND (SW). Tan and brown	0/90/10/0		
- - -	to 28				wet, loose to very loose, fine to medium, slightly cohesive.			
30	28 to 32	2/4	DPT-7	0.0		 - 		
- 35	32 to 36	4/4	DPT-8	0.0	34.5 - 35.5 Fat CLAY with Sand (CH). Maroonish red, firm, moist, high plasticity, fine sand.	- - 0/20/10/70 -		
- - -	36 to	2/4	DPT-9	0.0	35.5 - 37.5 SAND (SW). Tan and brown, wet , loose to very loose, fine to medium, slightly cohesive 37.5 - 38.0 Fat CLAY (CH). Maroonish red, firm, moist,	0/90/5/5		
40	40				high plasticity. Refusal at 38.0 ft bgs	-		
- - 45						- -		
45 <u> </u>						-		
50 <u> </u>						= = = = = = = = = = = = = = = = = = = =		
_ _ _						- -		
-								

 PROJECT NUMBER
 BORING NUMBER

 D3542628
 SB-12
 1 of 1

SOIL BORING LOG

PROJECT : Silber Road Pre-Design

LOCATION : Houston Texas

ELEVATION :

DRILLING CONTRACTOR : Best

DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT

DRILLIN	G METH	OD AND	EQUIPME		Geoprobe 7822DT	200.
	LEVELS			START :	5/6/2022 1230 END: 5/6/2022 1400	LOGGER: D. Rowan
DEPTH B		JRFACE (F	-T)		CORE DESCRIPTION	COMMENTS DEPTH OF CASING PRILLING PATE
	INTERVA	RECOVE	RY (FT)	PID READINGS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS,
			#/TYPE	1 15 1 12 15 11 13 6	OR CONSISTENCY, SOIL STRUCTURE,	TESTS, AND INSTRUMENTATION.
				PPM	MINERALOGY.	
_					0.0 - 0.5 TOPSOIL (CL/ML)	G/S/SI/CL _
_	0				0.5 - 2.5 Sandy SILT. Light gray and light tan, roots,	0/30/60/10
-	to	5/5	HA-1	0.0	soft to very soft, dry, orangish tan oxidation	-
	5				2.5 - 13.0 Fat CLAY (CH). Gray and tan, orangish red	-
5	5				oxidation, moist, firm to soft, medium to high plasticity, few silt (silt increases with depth).	-
-	to	3/3	DPT-1	0.0	plasticity, few siit (siit increases with deptil).	-
_	8	0.0	J	0.0	-	-
1 _						
10	8	4/4	DPT-2	0.0	_	
-	to				-	-
-	12				-	-
-	12	4/4	DPT-3	0.0	13.0 34.0 Sandy SILT (ML) Light gray and light tan	0/30/60/0 Very dry for sand
15	to	7/4	ט- ויט	0.0	13.0 - 34.0 Sandy SILT (ML). Light gray and light tan, roots, soft to very soft, dry, trace orangish tan oxidation.	_ 0/30/60/0 Very dry for sand
	16					_
I -						_
	16	4/4	DPT-4	0.0	-	-
_	to				-	_
20	20					-
-	20	4/4	DDT E	0.0	-	-
-	20 to	4/4	DPT-5	0.0	-	-
-	24				- 23.0 - 0.5 inch lamination of orange oxidation	-
25						-
	24	4/4	DPT-6	0.0		_
_	to				=	_
_	28				27.0 - 27.5 Maroon fat clay	_
					-	-
30	28	4/4	DPT-7	0.0	_	-
_	to 32				-	-
_	- 02				-	-
	32	4/4	DPT-8	0.0		
					34.0 - 36.0 Sandy CLAY (CL). Maroonish tan, moist to	0/30/10/60 Drilling becoming harder
35	to				near wet, stiff to soft, medium plasticity, fine to medium sand, sand concentrations varies with depth	
"	36					_
-					36.0 - 38.0 Well graded SAND with clay (SW-SC). Tan]
_	36				and maroon, loose, wet to saturated, fine to medium	
	to	4/4	DPT-9	0.0	grained, slightly cohesive, interbedded fat clay.	- -
_		4/4	טרו-9	0.0	38.0 - 40.0 Sandy CLAY (CL). Maroonish tan, moist, to	-
_	40				near wet, stiff to soft, medium plasticity, fine to medium	
					sand.	- -
40		<u> </u>				-
-	40				40.0 - 43.5 Well graded SAND (SW). Tan and maroon,	-
_	40 to	4/4	DPT-10	0.0	loose, wet to saturated, fine to medium grained, slightly	- -
_	to 44	4/4	Di 1-10	0.0	cohesive, interbedded fat clay.	- -
45					Refusal at 44.0 ft bgs]
_						_
_					-	-
_					-	- -
					-	-
50					_	-
_					-	- -
-					-	-
I -						_

PROJECT NUMBER BORING NUMBER D3542628 SB-13

SOIL BORING LOG

1 of 1

PROJECT : Silber Road Pre-Design LOCATION : Houston Texas

ELEVATION : DRILLING CONTRACTOR : Best

ELEVAT					DRILLING CONTRACTOR : Best		
DRILLIN	G METH	OD AND	EQUIPME		Geoprobe 7822DT		
WATER	LEVELS	: 27.8'		START:	5/4/2022 1345 END: 5/4/2022 1537	LOGGER: D. Rowan	
DEPTH B	ELOW SU	JRFACE (F	T)		CORE DESCRIPTION	COMMENTS	
	INTERVA				SOIL NAME, USCS GROUP SYMBOL, COLOR,	DEPTH OF CASING, DRILLING RATE,	
		RECOVE	RY (FT)	PID READINGS	MOISTURE CONTENT, RELATIVE DENSITY,	DRILLING FLUID LOSS,	
			#/TYPE		OR CONSISTENCY, SOIL STRUCTURE,	TESTS, AND INSTRUMENTATION.	
				PPM	MINERALOGY.	12010,71110 11101110111211171110111	
				1 1 101		G/S/SI/CL	
_					0 - 1.0 TOPSOIL	-	
_	0				1.0 - 3.0 Road base sand FILL	_ 0/95/05/0 _	
_	to	5/5	HA-1	0.0		_ =	
_	5				3.0 - 13.0 Fat CLAY (CH) Light gray and tan. Trace	_ 0/0/<5/95	
5					reddish mottling. Stiff, damp, high plasticity.		
_	5						
	to	3/3	DPT-1	0.0			
_	8					_	
_						=	
10	8	4/4	DPT-2	0.0		_	
10		7/7	D1 1-2	0.0	=	_	
-	to					-	
-	12	1	1			-	
1 -						-	
-	12	4/4	DPT-3	0.0	13.0 - 17.0 Silty CLAY (CL) Light gray and tan. Trace	_ 0/<5/30/65	
15	to				reddish mottling. Stff, damp, low plasticity.	_	
I	16				· · ·	_	
1 -						1	
_	16	4/4	DPT-4	0.0	17.0 - 28.0 Poorly graded SAND (SP). White, loose		
_		7/7	DI 1-4	0.0		_ 0/33/13/0	
-	to				to very loose, damp, fine to very fine grained, slightly	-	
20	20				cohesive. Some tan mottling.	_	
_						=	
_	20	4/4	DPT-5	0.0		_	
_	to					_	
	24						
25						_	
	24	4/4	DPT-6	0.0	=	_	
_	to	7/-7	D1 1-0	0.0		_	
_						-	
_	28					-	
_					28.0 - 48.0 Well graded SAND (SW). Orangish	_	
30	28	2/4	DPT-7	0.0	tan, fine to medium grained, medium dense to loose	_	
_	to				wet to near saturated	_	
_	32				31.5 - 32 Fat maroon clay	_ 32.0 Beginning hard and slow drilling _	
I -	32	4/4	DPT-8	0.0		1	
35	to	".		5.5		-	
"-	36				_	-[
-	30		 		26.0. 26.F. Fot moreon alov	- -	
-	00	414	DDT 1		36.0 - 36.5 Fat maroon clay	-	
-	36	4/4	DPT-9	0.0		-	
-	to					-	
40	40				_	_	
I -						_[
I	40	4/4	DPT-10	0.0		_[
1 -	to					1	
I -	44					=	
45						-[
45	44						
-		414	DDT 44	0.0			
_	to	4/4	DPT-11	0.0		- -	
-	48					_	
-	48 to				48.0 - 49.0 Fat CLAY (CH). Dark maroon,	_ _	
50	50	1/2	DPT-12	0.0	stiff to very stiff, moist, high plasticity.		
I					Refusal at 49.0 ft bgs in clay.		
I -					<u> </u>]	
I -						=	
I -						-	
1 -						- -	
<u> </u>		1					

PROJECT NUMBER BORING NUMBER
D3542628 SB-14

SOIL BORING LOG

1 of 1

PROJECT : Silber Road Pre-Design LOCATION : Houston Texas

ELEVATION : DRILLING CONTRACTOR : Best

DRILLING METHOD AND EQUIPMENT USED DPT Geoprobe 78/2027 100 END 5/3/2022 1215 LOGGER D. Rowan		ELEVATION: DRILLING CONTRACTOR: Best							
DEPTH BELCOW SURFACE (FT)				EQUIPME					
NTERVAL FT					START :				
RECOVERY (FT)				-T)					
BITYPE		INTERV		-DV (FT)	DID DEADINGS				
PPM NINREAL CGY GISSICC 1.15" - Concrete GISSICC 1.5" - Concrete GISSICC 1.5" - Concrete GISSICC 1.5" - Concrete 1.5" - Concrete GISSICC 1.5" - Concrete 1.5" - Conc			RECOVE		PID READINGS		· ·		
0				#/117	DDM		TESTS, AND INSTRUMENTATION.		
10					PPIVI		CIEIEUCI		
10	_	0							
10	_	-	5/5	HΔ_1	0.0				
S	_		3/3	11/4-1		, ,	=		
10	5 -	3					_		
10		5					-		
10	_		1/4	DPT-1	0.0		- - 		
10	_		., .		0.0				
10	_						_		
10	10	8	4/4	DPT-2	0.0		-		
12	_					, , , , , , , , , , , , , , , , , , , ,			
12						11.0 - 45.0 SAND with SILT (SW-SP)	0/90/10/0		
15							_		
15 to 16	I -	12	4/4	DPT-3	0.0		_		
16	15	to					_		
10	_	16					_		
10	_						_		
20	_	16	4/4	DPT-4	0.0		_		
20 4/4 DPT-5 0.0 22.0 - Color shift to pinkish tan	_	to					_		
10	20	20							
10	_						_		
24	_	20	4/4	DPT-5	0.0	22.0 - Color shift to pinkish tan	=		
25 _ 24	_	to					_		
24 4/4 DPT-6 0.0 26.0 - Some dark orange laminations as well as grain size increase to fine with medium (SW) 28 2/4 DPT-7 0.0 29.0 - 30.0 Hard cemented sandstone 29.0 - 30.0 Hard cemented sandstone 30.0 Refusal in sandstone 32.0 - Near wet 33.0 - Near wet 33.0 - Near wet 34.0 - Start seeing some interbeded dark maroon/red clay 40 40 40 4/4 DPT-10 0.0 45.0 - 46.0 Fat CLAY with sand (CH) Maroon, stiff, damp, med to high plasticity Total depth at 46.0' bgs	_	24					_		
10	25								
28	_	24	4/4	DPT-6	0.0	26.0 - Some dark orange laminations as well as grain	_		
30_ 28	_					size increase to fine with medium (SW)	=		
30	_	28					_ 28.0 - 30.0 Very slow drilling _		
to 32				l		29.0 - 30.0 Hard cemented sandstone	_		
32	30		2/4	DPT-7	0.0		30.0 Refusal in sandstone		
32	_						_		
35 to 36	_	32		1		32.0 - Near wet	-		
35 to 36	_	20	4/4	DDT 0	0.0		-		
	2F -		4/4	8-140	0.0		-		
- 36	აა						- -		
to	-	30	-	+			-		
to	_	36	414	DPT-0	0.0	38 0 - Start seeing some interheded dark margen/red	-		
40	_		7/4	פ-ויום	0.0		-		
40 4/4 DPT-10 0.0 to 44 45 44 to 2/2 DPT-11 0.0 45.0 - 46.0 Fat CLAY with sand (CH) Maroon, stiff, damp, med to high plasticity Total depth at 46.0' bgs	40					ola y	-		
_ to	10_	+0		1			_		
_ to	I -	40	4/4	DPT-10	0.0		-		
44	I -		"'		0.5		-		
45 44 to 2/2 DPT-11 0.0 45.0 - 46.0 Fat CLAY with sand (CH)	I -						-		
46	45		2/2	DPT-11	0.0	45.0 - 46.0 Fat CLAY with sand (CH)	-		
Total depth at 46.0' bgs	I —			1		` ,	_		
	I _								
50 _ _ _ _ _ _ _	_						_		
50	_						_		
	50						_		
	_						_		
	_						_		
- - -	_						_ _		
	I –						_		

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-15	1 of 1

PROJECT: Silber Road Pre-Design LOCATION: Houston Texas **ELEVATION:** DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT START: 5/4/2022 0900 END: 5/4/2022 1200 WATER LEVELS: 27.1' LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) CORE DESCRIPTION COMMENTS INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, RECOVERY (FT) DRILLING FLUID LOSS, #/TYPE OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. PPM MINERALOGY. 0 - 1.0 TOPSOIL G/S/SI/CL 1.0 - 14.0 Fat CLAY (CH). Light gray and tan with 0/0/5/95 0 5/5 HA-1 reddish maroon mottling, few Fe oxidation staining, to 5 stiff to soft, high plasticity, moist, few silt and tree roots 5 5 6.0 Less tan and reddish maroon mottling but still 3/3 DPT-1 0.0 to 8 10__ 8 4/4 DPT-2 0.0 to 12 12 4/4 DPT-3 0.0 15 14.0 - 18.0 Silty SAND (SP-SM). 0/65/30/<5 to 16 Very light gray to white, medium dense to loose, damp, fine to very fine grained, slightly cohesive. Trace DPT-4 0.0 16 4/4 orangish tan laminations. Trace clay 18.0 - 35.0 Poorly graded SAND (SP). Very light gray to 0/90/<5/<5 20_ 20 to near white, moist, loose to very loose, fine to very fine grained, trace light tan laminations, subrounded, 20 4/4 DPT-5 trace silt to 23.0 - 23.5 Layer of gray fat clay 24 25 24 4/4 DPT-6 0.0 to 28 28.0 Becoming wet. Some slight orangish, tan staining 28.5 Change to tan to slight pinkish red 30 4/4 DPT-7 0.0 29.0 - 30.0 Maroon fat clay 28 to 32 31.0 Change to whiteish gray 32 4/4 DPT-8 0.0 35 to 36 35.0 - 47.0 Well graded SAND (SW). Orangish tan 0/95/0/<5 saturated, loose to very loose, fine to med graded, 36 4/4 DPT-9 trace gray mottling to 40 40 0.0 40 4/4 DPT-10 42.5 0.5 inch red fat clay to 44 3.5/4 DPT-11 0.0 45_ 44 to 48 47.0 - 47.5 Fat CLAY (CH). Dark maroon Refusal at 47.5' bgs 50_

 PROJECT NUMBER
 BORING NUMBER

 D3542628
 SB-16
 1 of 1

SOIL BORING LOG

LOCATION: Houston Texas PROJECT: Silber Road Pre-Design **ELEVATION:** DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED: DPT Geoprobe 7822DT START: 5/2/2022 1000 END: 5/2/2022 1200 LOGGER: D. Rowan WATER LEVELS: 27.1' DEPTH BELOW SURFACE (FT) CORE DESCRIPTION COMMENTS INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. OR CONSISTENCY, SOIL STRUCTURE, #/TYPE MINERALOGY. PPM 0 - 2.0 FILL Topsoil G/S/SI/CI 0/<5/15/80 0 2.0 - 16.0 Fat CLAY with silt (CH). Gray to light gray 5/5 HA-1 0.0 to with orange Fe staining and mottling, moist, firm to 5 stiff, medium to high plasticity 5_ 5 3/3 DPT-1 0.0 to 8 9.0 Color change to lighter gray with increase in light DPT-2 10_ 8 4/4 0.0 tan mottling. to 12 12 4/4 DPT-3 0.0 15_ to 16 0/<5/80/15 16.0 - 24.0 SILT with clay (SM). Light gray with tan mottling, damp, trace sand, non plastic, stiff to soft, 16 4/4 DPT-4 0.0 moisture increase with depth to 20_ 20 4/4 DPT-5 0.0 20 to 25 24.0 - 26.0 SILT with sand and clay. Light gray, less 0/15/70/15 4/4 DPT-6 0.0 mottling, med stiff, non plastic, fine to very fine sand, 24 damp to near moist, stiff to loose. to 26.0 - 47.5 SAND with silt (SP-SM). Whitish gray, no 28 mottling, medium dense to loose, damp, fine grained slightly cohesive, poorly graded. 30_ 28 4/4 DPT-7 0.0 to 30.0 Moisture increasing to near saturated wet 32 DPT-8 4/4 0.0 32 35_ to 36 36 4/4 DPT-9 0.0 to 40 40 4/4 DPT-10 0.0 40 to 44 45_ 47.5 - 48.0 Fat CLAY with sand (CH). Maroonish tan 0/15/10/75 DPT-11 44 3.5-4 with mottling of gray, moist, stiff to hard, medium to high to 48 plasticity. Refusal at 48 ft bgs 50_

PROJECT NUMBER	BORING NUMBER
D3542628	SB-17

PROJECT: Silber Road Pre-Design LOCATION: Houston Texas **ELEVATION:** DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED: DPT Geoprobe 7822DT START: 5/18/2022 1140 WATER LEVELS END: 5/18/2022 1310 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) CORE DESCRIPTION COMMENTS INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. #/TYPE OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY 0.0 - 0.6 TOPSOIL (ML/CL). G/S/SI/CL 0.6 - 1.0 SAND with GRAVEL (SW). Tan, fine to coarse grained sand with gravel, assumed to be road 10/80/10/0 construction fill 0 1.0 - 12.0 Silty fat CLAY (CH). Gray with tan and 0/<5/35/60 to 5/5 HA-1 orangish red mottling, moist, firm to soft, medium to high 5 plasticity, few Fe oxidation, trace fine sand, trace roots. 5 3/3 DPT-1 0.0 to 8 10_ 8 4/4 DPT-2 0.0 to 11.5 Becomes lighter gray in color. 12 0/15/40/45 12.0 - 17.5 Silty lean CLAY with SAND (CL). Very light gray, few tan mottling, lots of orangish red 4/4 DPT-3 0.0 12 laminations throughout, Fe oxidation, dry, stiff low to 15 to non-plastic, very fine to fine sand, gradational with 16 above. 16 DPT-4 17.65 - 25.5 Poorly graded silty SAND (SP/SM). Very 0/65/35/0 light gray to white with tan and pinkish red mottling, to oose, moist, fine grained, subrounded, gradational 20_ 20 with above, non-cohesive. 21.0 Loss of mottling to 23 ft bgs 4/4 DPT-5 0.0 20 to 24 25 24 4/4 DPT-6 25.5 - 36.0 Well graded sitly SAND (SW/SM). Tanish, 0/65/35/0 to orange, very loose to loose, fine to medium grained. moist, subrounded to subangular, non-cohesive 28 29.0 Becomes wet 30_ 28 4/4 DPT-7 0.0 to 32 31.0 0.5 inches fat sandy clay 32.0 0.5 inches sandstone 32.0 Hard drilling 32 4/4 DPT-8 0.0 35_ to 36 36.0 - 37.0 Fat sandy CLAY (CH). Maroon, medium, dry, high plasticity, fine sand, abrupt contact with above and 36 4/4 DPT-9 37.0 - 44.0 Well graded silty SAND (SW/SM). Tanish orange, very loose to loose, fine to medium grained. 40 moist, subrounded to subangular, non-cohesive 40 39.0 0.5 inch clay DPT-10 40 4/4 0.0 to 45_ Refusal at 44 ft bgs 50_

PROJECT NUMBER
D3542628
BORING NUMBER
SB-18

SOIL BORING LOG

1 of 1

PROJECT : Silber Road Pre-Design

LOCATION : Houston Texas

ELEVATION :

DRILLING CONTRACTOR : Best

ELEVAT					DRILLING CONTRACTOR : Best			
			EQUIPME		Geoprobe 7822DT			
	LEVELS			START	: 5/9/2022 1520 END : 5/9/2022 1620	LOGGER: D. Rowan		
DEPTH B		IRFACE (F	-T)		CORE DESCRIPTION	COMMENTS		
	INTERVA	RECOVE	RY (FT) #/TYPE	PID READINGS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.		
-				PPM	MINERALOGY.	CICICIO		
- - - - 5	0 to 5	5/5	HA-1	0.0	0 - 0.3 ASPHALT 0.3 - 2.5 ROAD BASE 2.5 - 7.0 Fat CLAY with silt (CH). Gray with orange and red oxidation, dry, medium, medium to high plasticity.	G/S/SI/CL		
- - -	5 to 8	3/3	DPT-1	0.0	7.0 - 10.0 Silty CLAY (CL). Light gray, dry, stiff, low			
10 <u> </u>	8 to 12	4/4	DPT-2	0.0	plasticity, relative loss of mottling, trace sand. 10.0 - 13.0 Silty SAND with clay (SM). Light gray and white, medium dense to loose, few orangish tan mottling,	<u>- </u>		
- - 15	12 to 16	4/4	DPT-3	0.0	dry, fine sand, cohesive with low to none-plasticity. 13.0 - 27.0 Poorly graded SAND (SP). White, loss of mottling/secondary color, dry, medium dense to loose,			
- - - 20	16 to 20	4/4	DPT-4	0.0	very fine to fine sand, non-cohesive, trace silt.	- - - - -		
- - -	20 to 24	4/4	DPT-5	0.0	20.0 Becoming moist 23.0/23.5 Becoming wet	- - - -		
25 <u> </u>	24 to	4/4	DPT-6	0.0	25.5 Becoming saturated			
_	28				27.0 - 29.0 Clayey SAND with gravel (SC). Very dark brown to maroon, saturated, soft/medium dense, fine to medium sand, trace gravelly fat clay, abrupt contact with above, medium plasticity.	10/50/5/35 -		
30	28 to	4/4	DPT-7	0.0	29.0 - 34.0 Well graded SAND (SW). Reddish tan, moist to wet, loose, fine to medium sand, non-cohesive less gravel, gradual with the above.			
- - - 35	32 32 to	2/4	DPT-8	0.0	32.5 0.5 inches of fat clay. 33.5 0.5 inches of fat clay. Refusal at 34 ft bgs	33.0 Very hard drilling		
-	36							
40						- - - -		
- - - 45						- - -		
						- - - -		
50 <u> </u>						<u>-</u> - -		
- - Silber SB-	18 Boring	Log.xls				- - -		

PROJECT NUMBER
D3542628
BORING NUMBER
SB-19

SOIL BORING LOG

1 of 1

PROJECT : Silber Road Pre-Design LOCATION : Houston Texas

ELEVATION : DRILLING CONTRACTOR : Best

DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED: DPT Geoprobe 7822DT							
			EQUIPME	ENT USED : DPT		LOGGER: D. Powar	
	LEVELS		·T\	START:		LOGGER: D. Rowan	
DEP IH B	BELOW SU		1)		CORE DESCRIPTION	COMMENTS DEPTH OF CASING DRILLING BATE	
	INTERVA	RECOVE	RY (FT) #/TYPE	PID READINGS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.	
				PPM	MINERALOGY.		
- - - - 5	0 to 5	5/5	HA-1	0.0	0 - 0.5 FILL Topsoil (ML/CL) 0.5 - 14.0 Fat CLAY (CH). Gray to light gray and tan with some near black and orangish tan mottling, damp stiff to soft, high plasticity, trace roots and silt.		
- - -	5 to 8	3/3	DPT-1	0.0	6.5 Start seeing some caliche/chert nodules		
10 <u> </u>	8 to 12	4/4	DPT-2	0.0	10.0 Start seeing some color change with increase of maroonish red mottling.	- - -	
_	12	4/4	DPT-3	0.0	14.0 - 22.0 Silty lean CLAY (CL). Gray to reddish pink/maroon, dry to damp, very stiff, low plasticity,		
15 - -	to 16				increase in calcite/chert nodules. 15.5 - 16.0 Calcite/caliche layer	- - -	
20	16 to 20	4/4	DPT-4	0.0	18.0 - 18.5 Caliche 19.0 - 19.5 Caliche	- - -	
- - -	20 to	4/4	DPT-5	0.0	22.0 - 22.5 Poorly graded SAND (SP). Tan, loose, moist, fine grained, non cohesive.	- = 0/90/10/0 - -	
25 _ _	24 24 to 28	4/4	DPT-6	0.0	22.5 - 24.5 Sandy CLAY with Silt (CL). Dark maroon and orangish tan, damp, very stiff to stiff, low to mediium plasticity, fine sand, some calcite nudules, few light gray lamintations. 24.5 - 25.5 Fat CLAY with Silt (CH). Light gray and	_ 65/5/20/70	
30	28 to 32	4/4	DPT-7	0.0	soft, medium to high plasticity, moist, trace calcite and orangish tan mottling. 25.5 - 39.5 Poorly Graded SAND (SP). Orangish tan, dry to damp, loose to very loose, fine to very fine grained,	- - - -	
35	32 to 36	4/4	DPT-8	0.0	non-cohesive 30.0 Increasing silt composition 31.0 - 32.0 Saturated 34.0 - 34.5 Satured but higher silt, dense	- - - -	
- 40	36 to 40	4/4	DPT-9	0.0	39.5 - 40.0 Fat CLAY (CH). Dark maroonish red, very stif damp to near dry, medium to high plasticity, trace sand and silt.	- - -	
- - -					Refusal at 40 ft bgs	- - - -	
45 - -						- - -	
50					-	- - - - -	
- - -					-	- - -	

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-31	1 of 1

PROJECT: Silber Road Pre-Design LOCATION: Houston Texas **ELEVATION: DRILLING CONTRACTOR: Best** DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT WATER LEVELS: START: 5/6/2022 1545 END: 5/6/2022 1650 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) CORE DESCRIPTION COMMENTS INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, RECOVERY (FT) DRILLING FLUID LOSS, #/TYPE OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. PPM MINERALOGY. 0 - 0.5 Topsoil and gravel (ML/CL) G/S/SI/CL 0.5 - 1.5 Sandy SILT (ML). Tanish brown. Presumed to 0/35/65/<5 0 5/5 HA-1 0.0 1.5 - 13.0 Fat CLAY with silt (CL). Gray and tan with to orangish red mottling, few Fe oxidation, medium to soft 5 high plasticity, trace sand, dry. 5 3/3 DPT-1 0.0 to 10 8 4/4 DPT-2 0.0 to 12 12 4/4 DPT-3 13.0 - 17.0 Clayey SILT with sand (ML). White, few 0/15/55/30 15__ orangish tan laminations, firm to soft, dry, slightly to 16 cohesive but not plastic, very fine sand. 16 4/4 DPT-4 0.0 17.0 - 26.0 Silty Poorly graded SAND (SP-SM) 0/70/30/0 Whitish tan, loose, fine grained, wet, slightly cohesive, to 20 20 loss of secondary color. DPT-5 20 4/4 0.0 22.0 Becoming saturated to 24 25 24 4/4 DPT-6 0.0 26.0 - 31.5 Well graded SAND (SW). Dark tan to 0/95/5/0 to 28 to brown, saturated, fine to medium grained, loose to very loose, slight cohesion. 30_ 28 4/4 DPT-7 0.0 30.0 Very hard drilling to 32 Refusal at 32 ft bgs 35 40

45

50

PROJECT NUMBER D3542628

BORING NUMBER SB-32

1 of 1

SOIL BORING LOG

PROJECT : Silber Road Pre-Design LOCATION : Houston Texas							
ELEVAT					DRILLING CONTRACTOR	R : Best	
			EQUIPME		Geoprobe 7822DT		
WATER				START	5/9/2022 1035 END: 5/9/2022 1210	LOGGER: D. Rowan	
DEPTH B	INTERVA		-1)		CORE DESCRIPTION	COMMENTS DEPTH OF CASING, DRILLING RATE,	
	INTERVA	RECOVE	RV (FT)	PID READINGS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY,	DRILLING FLUID LOSS,	
		T L C C V L	#/TYPE	1 ID NEADINGO	OR CONSISTENCY, SOIL STRUCTURE,	TESTS, AND INSTRUMENTATION.	
				PPM	MINERALOGY.		
					0.0 - 0.6 CONCRETE	G/S/SI/CL	_
	0				0.6 - 1.0 FILL material	_	
_	to	5/5	HA-1	0.0	1.0 - 18.0 Fat CLAY with silt (CH). Gray with tan and	_ 0/0/15/85	_
_	5				orangish red mottling, firm, medium to high plasticity,	_	_
5					moist to dry, trace roots, trace orangish Fe staining		_
-	5					_	-
-	to	3/3	DPT-1	0.0		_	-
-	8					_	-
10	8	4/4	DPT-2	0.0		-	-
10	to	4/4	DP1-2	0.0	-	—	_
_	12					-	-
_	12						-
_	12	4/4	DPT-3	0.0		-	-
15	to						_
	16						
_	16	4/4	DPT-4	0.0			_
					18.0 - 21.0 Silty fat CLAY (CL). Very light gray, less	0/<5/35/60	
_					mottling, reddish maroon laminations at depth of 0.15 to		
	to				0.25 inch thick, wet to near saturated, very soft, trace very find sand, abrupt contact with the below.		
20	20				and sand, asrapt somest mar the solon.		
_					21.0 - 27.5 Silty poorly graded SAND (SM/SP). Light tan	0/65/30/<5	_
					with trace orange mottling, saturated, loose to very loose,		
_	20	4/4	DDT F	0.0	slightly cohesive, fine to very fine grained sand,		-
	20	4/4	DPT-5	0.0	subangular.	-	
_	to 24					-	-
25 ⁻	24					_	-
25	24	4/4	DPT-6	0.0	-		_
_	to	4/4	DF 1-0	0.0		-	-
_	10				27.5 - 41.0 Silty well graded SAND (SM/SW). Orangish	0/65/30/<5	-
					tan, wet to saturated, loose to very loose, fine to medium		
_	00				grained, slightly cohesive, subangular to subrounded,		-
	28				gradational contact with the above.	-	
30	28	4/4	DPT-7	0.0		_	-
30	to	4/4	DF 1-7	0.0	30.0 0.25 inch of fat maroon clay	_	_
_	32				30.0 0.25 ilich of fat maroon clay	-	-
_	- 02				32.0 0.25 inch fat maroon clay		-
_	32	4/4	DPT-8	0.0	ozio cizo mon lat marcon cia)	_	-
35	to						
I _	36		<u> </u>				
						_	
_	36	4/4	DPT-9	0.0		_	_
_	to					_	_
40	40					_	_
-					41.0 - 42.0 Fat CLAY with sand and silt (CH).	_ 40.0 - Hard drilling	-
	40	2/4	DPT-10	0.0	Light and dark maroonish red, moist, near dry, very stiff to hard fine sand, medium to high plasticity.		
-		2/4	DP 1-10	0.0		_	
_	to 44				Refusal at 42.0 ft bgs in clay.	-	-
45 -		1			1	-	-
ر.					·	1	-
_							-
							-
50							
_						_	_
_						_	-
_						-	-
_						-	-

PROJECT NUMBER	BORING NUMBER
73542628	SB-33

1 of 1

PROJECT : Silber Road Pre-Design LOCATION: Houston Texas **DRILLING CONTRACTOR: Best** ELEVATION DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT START: 5/6/2022 0800 END: 5/6/2022 0920 WATER LEVELS: 27' LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) CORE DESCRIPTION COMMENTS INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. #/TYPE OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY. 0.0 - 0.5 TOPSOIL (CL/ML) G/S/SI/CL 0 0.5 - 1.5 SAND (SP). White, looks like roadbase fill. 1.5 - 3.0 SILT with clay (ML). Gray, moist, soft, low to 5/5 HA-1 0/15/85/10 to medium plasticity 5 3.0 - 14.0 Fat CLAY with silt (CH). Tan and gray with 0/<5/15/80 5_ reddish maroon mottling, firm, medium to high 5 plasticity, trace sand, little orangish, Fe oxidation, trace 3/3 DPT-1 roots, few black organic nodules, trace fine sand. to 10_ 8 4/4 DPT-2 0.0 to 12 12 4/4 DPT-3 0.0 15_ to 14.0 - 18.0 SILT with sand and clay (ML). Light gray 0/15/70/15 16 with dark tan and maroon mottling, soft, low plasticity, dry, very fine to fine sand, cohesive. 16 4/4 DPT-4 0.0 18.0 - 27.0 Poorly graded SAND (SP). Very light gray 0/95/5/0 to 20 20 to white, loss of mottling, loose to very loose, dry to damp, very fine and fine grained sand, non cohesive, DPT-5 20 4/4 0.0 trace to few silt, less clay. 24 25_ 24 4/4 DPT-6 0.0 to 28 27.0 - 30.0 Well graded SAND (SW). Maroonish tan 0/95/5/0 with gray, loose, wet to near saturated, fine to medium 30_ DPT-7 28 4/4 0.0 grained sand, non cohesive, slight increase in fines. 0/<5/5/90 30.0 - 31.0 Fat CLAY (CH). Dark maroon, stiff, dry, to medium to high plasticity, trace sand, few silt. 31.0 - 40.5 Well graded SAND (SW). Maroonish tan 0/80/10/10 32 with gray, loose, wet to near saturated, fine to medium 32 4/4 DPT-8 0.0 grained sand, non cohesive, slight increase in fines. 35_ to 36 35.5 - 36.0 Maroon fat clay 36 4/4 DPT-9 0.0 to 40 40 40.0 - 41.0 Fat CLAY (CH). Very stiff to hard 40 DPT-10 0.0 Refusal at 41 ft bgs to 45_ 50_

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-34	1 of 1

LOCATION: Houston Texas PROJECT: Silber Road Pre-Design ELEVATION : DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT WATER LEVELS: START: 6/27/2022 1345 END: 6/27/2022 1447 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) COMMENTS CORE DESCRIPTION INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY. DRILLING FLUID LOSS. OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. PPM MINERALOGY. 0.0 - 0.6 Concrete G/S/SI/CL 0 0.6 - 6.5 Lean CLAY with Silt (CL). Black, gray and dark 5/0/10/85 5/5 HA-1 0.0 brown, dry, shift to medium, low to medium plasticity, to Slight odor to 5 pebble, to orange FE stain, few silt. 5_ 5 DPT-1 0/0/10/90 to 5/5 0.0 6.5 - 18.0 Fat CLAY (CH). Light gray with tan and 10 orangish red mottling, dry, stiff, high plasticity, loss Loss of odor 10 gravel, some Fe staining and laminations, little silt, gradiational with above and below. 10 DPT-2 0.0 to 5/5 15 15 15 DPT-3 0.0 to 20 18.0 - 28.0 Silty SAND (SM). Light gray with tan and 0/65/30/5 20 reddish mottling, dry to slightly moist, very fine to fine sand, slightly cohesive, to clay 20 DPT-4 5/5 0.0 to 25 23.0 Becomes wet and saturated 25 25 DPT-5 0.0 to 30 28.0 - 38.0 Silty Well Graded SAND (SW-SM). Tan with 0/70/30/0 30 gray mottling, loose, wet, fine, to medium grain, gradational with above, non cohesive. 30 DPT-6 3/5 0.0 to 35 35 35 to 3/5 DPT-7 0.0 40 Refusal at 38 ft bgs in hard sand 40 45 50_

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-35	1 of 1

PROJECT : Silber Road Pre-Design LOCATION: Houston Texas ELEVATION : DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT WATER LEVELS START: 6/24/2022 0820 END: 6/24/2022 0925 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) COMMENTS CORE DESCRIPTION INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS. OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. MINERALOGY. PPM 0.0 - 0.55 Concrete G/S/SI/CL 0 0.55 - 4.0 Gravelly SILT (GM). Light tan, dry, very loose 40/5/55/0 5/5 HA-1 0.0 0.15-0.70" gravel, road base fill, abrupt with below. to 5 5_ 4.0 - 18.0 Fat CLAY with Silt (CH). Dark brown and gray 0/0/20/80 with some orangish tan mottling, slightly moist, firm, 5 high plasticity, lose gravel. DPT-1 5/5 0.0 to 10 10 10 DPT-2 0.0 to 5/5 15 15 15.0 Color change to light grey with heavy reddish orange and tan mottling to black organic nodules. 17.0 0.3" calcite gravel layer. 15 DPT-3 0.0 to 5/5 17.5 0.25" heavy reddish orange oxidation layer. 20 0/60/35/5 18.0 - 27.5 Silty SAND (SM). Very light gray with dark 20 orangish tan and tan mottling. Moist, loose, very fine to fine sand, slightly cohesive, few clay. 20 DPT-4 0.0 to 25 23.0 Becomes wet 25_ 25 DPT-5 0.0 to 5/5 0/70/30/0 30 27.5 - 37.0 Silty Well Graded SAND (SW-SM). Tanish 30 orange, wet, very loose, fine to medium grain, non cohesive, lose secondary color, abrupt with above, 30 coarsening down. to 3/5 DPT-6 0.0 35 35 35 DPT-7 to 2/5 0.0 37.0 Refusal in sand 40 40_ 45_ 50_

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-36	1 of 1

							_
PROJEC	T : Silbe	r Road Pi	re-Design		LOCATION : Houston Tex	as	
ELEVATI					DRILLING CONTRACTOR	R: Best	
				NT USED : DPT G		LOCOED D D	
WATER		20 RFACE (F		START	: 6/27/2022 0910 END : 6/27/2022 1020 CORE DESCRIPTION	LOGGER: D. Rowan COMMENTS	
	INTERVA		1)		SOIL NAME, USCS GROUP SYMBOL, COLOR,	DEPTH OF CASING, DRILLING RATE,	_
		RECOVE	RY (FT)	PID READINGS	MOISTURE CONTENT, RELATIVE DENSITY,	DRILLING FLUID LOSS,	
			#/TYPE	1 15 112 15 11 100	OR CONSISTENCY, SOIL STRUCTURE,	TESTS, AND INSTRUMENTATION.	
				PPM	MINERALOGY.	·	
_					0.0 - 0.5 Concrete	G/S/SI/CL	_
_	0				0.5 - 3.5 Gravelly sandy silt (SM-ML). Tan and brown with	_ 30/30/40/0	_
-	to	5/5	HA-1	0.0	some gray, dry, hard, find to coarse sand, presumed fill		_
_	5						_
5					3.5 - 17.0 Fat clay with silt (CH). Tan and brown with gray	0/0/15/85	
					and orangish tan mottling, soft, moist, high plasticity, few		
-	5				orange Fe stains, gradational with below. 6.0 Main color change to light gray, become stiff.	-	-
_	to	5/5	DPT-1	0.0	o.s wan color change to light gray, become sain.		-
_	10	0.0	J	0.0			_
10							
]	_	_
_	10					_	_
_	to	5/5	DPT-2	0.0		_	_
_	15					_	_
15							_
	15						
-	15 to	5/5	DPT-3	0.0	17.0 - 27.0 Silty sand (SM). Very light gray with tanish	0/60/35/5	_
_	20	0/0	DI 1-0	0.0	orange and reddish maroon mottling, loose, moist, very	_ 0/00/00/0	-
20	20				fine grain, slightly cohesive, few clay (fat), laminations of		_
					heavy orange Fe oxidation.		_
_	20				22.0 Becomes wet and saturated.		_
	to	5/5	DPT-4	0.0			
_	25						_
25							
_						-	_
-	25						_
-	to	5/5	DPT-5	0.0	27.0 - 39.0 Silty Well Graded Sand (SW-SM). Tan,	_ 0/70/30/0	-
	30				Loose to very loose, wet, fine to medium grain,	- 20 0 H - and defilling a	-
30					non cohesive, loss of second color, gradational with above.	28.0 Hard drilling	
_	30				above.	-	-
_	to	3/5	DPT-6	0.0			-
_	35	0.0	5 0	0.0			_
35							
_[-	_
-	35						_
_	to	4/5	DPT-7	0.0		_ 37.0 Hard	-
-	40					_	
40					Refusal at 39.0 ft bgs in sand.	_	_
=						-	-
-						-	-
-						_	-
45 <u> </u>							_
					1	_	_
_]						_	_
_						_	_
_						_	_
50		ļ				_	
=		1				-	_
-						-	_
-						-	-
-						-	-
		1	1			I	

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-37	1 of 1

PROJEC	T : Silbe	r Road Pi	re-Design		LOCATION : Houston Texas	5
ELEVATI	ON :				DRILLING CONTRACTOR	
		OD AND	EQUIPME	NT USED : DPT G		
WATER	LEVELS	20'		START :	: 6/22/2022 1305 END : 6/22/2022 1405	LOGGER: D. Rowan
DEPTH BE			T)		CORE DESCRIPTION	COMMENTS
INTERVAL (FT)			SOIL NAME, USCS GROUP SYMBOL, COLOR,	DEPTH OF CASING, DRILLING RATE,		
	RECOVERY (FT)		PID READINGS	MOISTURE CONTENT, RELATIVE DENSITY,	DRILLING FLUID LOSS,	
			#/TYPE		OR CONSISTENCY, SOIL STRUCTURE,	TESTS, AND INSTRUMENTATION.
				PPM	MINERALOGY.	0/0/0/0
_	0				0 - 0.6 Concrete	G/S/SI/CL 35/45/20/0
-	U				0.6 - 4.0 Gravelly Silty Sand (SM). Presumed fill and road	_ 35/45/20/0
_	to	5/5	HA-1	0.0	base mix, color varies browns and tans, dry, hard, 0.25" to 0.75" gravel, loose.	
	5	3/3	11/4-1	0.0	3.75' Looks like filler pack sand, abrupt with below.	-
5	Ü				4.0 - 14.5 Fat Clay (CH). Very dark brown, moist, medium	
_					to stiff, high plasticity, some silt, loss gravel, trace black	
_					mottling, trace black organic nodules.	Slight chemical odor
_	5				6.0 Color change to light gray with orangish red and tan	_ 6.0 Lose odor
_	to	5/5	DPT-1	0.0	mottling.	_
_	10					_
10					_	
_					-	_
-	10				-	_
_	to	5/5	DPT-2	0.0		_
45 -	15				13.0 Color change to olivish glay, soft, with white	_
15					laminations.	
-	15				14.5 - 22 Clayey Silty Sand (SM). Olive glay with some orangish tan mottling, moist to wet, medium dense,	
_	to	5/5	DPT-3	0.0	cohesive (low plasticity), fine to very fine sand.	=
-	20	0/0	DI 1-0	0.0	conesive (low plasticity), fine to very fine said.	23.0 Harder drilling
20	20				•	
20					_	
_	20					_
-	to	5/5	DPT-4	0.0	22.0 to 28.0 Silty Poorly Graded Sand (SP-SM). Light	0/60/30/10
_	25				orangish tan with light gray near white motling, medium	
25					density, wet, fine sand, cohesive, little clay, gradational	
_					with above.	_
_	25				26.0 Started to see trace small gravel.	_ 26.0 Very hard
_	to	3/5	DPT-5	0.0		_
_	30				Refusal at 28.0 ft bgs in sand.	_
30					_	
_						_
-					-	_
-						_
- ع						-
35					-	-
-					-	-
_					-	=
-						-
40					-	_
					_	
_					•	_
_						_
-						_
45 <u> </u>						_
					1	
_						_
						_
_]						
50					_	_
_[_
_						-
_						_
-						_
		1	1			

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-38	1 of 1

PROJECT : Silber Road Pre-Design LOCATION: Houston Texas ELEVATION : DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED: DPT Geoprobe 7822DT WATER LEVELS: 25 START: 6/23/2022 0845 END: 6/23/2022 1005 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) COMMENTS CORE DESCRIPTION INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS. OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. MINERALOGY PPM 0 - 0.6 Concrete G/S/SI/CL 0 0.6 - 13.0 Silt with Sand (ML). Brown with some reddish <5/15/80/0 5/5 HA-1 0.0 to orange mottling, hard, dry, little clay, trace grayel, 5 non cohesive, trace laminations of Fe oxidation. 5 5 DPT-1 to 5/5 0.0 7.0 Color change to light gray 10 8.0 Start seeing trace black organic nodules 10_ 10 5/5 DPT-2 0.0 to 15 0/<5/20/75 15 13.0 - 17.0 Fat Clay with Silt (CH). Gradational contact with above, light gray with light and dark tan and reddish maroon mottling, few orangish red Fe oxidation, stiff, 15 medium to high plasticity, less gravel, trace fine sand, dry 5/5 DPT-3 0.0 0/40/55/5 to 17.0 - 24.0 Sandy Silt (ML). Gradational with above light gray and orangish tan, medium to soft, cohesive, slightly 20 moist, trace fat clay laminations, fine to very fine sand. 20 19.0 0.25" white calcite laminations 20 21.0 Becomes wet DPT-4 0.0 22.0 Hard drilling to 5/5 25 25 24.0 - 39.0 Silty Poorly Graded Sand (SP-SM). 0/70/30/0 Gradational with above, tan with light gray mottling, 25 loose, wet, fine sand, slightly cohesive. 5/5 DPT-5 0.0 to 30 30 30 5/5 DPT-6 0.0 32.0 Hard drilling to 35 35 35 DPT-7 to 4/5 0.0 40 40_ Refusal at 39.0 ft bgs in sand. 45_ 50

PROJECT NUMBER	BORING NUMBER
D3542628	SB-39

1 of 1

PROJECT : Silber Road Pre-Design LOCATION: Houston Texas ELEVATION : DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT WATER LEVELS: 25 START: 6/23/2022 1230 END: 6/23/2022 1400 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) COMMENTS CORE DESCRIPTION INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS. OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. MINERALOGY. PPM 0 - 0.6 Concrete G/S/SI/CL 0 20/20/60/0 0.6 - 3.0 Silt with Sand and Gravel (ML). Light brown and tan, dry, very stiff to hard, calcite gravel throughout, non to 5/5 HA-1 0.0 cohesive, fine sand. 5 3.0 - 7.0 Silty Lean Clay (CL). Dark brown with reddish <5/10/35/50 5 orange mottling, medium to soft, moist, little sand, trace gravel, low to medium plasticity. 5 5/5 DPT-1 0/0/5/95 7.0 - 19.0 Fat clay (CH). Light gray with tan and to 10 reddish orange mottling, very stiff to hard, high 10 plasticity, slightly moist, some dark orangish brown Fe laminations and nodules throughout. 10 5/5 DPT-2 0.0 to 15 13.0 Hard 15 15 DPT-3 0.0 5/5 to 20 20_ 19.0 - 40.0 Silty Poorly Graded Sand (SP-SM). Light 0/65/30/<5 gray with light tan mottling, beds (laminations) of dark 20 tanish orange, moist to wet, medium density to loose, DPT-4 to 5/5 0.0 fine sand, slightly cohesive, trace clay. 25 23.0 Hard 25_ 24.0 0.5" bed fat clay and calcite 25 to 5/5 DPT-5 0.0 30 28.0 Hard 30 30 DPT-6 0.0 5/5 to 35 35 35 5/5 DPT-7 0.0 to 40 40 Refusal at 40.0 ft bgs in sand. 45 50

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-40	1 of 1

LOCATION: Houston Texas PROJECT: Silber Road Pre-Design ELEVATION : DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT WATER LEVELS START: 6/22/2022 0930 END: 6/22/2022 1045 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) COMMENTS CORE DESCRIPTION INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS. OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. MINERALOGY PPM 0 - 0.5 Concrete G/S/SI/CL 0.5 - 2.0 Silty Sand (SM). Filler material, very light tan, dry, <5/65/30/0 very loose, very fine grain, non cohesive, abrupt with 0.0 Slight chemical odor to 5/5 HA-1 2.0 - 8.5 Fat Clay with Silt CH). Very dark gray near 5 black and dark brown with trace reddish maroon <5/<5/15/75 mottling, slightly moist, soft, trace gravel, color grades to brown with depth, gradational with below. 5 5/5 DPT-1 0.0 to 10 10_ 8.5 - 18.5 Fat Clay (CH). Light gray with reddish maroon 0/5/10/85 and tan mottling, heavy Fe oxidation throughout, dry, stiff, 12.0 Loss of odor 10 little silt, trace black organic nodules throughout. 5/5 DPT-2 0.0 to 15 15 15 5/5 DPT-3 0.0 to 20 18.0 Heavy bed of orangish red Fe oxidation 20_ 0/55/30/15 18.5 - 24.5 Silty Sand with Clay (SM). Light gray and olive gray (glay) with maroonish brown and tan mottling, moist near wet, medium density, cohesive, clay is fat clay, fine to very fine sand, Fe oxidation laminations, clay decreases 20 with depth. 5/5 DPT-4 to 22.0 Becomes wet 25 23.0 Increase in reddish maroon coloring 25_ 0/10/30/60 24.5 - 25.5 Silty Lean Clay (CL). Glay olive with white and 25.0 Harder drilling reddish orange mottling, very stiff to stiff, slightly moist to 25 25.5 - 39 Silty Poorly Graded sand (SP-SM). Tan 0/65/30/5 DPT-5 0.0 to 5/5 with light gray mottling, loose, wet, fine grain, slightly 30 cohesive, trace to few fat clay laminations 30 throughout. 30 5/5 DPT-6 0.0 to 35 35_ 35 DPT-7 0.0 to 4/5 40 40_ Refusal at 39.0 ft bgs in sand. 45_ 50_

PROJECT NUMBER D3542628 BORING NUMBER SB-41

1 of 1

SOIL BORING LOG

PROJECT : Silber Road Pre-Design LOCATION: Houston Texas ELEVATION DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED: DPT Geoprobe 7822DT END: 6/21/2022 1600 START: 6/21/2022 1430 LOGGER: D. Rowan WATER LEVELS DEPTH BELOW SURFACE (FT) CORE DESCRIPTION COMMENTS INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR. DEPTH OF CASING, DRILLING RATE. RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS, OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. PPM MINERALOGY G/S/SI/CI 0 - 0.5 Concrete 0.6 - 10.0 Fat Clay with Silt (CH). Very dark gray near black 5/<5/15/75 0 Slight chemical odor 5/5 HA-1 0.0 to and brown with tan and orangish red mottling, stiff ot soft 5 (at 6'), moist, few gravel, little Fe oxidation throughout, 5 gradational with below. 5/5 DPT-1 0.0 to 10 10_ 10.0 - 12.5 Fat Clay (CH). Light gray and light tan with 0/<5/10/85 10 maroonish red mottling, medium, moist, high plasticity. 12.5 Lose odor DPT-2 0.0 to 5/5 12.5 - 14.0 Clayey Silt (ML). Tan with light gray mottling, 15 0/5/65/30 15 very moist, soft, cohesive with low plasticity. 14.0 - 18.0 Silty Lean Clay (CL). Blueish gray olive with <5/5/35/55 15 tan mottling, hard, low ot no plasticity, dry, few white calcite 5/5 DPT-3 0.0 to nodules, abrupt with above and gradational below 20 14.5 - 15.0 Calcite bed 18.0 - 29.0 Silty Sand (SM). Blueish oliveish gray with dark 5/60/30/<5 20 tan and white mottling, medium density, moist, slightly 20 cohesive, fine sand. 5/5 DPT-4 0.0 to 25 19.0.0.25" Calcite 25 21.0 Becomes wet 25 DPT-5 0.0 to 5/5 30 30 <5/5/15/75 29.0 - 31.0 Fat Clay with Silt (CH). Light gray and tan with orangish red mottling, dry, stiff, high plasticity, some white 15/45/30/10 30 laminations 5/5 DPT-6 0.0 31.0 - 41.0 Silty Sand with Gravel (SM). Tan with gray 35 mottling, medium density to loose fine grain, wet, non-35 cohesive, gravel throughout from 0.05" to 0.5". 35 5/5 DPT-7 0.0 to 40 40 40 Refusal at 41.0 ft bgs in sand. to DPT-8 0.0 45 45 50

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-42	1 of 1

LOCATION: Houston Texas PROJECT: Silber Road Pre-Design ELEVATION : DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED: DPT Geoprobe 7822DT WATER LEVELS: 16 START: 6/21/2022 0930 END: 6/21/2022 1115 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) COMMENTS CORE DESCRIPTION INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS. OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. MINERALOGY PPM 0 - 0<u>.45</u> Concrete G/S/SI/CL 10/<5/55/30 0 0.45 - 7.0 Clayey Silt with Gravel (ML). Dark brown, stiff, 0.1 - 7.0 Chemical odor 5/5 HA-1 0.0 to moist, low plasticity, trace fine sand. 5 5 5 6.0 Trace Fe Oxidation (orange) DPT-1 to 5/5 0.0 7.0 - 16.0 Silty Fat Clay (CH). Light gray with tan and 0/<5/35/60 10 7.0 Lose odor maroonish red mottling, stiff, dry, few black organic 10_ nodules, few orange Fe oxidation, medium to high plasticity, increase silt and loss gravel with depth. 10 5/5 DPT-2 0.0 12.0 Color lightens. to 15 15 16.0 - 24.5 Silty Poorly Graded Sand (SP-SM). Very light 5/65/30/0 gray to white, moist, medium density to loose, fine grained, 15 slightly cohesive. 5/5 DPT-3 0.0 17.2 0.25" Bed of heavy orange oxidation. to 20 18.5 Becomes wet 21.0 Begin seeing intermittent gravel and maroonish red 20 laminations 20 5/5 DPT-4 0.0 to 25 23.0 Some hard drilling begins 25_ 60/30/10/0 24.5 - 26.0 Sandy Gravel. Large to small gravel (2.0" to 0.25") interbedded within fine sand, wet. 25 26.0 - 38.0 Poorly Graded Sand with Silt (SP). Tannish 0/80/20/0 5/5 DPT-5 0.0 to orange with pinkish red and few light gray mottling, loose, 30 wet, fine grained, lose gravel, slightly cohesive. 30 30 DPT-6 0.0 5/5 to 35 35 35 to 3/5 DPT-7 0.0 40 Refusal at 38.0 ft bgs in sand. 40_ 45 50_

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-43	1 of 1

LOCATION: Houston Texas PROJECT: Silber Road Pre-Design ELEVATION : DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED: DPT Geoprobe 7822DT WATER LEVELS: START: 6/20/2022 1505 END: 6/20/2022 1630 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) COMMENTS CORE DESCRIPTION INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS. OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. MINERALOGY PPM 0 - 5" Concrete G/S/SI/CL 5" - 6.5' Clayey Silt (ML). Gray and black with tan and 0 <5/<5/60/30 5/5 HA-1 0.0 Odor - chemical and petroleum. dark brown mottling, slightly moist, soft, medium plasticity. to 5 trace sand, trace gravel, gradational with below. 5 5 to DPT-1 0.0 8 6.5 - 17.0 Fat Clay with Silt (CH). Light and dark gray with 0/0/15/85 Loss of odor 8 tan and maroonish mottling, medium to soft, slightly moist 10_ to 4/4 DPT-2 0.0 to dry, high plasticity, loss sand and gravel. 12 12 4/4 DPT-3 0.0 15 16 16 DPT-4 0.0 0/40/55/5 4/4 17.0 - 25.0 Sandy Silt (ML). Very light gray and white with 20 orangish tan and dark gray mottling, dry to near wet, 20 medium density to very loose, non cohesive, very fine to 20 fine sand, gradational with above, trace clay. DPT-5 0.0 4/4 to 24 25_ 24 24.0 0.25" Calcite bed DPT-6 25.0 - 40.0 Well Graded Sand (SW). Tan with light gray 4/4 0.0 0/85/10/5 to 28 mottling, medium density, wet, fine to medium sand, trace 26.0 Hard drilling, near refusal maroon clav, few silt. 28 30_ 4/4 DPT-7 0.0 32 32 4/4 DPT-8 0.0 to 35_ 36 35.0 Tough tripping back down hole 36 DPT-9 0.0 to 4/4 40 40_ Refusal at 40.0 ft bgs in sand. 45 50_

PROJECT NUMBER D3542628 BORING NUMBER SB-44

1 of 1

SOIL BORING LOG

PROJECT : Silber Road Pre-Design LOCATION: Houston Texas ELEVATION DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED: DPT Geoprobe 7822DT WATER LEVELS: 15 START: 6/20/2022 1000 END: 6/20/2022 1140 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) CORE DESCRIPTION COMMENTS INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR. DEPTH OF CASING, DRILLING RATE. RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS, OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. PPM MINERALOGY G/S/SI/CI 0 - 4.5" Concrete 4.5" - 2' Silty Sand (SM). Tan and brown, dry, loose to 5/50/40/5 medium dense, few gravel, fine sand, non cohesive 0 <5/15/75/5 to 5/5 HA-1 0.0 2.0 - 4.5 Silt with Sand and Clay (ML). Light gray with tan 5 mottling, dry, firm, slightly cohesive but non plastic, 5_ 3.5 Slight petroleum odor fine sand, trace gravel. 5 <5/5/25/65 4.5 - 7.0 Silty Fat Clay (CH). Gray with olive glay and tan mottling, slightly moist, trace sand, fir, to soft, medium to DPT-1 3/3 0.0 to high plasticity. Trace orange Fe oxidation stain, gradational 6.5 Loss of odor with below 8 7.0 - 19.5 Silty Lean Clay with Sand (CL). Dark brown and <5/15/30/50 8 gray with trace light brown mottling, firm, medium to DPT-2 10_ to 4/4 0.0 low plasticity, fine sand, slightly moist to dry, trace 12 pebbles, sand and silt increase with depth, abrupt with 12 DPT-3 4/4 0.0 15 16 16 4/4 DPT-4 0.0 19.5 - 20.0 Fat Clay (CH). Glay to olive glay and maroonish <5/<5/<5/85 to 20 orange with white modules, moist, soft, high plasticity, 20 heavy oxidation, trace sand, silt, abrupt with below. 20 20.0 - 21.0 Silty Lean Clay with Sand (CL). Same as 7.0 <5/20/35/40 4/4 DPT-5 0.0 to to 19.5 interval. 21.0 - 24.5 Fat Clay (CH). Maroonish red and light gray, <5/5/10/80 24 stiff to firm, slightly moist to dry, medium to high 24 25 plasticity, trace pebbles. 24.5 - 26.0 Calcite /Caliche. Hard white and gray calcite to 4/4 DPT-6 0.0 28 bed, dry and stiff. 0/70/25/<5 26.0 - 32.5 Silty Poorly Graded Sand (SP-SM). Light tan 28 and light gray, wet, medium dense to loose, fine grain. 30 4/4 DPT-7 0.0 to 32 32 4/4 DPT-8 32.5 - 41.5 Poorly Graded Sand with Silt (SP). Tan, wet, 0/85/10/<5 to 0.0 35 36 medium dense to loose, fine to medium grain, gradational contact with above, loss clay, 36 non cohesive. DPT-9 0.0 to 4/4 40 40 40 40.0 0.25" Layer fat clay. to 1.5/4 DPT-10 0.0 44 Refusal at 41.5 ft bgs in sand. 45_ 50

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-45	1 of 1

PROJEC	T : Silbe	r Road Pr	e-Design		LOCATION : Houston Texa	is
ELEVATI					DRILLING CONTRACTOR	
		DO AND	EQUIPME	NT USED : DPT G		
WATER	LEVELS	: 26		START	: 6/24/2022 1250 END : 6/24/2022 1405	LOGGER: D. Rowan
		RFACE (F	T)		CORE DESCRIPTION	COMMENTS
	INTERVA	L (FT) RECOVE	RY (FT) #/TYPE	PID READINGS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
				PPM	MINERALOGY.	
_	0				0 - 0.4 Concrete 0.4 - 2.0 Gravelly Silty Sand (SM). Light tan, dense, dry, fine sand, presumed fill.	G/S/SI/CL _
5	to 5	5/5	HA-1	0.0	2.0 - 12.0 Silty Lean Clay (CL). Light gray with tan and maroonish red mottling, very stiff, non to low plasticity, dry, little orange Fe staining, loss gravel,	
- - -	5 to 10	5/5	DPT-1	0.0	trace sand.	- - - -
10 _	10				-	<u>-</u> -
- - 15	to 15	5/5	DPT-2	0.0	12.0 - 28.0 Fat Clay with Silt (CH). Light gray with tan and dark maroonish red mottling, slightly moist, medium to stiff, high plasticity, mottling increased with	0/0/15/85
_ _ _	15 to 20	5/5	DPT-3	0.0	depth, gradational contact with above. 19.2 Caliche gravel.	- - - -
20 <u> </u>	20	5.5	207.4	•	19.5 Becomes wet, very soft. 20.0 Moist, heavy maroon mottling.	
- 25	to 25	5/5	DPT-4	0.0		- -
- - -	25 to 30	5/5	DPT-5	0.0	28.0 - 38.5 Silty Well Graded Sand (SW-SM). Light and	
30					dark tan with few light gray mottling, wet, loose, fine to	
- - -	30 to 35	5/5	DPT-6	0.0	medium sand, non cohesive, abrupt with above.	- - - - -
35					-	-
- - -	35 to 40	3.5/5	DPT-7	0.0		- - - -
40					Refusal at 38.5 ft bgs in sand.	- -
- - -						- - -
45						-
- - -						- - -
50 <u> </u>						
- -						-
- -						- -
					-	_

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-46	1 of 1

PROJECT : Silber Road Pre-Design LOCATION: Houston Texas ELEVATION : DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT WATER LEVELS: 20 START: 6/28/2022 1435 END: 6/28/2022 1550 LOGGER: D. Rowan DEPTH BELOW SURFACE (FT) COMMENTS CORE DESCRIPTION INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY, DRILLING FLUID LOSS, OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. MINERALOGY. PPM 0 - 0.4 Concrete G/S/SI/CL 0.4 - 4.0 Gravelly Silt (ML). Fill / road base. 0 5/5 HA-1 0.0 to 5 5 4.0 - 6.0 Sand (SP). Fill / road base sand, very fine. 5 6.0 - 14.0 Fat Clay with Silt (CH). Light gray with tan 0/0/15/85 DPT-1 0.0 to 5/5 mottling, medium to high plasticity, slightly moist, little 10 orangish red Fe oxidation laminations. 10_ 10 5/5 DPT-2 0.0 to 15 15 0/30/50/20 14.0 - 23.0 Sandy Silt with Clay (ML). Light gray with tan and orangish tan mottling, medium to soft, slightly 15 moist, low to no plasticity, fine sand, gradational with DPT-3 0.0 5/5 to 20 20 20 DPT-4 0.0 5/5 to 25 23.0 - 37.0 Silty Sand (SM). Orangish tan and light 0/60/35/5 25 gray, wet, loose, fine grain, slightly cohesive. 25 DPT-5 5/5 0.0 to 30 30_ 30 5/5 DPT-6 0.0 35 35 35 36.0 See gravel. DPT-7 2/5 0.0 Refusal at 37.0 ft bgs in gravelly sand. to 40 40_ 45_ 50_

 PROJECT NUMBER
 BORING NUMBER

 D3542628
 SB-47
 1 of 1

SOIL BORING LOG

PROJEC	CT : Silbe	r Road P	re-Design		LOCATION : Houston Tex	as
ELEVAT	ION :				DRILLING CONTRACTOR	R : Best
			EQUIPME	NT USED : DPT G		
	LEVELS			START	: 6/28/2022 0945 END : 6/28/2022 1058	LOGGER: D. Rowan
DEPTH B	ELOW SU		FT)		CORE DESCRIPTION	COMMENTS
	INTERVA			5.5 55.5	SOIL NAME, USCS GROUP SYMBOL, COLOR,	DEPTH OF CASING, DRILLING RATE,
		RECOVE	#/TYPE	PID READINGS	MOISTURE CONTENT, RELATIVE DENSITY,	DRILLING FLUID LOSS,
			#/ITPE		OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	TESTS, AND INSTRUMENTATION.
				PPM		G/S/SI/CL
_	0				0 - 0.4 Concrete 0.4 - 7.0 Sandy Silt (ML). Dark and light gray with some	
_	to	5/5	HA-1	0.0	dark brown mottling, dry, firm to soft, non	_
_	5				cohesive, fine sand, few orangish red Fe oxidation	_
5					laminations, gradational with below.	
_	5					-
-		5/5	DPT-1	0.0	7.0 - 17.0 Silty Clay with Sand (CL). Dark and light gray	 0/15/35/50
-	to	3/3	DP 1-1	0.0		_ 0/15/35/50
10	10				with brownish tan mottling, slightly moist, firm to soft, low plasticity, fine sand, some white laminations	=
10					throughout, few Fe oxidation.	
_	10				unoughout, lew l'e oxidation.	-
_		5/5	DPT-2	0.0		-
-	to 15	3/3	DP 1-2	0.0		-
15						=
_						_
	15	5/5	DPT-3	0.0	17.0 - 19.5 Fat Clay (CH). Light gray with tan and	0/5/5/90
-	to 20	3/3	DP 1-3	0.0	maroonish red mottling, firm, high plasticity, moist,	_ 0/3/3/90
20	20				few silt, few sand, gradational with above and below.	20.0 very faint chemical odor
					19.5 - 24.0 Silty Sand (SM). Very light gray, loose, very	10/50/40/0
_					moist near wet, fine sand, slightly cohesive, loss second	-
	20				color, abrupt with below.	
_	to	5/5	DPT-4	0.0	22.0 Some gravel.	_ 22.0 Chemical odor _
25	25				24.2. 27.2.2%	0/70/20/0
25					24.0 - 37.0 Silty Well Graded Sand (SW-SM). Tanish	0/70/30/0
					orange with light gray mottling, loose, wet, fine to medium sand, non cohesive, trace pebble.	25.0 Chemical odor
_	25				medium sand, non conesive, trace pessie.	25.5 Lose odor
_	to	5/5	DPT-5	0.0		
_	30					-
30						-
_						
_	30					_ 31.0 Hard
_	to	5/5	DPT-6	0.0		_
_	35					=
35						
_						-
_	35	0.7-	DET -	2.2	D () 107061 : :	
_	to	2/5	DPT-7	0.0	Refusal at 37.0 ft bgs in sand.	-
40	40					-
40					1	
_						-
_						-
_						-
45						-
₹3			 		1	1
_						1
_						-
_						-
50						-
					1	_
_						-
_	1					7
_						
_	1	1	1		1	

PROJECT NUMBER	BORING NUMBER	
D3542628	SB-48	1 of 1

PROJEC	T : Silbe	r Road Pr	e-Desian		LOCATION : Houston Texas	8
ELEVATI			· · · ·		DRILLING CONTRACTOR:	
			EQUIPME	NT USED : DPT G	eoprobe 7822DT	
WATER I				START	: 6/28/2022 0945 END : 6/28/2022 1058	LOGGER: D. Rowan
		RFACE (F	T)		CORE DESCRIPTION	COMMENTS
	INTERVA		D) ((ET)	DID DEADINGS	SOIL NAME, USCS GROUP SYMBOL, COLOR,	DEPTH OF CASING, DRILLING RATE,
		RECOVE	#/TYPE	PID READINGS	MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,	DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.
			,,,,,,	PPM	MINERALOGY.	TEOTO, AND INCTROMENTATION.
					0 - 0.4 Concrete	G/S/SI/CL
_					0.4 - 16.5 Silty Fat Clay (CH). Dark gray and dark brown,	5/0/35/60
-	0 to	5/5	HA-1	0.0	medium, very moist near wet, high plasticity. 3.0 0.5" bed caliche / calcite gravel	Chemical odor
_	5	3/3	11/4-1	0.0	3.0 0.5 bed calicite / calcite graver	
5					_	
_	_				-	_
-	5	F/F	DDT 1	0.0	-	-
_	to	5/5	DPT-1	0.0	O O O o la mala a mana di mila a man	- - -
10 -	10				8.0 Color change - light gray with tan mottling	_ 8.0 Lose odor
					-	
_	10					_
_	to	5/5	DPT-2	0.0	12.0 Begin to see reddish orange laminations and	_
4.5	15				balck organic nodules and orange Fe oxidation.	
15					-	-
_	15					
-	to	5/5	DPT-3	0.0	16.5 - 26.0 Sandy Silt (ML). Light gray and light tan with	0/40/55/5
20	20				heavy dark orangish red laminations, soft, moist (near wet at 19.5), fine to very fine sand, cohesive, trace	
					clay, abrupt with below.	
_	20				-	_
-	to	5/5	DPT-4	0.0	-	_
	25				23.0 Becomes wet / saturated.	_
25					-	-
-	25				26.0 - 37.0 Silty Well Graded Sand (SW-SM). Light and	= 5/55/35/<5
_	to	5/5	DPT-5	0.0	dark tan with light gray laminations, few new white	
_	30				laminations, loose, wet, fine to medium, trace pebbles	27.0 Little bit slower drilling
30					and gravel, trace clay.	
-	20				-	_
_	30	5/5	DPT-6	0.0	-	-
-	to 35	3/3	DF 1-0	0.0	-	=
35						_
_]	_
_	35					
-	to	2/5	DPT-7	0.0	Refusal at 37.0 ft bgs in sand.	-
-	40				-	_
40					-	-
-					-	-
-						-
-						_
45						_
-					-	_
-					-	-
-					-	-
					-	-
50					-	-
-						=
-						_
_[_

PROJECT NUMBER
D3542628
BORING NUMBER
MW-181

SOIL BORING LOG

1 of 1

PROJECT : Silber Road Pre-Design

ELEVATION : DRILLING CONTRACTOR : Best

DRILLING METHOD AND EQUIPMENT USED : DPT Geoprobe 7822DT

			EQUIPME	ENT USED : DPT G		LOCOED D. D. Devies
WATER			т\	START	: 5/16/2022 1415 END : 5/16/2022 1610	LOGGER : D. Rowan
DEPTH BI		IRFACE (F	1)		CORE DESCRIPTION	COMMENTS
	INTERVA	RECOVE		PID READINGS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY,	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS,
			#/TYPE		OR CONSISTENCY, SOIL STRUCTURE,	TESTS, AND INSTRUMENTATION.
				PPM	MINERALOGY.	
_					0.0 - 2.0 TOPSOIL (ML/CL). Roots, light tan, dry.	G/S/SI/CL
_	0				2.0 - 5.0 Silty lean CLAY (CL). Brown with black	_ <5/5/40/50
_	to	5/5	HA-1	0.0	mottling, trace white laminations, few gravel, stiff, low	
_	5				to medium plasticity, dry, trace roots, few Fe oxidation	
5					staining.	_
_					5.0 - 11.0 Silty lean CLAY (CL). Light gray with light tan	0/5/45/50
_	5				and orangish red mottling, moist, low to medium	
_	to	5/5	SS-1	0.0	plasticity, firm, laminations of dark brown and dark	
	10				orangish red Fe staining, trace black organic nodules,	
10					few fine sand.	
_					1	
_	10				11.0 - 15.0 Fat CLAY with silt (CH). Light gray with	<5/25/20/70
_	to	5/5	SS-2	0.0	reddish maroon mottling, few orangish tan Fe oxidation	
_	15	3,0	002	0.0	laminations, moist, stiff to firm, high plastic, few	-
15	10				black nodules, trace pebble, trace white laminations.	
.5					15.0 - 18.0 Poorly graded SAND with silt (SP). Very	-
-	15					-
-	10				light gray with reddish maroon mottling, few orangish tan Fe oxidation laminations, moist, stiff to medium, high	-
	to	3/5	SS-3	0.0	plastic, few black nodules, trace pebbles, trace white	
_		3,0		0.0	laminations.	
	20				18.0 - 20.0 No Recovery	1
20					,	
					20.0 - 23.0 Silty well graded SAND (SW-SM). Tan,	0/70/30/0
_	20				loose to very loose, wet, non cohesive, fine to medium	_ 0/70/00/0
_	to	3/5	SS-4	0.0	grained, appears to be gradational with above.	-
_	25	3/3	00-4	0.0	23.0 - 25.0 No Recovery	-
25	25				23.0 - 25.0 No Recovery	-
20					25.0 - 33.0 Silty well graded SAND (SW-SM). Tan,	
_	25					_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
_		5/5	SS-5	0.0	loose to very loose, fine to medium grained, subrounded,	=
-	to	3/3	33-3	0.0	moist to near wet, non cohesive, trace light gray	-
-	30				laminations.	-
30					-	-
_						_
_	30					_
_	to	3/5	SS-6	0.0		<u>-</u>
<u> </u>	35				33.0 - 35.0 No Recovery	- OF O. Parray 4.
35						35.0 Began to encounter heaving sands
_					35.0 - 40.0 Silty well graded SAND (SW-SM). Tan,	_ <5/65/30/25
-	35			_	loose to very loose, fine to medium grained, subrounded,	_
-	to	4/5	SS-7	0.0	wet, non cohesive, tracde light gray lamination and	-
	40				trace gravel.	_
40					-	_
_					40.0 - 50.0 No Recovery	_ 40.0 Had to start flooding augers with water
_	40					_ to prevent flowing sand from flowing up into
_	to	0/5	SS-8	0.0		_ auger string
_	45					_
45						
_						
	45					_
_	to	0/5	SS-9	0.0		_
_	50					
50						
					Refusal at 50 ft bgs	_ 50.0 Sampler got locked in boring
_						
-						_
_						-
_						=
		1			<u> </u>	

PROJECT NUMBER D3542628

BORING NUMBER MW-182

1 of 1

SOIL BORING LOG

PROJECT: Silber Road Pre-Design LOCATION: Houston Texas ELEVATION: DRILLING CONTRACTOR: Best DRILLING METHOD AND EQUIPMENT USED: HSA CME WATER LEVELS: START: 5/17/2022 0750 END: 5/17/2022 0900 LOGGER: D. Rowan COMMENTS DEPTH BELOW SURFACE (FT) CORE DESCRIPTION INTERVAL (FT) SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH OF CASING, DRILLING RATE, RECOVERY (FT) PID READINGS MOISTURE CONTENT, RELATIVE DENSITY. DRILLING FLUID LOSS. OR CONSISTENCY, SOIL STRUCTURE, TESTS, AND INSTRUMENTATION. MINERALOGY. PPM 0.0 - 0.6 CONCRETE G/S/SI/CL 0.6 - 2.0 Sandy SILT (SM). Light tan, light brown, dry, soft 5/35/55/25 0 to very soft, fine sand, few gravel, possible fill, trace clay to HA-1 2.0 - 10.0 Clayey SILT (ML). Light and dark gray with <5/10/50/35 5 orangish red Fe oxidation, moist, soft, non-plastic, to low plasticity, trace pebble, few sand. 5 6.0 Color change to light brown and light gray, increase 5/5 SS-1 0.0 to in mottling 10 10 10.0 - 16.0 Silty fat CLAY with sand (CH). Light gray 0/20/35/45 10 with tan mottling, nodules of black and orangish red, 5/5 SS-2 0.0 medium to high plasticity, oxidation throughout, stiff, to 15 dry, abrupt with above. 15 16.0 - 17.0 Silty poorly graded SAND (SP-SM). Very light gray to white, loose, dry to moist, fine grained, cohesive, 15 slightly subrounded, trace clay 2/5 SS-3 0.0 to 17.0 - 20.0 No Recovery 20 20 20.0 - 23.0 Silty poorly graded SAND (SP-SM). Very 0/65/30/5 20 light gray to white, loose, dry to moist, fine grained, 3/5 SS-4 0.0 cohesive, slightly subrounded, trace clay. to 25 23.0 - 25.0 No Recovery 25 25.0 - 29.0 Poorly graded SAND with silt (SP). Very 0/85/15/0 25 light gray to white, loose, wet, fine grained, 4/5 SS-5 0.0 cohesive, slightly subrounded, trace clay. to 30 30 29.0 - 30.0 No Recovery 30.0 - 31.0 Poorly graded SAND with silt (SP-SM). Very light gray to white, loose, wet, fine grained, cohesive, 0/85/15/0 slightly subrounded, trace clay 30 31.0 - 35.0 No Recovery 1/5 SS-6 0.0 to 35 35_ 35.0 - 40.0 No Recovery due to sampler getting stuck 35 auger and sample being lost during retrieval. Clay noted SS-7 to 0/5 0.0 on cutting shoe. 40 40_ 39.0 Hard drilling noted. Moving rig Refusal at 40 ft bgs 45_ 50

19700	-		OL!	- WW WIV	BORING LOG	Tours	
PROJECT:	CAMERO	ON IRON			DATE: 1/3/95 SHEET: 1 OF 2 DRILL CONTRACTOR: CCI ENVIRO DRILLING INC.		
BORING NO).: MW-		DIAMETI	ER: 4 3/4	DRILLER:	COM LOGGER: DAPHNE HALL	
WATER DEF	TER DEPTH: TOTAL DEPTH:				DRILLING METHOD: HOLLOW-STEM AUGER	DRILLING FLUID: N/A	
	SAMPLINGS			17	LITHOLOGY		
SAMPLE NUMBER	RECOVERY	SAMPLE TYPE	DEPTH	STRATUM DEPTH	DESCRIPTIO	ON .	
				145 10	SILTY CLAY, GRAY,(FILL - STIFF - WITH GRASS A - SILT 0-1' DE	ND ROOTS	
-1	90	SS	=_5		(cr)		
			Ē	6.0*	, ,	4,	
2	90	SS	10		CLAY, GRAY - STIFF - MOTTLED RED-	-BROWN & GRAY	
3	60	ss			(CL)		
			E	17.0′			
4	70	ss	=				
			- 20 		- LOOSE - DRY 17'-23'	MEDIUM GRAINED	
5	80	SS			- SATURATED • FLOWING SAND - NO ODOR	23' DEPTH S BELOW 23' DEPTH	
					(SM/SP)		
6	50	SS	Ξ		Y v		
			= 30		58		

Ernast Tonyera, CDM

CALIDAMOETISCOOPEN MELOST

Ernest Conyare, CUM

MWISL DG2

CTS/COOPER\

TO

59

8

Ernest Conyers.

0.07.39

02/06/95

WITTOGS

CIVACAD I PROJECT SNCOOPERIN

TO :

SKETCH M	AP		
MW-74			PIST BAPT CHURCH (0) KATY F
	ME	MORIAL WO	OD DRI
NOTES			

Drilling	Method	d	Hollow Ste	em Au	uger	Log By	Marcel G.	St. Marie
Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	OVM (PPM)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
66.7-	0-	ZΣ	4 4	\ /		0-5	0-2	OTHER: asphalt and shell base, gravel.
65-	Ť	1		ΙVΙ	0.0		2-3.5	CLAY: black to dark gray, very soft, saturated, 60 % recovery.
60-	5-	7		$\left\langle \right\rangle$	0.0	5-10	3.5-14.5	SILTY CLAY: tan, light to dark gray mottling, iron staining, traces of sand, plastic, moist, firm, 80 % recovery. At 3.5-5': increase in silt, wet.
-	-	7		Ň	0.0	,		At 8-10': increase in iron staining.
-	10-	H		$\langle \cdot \rangle$	0.0	10-15		At 10-14.5': increase sand content.
55-	15.—				0.0	15-20	14.5-25	SILTY SAND: tan, moderately sorted, iron staining, cohesive, wet, 53 % recovery.
	20 –				0.0	20-25		At 20-22': traces of silty clay.
45 - -	-				0.0			At 22-25': saturated sands.
-	25-			$/ \setminus$				

MW-74	
DRILLING	LOG

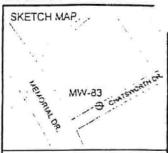
W.O. NO389-35 Boring/Well II	D _MW-74 Dat	te Drilled6/04/01	SKETCH MAP	
Project Former Cameron Iron Works	Owner Cameron		MW-74	FRST BAPTET
Location 1000 N Silber Rd	Boring T.D. 34' Bori	ing Diam. <u>8.25 "</u>	 	CHURCH FAUL KATY FWY
N. Coord. 2203.40 E. Coord. 6260.68	Surface Elevation 66.7	MSL_ Datum		
Screen: Type Schedule 40 PVC Diam.	_2* Length10' Slo	ot Size0.01 *	MEMOR	IAL WOOD DRIVE
Casing: Type Schedule 40 PVC Diam.	Length Su	imp Length 2'		
Top of Casing Elevation 66.35	Stick	tup <u>0'</u>	NOTES	
Depth to Water: 1. Ft. 19.49 (6/8/0	01) 2. Ft			
Drilling Company Fugro Geosciences, Inc.	Driller Mario Moya	,c		
Drilling Method Hollow Stem Auger	Log By Marcel G. St. Marie			

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	OVM (PPM)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
35-	25-				0.0		25-34	NOT SAMPLED: flowing sands. T,D. = 34 '
25 -	45					K		4.3 Page 2 of 2

MW-83 DRILLING LOG

W.O. NO.	389-03	5	Boring/Well II	MV	V-83		Date Drilled	5/29/01
Project	Former	Cameron Iron World	KS	Owner_	Cameron			
Location	_1000 N	Silber Rd		Boring T	.D. <u>37</u> '		Boring Diam.	8.25
N. Coord.	140.87	E. Coord.	6104.24	Surface	Elevation	64.0	<u> </u>	ISL Datum
Screen:	TypeS	chedule 40 PVC	Diam.	2.	Length _	10'	Slot Size	0.01
Casing:	TypeS	hedule 40 PVC	Diam.	2.	Length .	25 '	Sump Length	_2'
	Тор	of Casing Elevation	64.12		• ₁	-	Stickup 0:	
Depth to V	Vater:	1. Ft. <u>24.</u>	88 (5/29	/01) 2.	Ft	()
Drilling Co	mpany	Fugro Geoscieno	ces, Inc.	Driller _	Mario M	loya		St. Company
Drilling Me	thod _	Hollow Stem Aug	jer	Log By	Marcel	G. St. Ma	rie	

SKETCHM	AP.	×	
1			λ,
1 Men	MW-83	CHATS'NG	RIHOR
HEHORIMOR	→	Char	
The state of the s	.61		


NOTES BASED ON DRILLING LOG MW-79, WHICH IS LOCATED APPROXIMATELY 700 FEET NORTH-NORTHEAST OF MW-83.

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	OVM (PPM)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
64.0-	0-		4 5				0-2	COARSE SAND: medium-rain, brown, roots, soft, moist, 100 % recovery.
		H		V.		2-4	2-23	SILTY CLAY: dark brown, tan and light to dark gray mottling, traces of sand, iron staining, rootlets, gravel, plastic, soft, moist, 80 % recovery. At 3-4': increase in iron staining.
60 -	5-	Z		13.	0,0	4-6		At 3-4 Sincrease in fron staining.
-		7		X	0.0	6-8		At 7-21': black nodules.
55-	1	7			0,0	8-10		
1	10-	7			0.0	10-12		At 10.8'-17": white nodules.
-	_	#	à à	X	0.0	12-14		
50 -	15-	7		7	0,0	14-16		6
-	u u -	7	4	\bigvee	0.0	16-18		
		4			0.0	18-20		At 17-19': wet.
45-		7		1				
1	20 -	1		X	0.0	20-22		
- 4	11	17			0.0	22-24		
40-	25-		2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1 2-1	\Diamond	0.0	24-26	23-25	SILTY SAND: tan to gray, moderate sorting, medium grain, cohesive, wet, 50% recovery.

W.O. NO.	_389-035		Boring/Well II	MW.	-83		Date Drilled	5/29/01
Project	Former	Cameron iron Wor	ks	Owner_	Cameron			
Location	_1000 N	Silber Rd		Boring T.C). <u>37</u> '		Boring Diam.	8.25 *
N. Coord.	140.87	E. Coord.	5104.24	Surface E	levation	54.0		MSL Datum
Screen:	TypeSch	nedule 40 PVC	Diam.	2.	_ength _	10.	Slot Size _	0.01
Casing:	TypeScr	nedule 40 PVC	Diam.	2.	_ength _	25'	Sump Length	2'
	Торо	f Casing Elevation	64,12				Stickup 0.	
Depth to W	/ater:	1. Ft. <u>24</u> .	88 (5/29	/01	_) 2.	Ft	()
Drilling Cor	mpany	Fugro Geoscieno	ces, Inc.	Driller	Mario M	loya		
Onlling Me	thod	Hollow Stem Aug	ger	Log By	Marcel (G. St. Mar	ie	
	1 kee	T - T I				7		

MW-83 DRILLING LOG

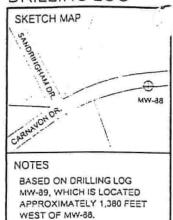
NOTES BASED ON DRILLING LOG MW-79, WHICH IS LOCATED APPROXIMATELY 700 FEET NORTH-NORTHEAST OF MW-83.

Drilling Method	Hollow St	em Auger	Log Sy	Marcel G	. St. Marie
Elevation (Feet) Depth (Feet)	Graphic Log	Sample Type OVM (PPM)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
35- 30- 30- 30- 35- 25- 40- 45- 15- 50-				25-37	NOT SAMPLED: Flowing sands. T.D. = 37

MW-88 DRILLING LOG

SKETC!		10
SMIDAINGHAMO		
		⊕
CARHAVON		\
NOTES		
MW-89.	ON DRILLIN WHICH IS L XIMATELY 1	OCATED

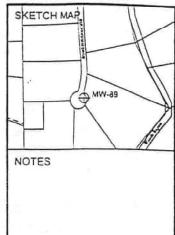
WEST OF MW-88.


W.O. NO389-035	Boring/Well	ID _MW	/-38	Date Drilled	5/22/01
Project Former Ca	meran Iron Works	Owner _	Cameron		
Location 1000 N Silt	per Rd	Boring T.	D. <u>45</u>	Soring Diam.	8.25
N. Coord816.72'	E. Coord. <u>5,331.33'</u>	Surface B	Elevation	65.3'	MSL Datum
Screen: Type Screen	tule 40 PVC Diam	1. 2.	Length10	Slot Size	0.01
Casing: Type Sched	lule 40 PVC Diam	12 '	Length33	Sump Length	2'
Top of C	Casing Elevation _55.02*			Stickup 0'	
Depth to Water:	1. Ft. <u>28.31</u> (<u>6/18</u>	3/01) 2. Ft)
Drilling CompanyF	Fugro Geosciences, Inc.	Driller	Mario Moya		
Drilling Method F	Hollow Stem Auger	Log By	Marcel G. S	St. Marie	

Drilling	Metho	٠	HOHOW SIE	-111 7.31		— Cod Bà	warcer G.	
Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	OVM (PPM)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
65.3-	0-		4 2 a 3	\bigvee		0-5	0-2.5	COARSE SAND: medium grain, brown, roots, gravels, soft, moist, 100% recovery.
60-	- 5-	7		\bigwedge	0.0	5-10	2.5-15	SILTY CLAY: mottled, moist, traces of sand, 90 % recovery. At 5-15': increase in sand concentration.
55 -	10-			$\frac{1}{\sqrt{2}}$	0.0	10-15		
50-	15-	T,		\bigwedge	0.0	15-20	15-35	At 13.5-15': inter-layering of silty clay. SILTY SAND: moist, 58% recovery.
45-	- - - 20-			$\left\langle \right\rangle$	0.0	20-25		
-	25 -			\bigvee				

W.O. NO. _389-035 ____ Date Drilled __5/22/01 Boring/Well ID MW-88 Former Cameron Iron Works Owner Cameron Location 1000 N Silber Rd ___ Boring T.D. <u>45</u> Boring Diam. <u>8.25</u>* N. Coord. _-816.72' E. Coord. _5.831.83' Surface Elevation __65.3 ' MSL Datum Screen: Type Schedule 40 PVC Diam. 2. Length 10. Slot Size 0.01 Casing: Type Schedule 40 PVC Diam. 2 Length 33 Sump Length 2 Top of Casing Elevation 65.02 Stickup 0: 1. Ft. 28.31 (6/18/01) 2. Ft. ____ (___ Depth to Water: Fugro Geosciences, Inc. Driller ____Mario Moya **Drilling Company**

MW-88 DRILLING LOG



Drilling Meth	nod	Hollow Ste	em Ai	uger	Log By	_Marcel G.	St. Marie
Elevation (Fect) Depth (Feet)	Graphic Log	Well Construction	Sample Type	OVM (PPM)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
40 - 25	10 100 100 100 100 100 100 100 100 100		V	0.0	25-30		At 27-30': silty caly inter-layered.
35 30	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0,0	30-35		At 30-35': not recovered.
30 - 35			\triangle			35-45	NOT SAMPLED: flowing sands.
25 - 40			201	,			
20 - 45	1			×			T.D. = 45'
50	_			1			

Boring/Well ID MW-89 Date Drilled 5/31/01 W.O. NO. 389-35 Project Former Cameron Iron Works Owner Cameron Location 1000 N Silber Rd Boring T.D. 44' Boring Diam. 8.25" N. Coord. _ - 779.81' E. Coord. _ 4,444.08' Surface Elevation _ 65.6' __MSL_ Datum Screen: Type Schedule 40 PVC Diam. 2* Length 10' Slot Size 0.01* Casing: Type Schedule 40 PVC Diam. 2* Length 32* Sump Length 2* Top of Casing Elevation 65.33' Stickup 0' 1. Ft. 30.08 (5/31/01) 2. Ft. ____ (_____ Depth to Water: Fugro Geosciences, Inc. Driller Mario Moya **Drilling Company** Hollow Stem Auger Log By Marcel G. St. Mare Drilling Method

MW-89 DRILLING LOG

Stilling	Method	-	Hollow 216	em At	igei	- Fad BA	warsei 3.	Sulvida e
Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	OVM (PPM)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
65.6- 65-	0		4 4	\ /		0-5	0-2.5	COARSE SAND: medium grain, brown, roots, gravel, soft, moist, 100 % recovery.
	+	$\overline{\mathcal{A}}$		X	0.0		2.5-15	SILTY CLAY: mottled, moist, traces of sand, 90 % recovery.
60 -	5	Z		$\langle \cdot \rangle$	0.0	5-10		At 5-15': increase in sand content.
1	4 4 4	Z				ű.		
55-	10	7		$\langle \cdot \rangle$	0.0	10-15		
-	1	7		$\left \right $				
	7	Z	à]	$/\backslash$	0.0			At 13.5-15': inter-layering of silty clay.
50 -	15-		a a	7	. 0.0	15-20	15-35	SILTY SAND: moist, 58 % recovery.
			a a	X				
45-	20		a a	$\langle \cdot \rangle$	0.0	20-25		
-	-]		a - a		:#r	¥		
	25		• [•]	$/ \setminus$				

 W.O. NO.
 389-35
 Boring/Well ID
 MW-89
 Date Drilled
 5/31/01

 Project
 Former Cameron Iron Works
 Owner
 Cameron

 Location
 1000 N Silber Rd
 Boring T.D.
 44'
 Boring Diam.
 3.25°

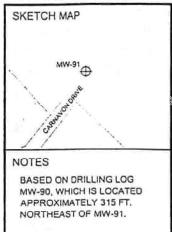
 N. Coord.
 -779.81'
 E. Coord.
 4,444.08'
 Surface Elevation
 65.6'
 MSL
 Datum

 Screen:
 Type
 Schedule 40 PVC
 Diam.
 2'
 Length
 10'
 Slot Size
 0.01°

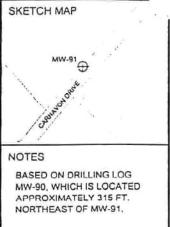
 Casing:
 Type
 Schedule 40 PVC
 Diam.
 2'
 Length
 32'
 Sump Length
 2'

 Top of Casing Elevation
 65.33'
 Stickup
 0'
 0'
 0'

 Depth to Water:
 1. Ft.
 30.08
 (5/31/01
)
 2. Ft.
 (
)


 Drilling Company
 Fugro Geosciences, Inc.
 Driller
 Marcel G. St. Marie

Drilling Method _	Hollow Stem Auger	Log By	Marcel G.	. St. Marie	
Elevation (Feet) Depth (Feet) Graphic Log	Well Construction Sample Type OVM (PPM)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil (Color, Texture	
35 30 35 30 35 30 40 25 40 50 -		25-30	35-44	At 27-30'; silty clay inter-layered. 30/-35'; not recovered. NOT SAMPLED: flowing sands.	


W.O. NO. 389-035 Boring/Well ID MW-91 Date Drilled 5/23/01 Former Cameron Iron Works Owner Cameron Project Location 1000 N Silber Rd Boring T.D. 44' Boring Diam. 8.25" MSL Datum Screen: Type Schedule 40 PVC Diam. 2" Length 10' Slot Size _ Casing: Type Schedule 40 PVC Diam. 2* Length 32' Sump Length 2' Stickup 0' Top of Casing Elevation 64.61' 1. Ft. 30.75 (5/23/01) 2. Ft. ___ Depth to Water: Fugro Geosciences, Inc. Driller Mario Moya Drilling Company

Drilling	Method	d	Hollow St	em Au	ger	Log By	Marcel G	. St. Marie
Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	OVM (PPM)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
64.8-	.Q-	0. 75	4 6				0-2	COARSE SAND: medium grained, brown, roots, soft, moist, 100 % recovery.
	-	Z	4 4		0.0	2-4	2-18	SILTY CLAY: ray, brown and tan mottling, some rootlets, plastic, stiff, moist, 56% recovery.
60-	5-	7			0.0	4-6		At 2-4'; iron staining. At 2.5-3'; some gravel. At 2.5-8'; pea-size nodules.
		7			0.0	6-8		At 6-8': no recovery. At 6-12': traces of sand.
1		7			0.0	8-10		At 8-9': partly cemented sand
55-	10-	7	4 4	- 72	0.0	10-12		At 10-12'; some iron staining, traces of cemented sand.
-	-	7		X	0.0	12-14	li di	At 12-18': small, black nodules, soft. At 14/-18': increased sand content,
50 -	15-	77			0.0	14-16		
3		7		X	0.0	15-18	•	
-	-	77			0.0	18-20	18-32	SILTY SAND: light tan to gray, moderately sorted, moist, trace brown clay, 58% recovery.
45 -	20-				0.0	20-22		At 20-22': slightly moist.
ri (sp) 074);	à - \a		0.0	22-24	n - 11	At 22-26': dry
40 -	25-		ه ا		0.0	24-26		

W.O. NO. <u>389-035</u> Boring/Well ID <u>MW-91</u> Date Drilled <u>5/23/01</u> Former Cameron Iron Works Project Owner Cameron Location 1000 N Silber Rd Boring T.D. 44 ' Boring Diam. 8.25 * __MSL_ Datum Screen: Type Schedule 40 PVC _____ Diam. 2 * Length 10 ' Slot Size Casing: Type Schedule 40 PVC Diam. 2 Length 32 Sump Length 2 Top of Casing Elevation 64.61 Stickup 0' Depth to Water: Drilling Company Fugro Geosciences, Inc. Driller Mario Moya

(Feet) (Feet) (Feet) (Feet) (Feet) (Feet) (Feet)	
Elevation (Feet) Orm (PPM) Sample Interval (Feet) Orm (PPM) Orm (PPM) Craphic Log Graphic Log Ovm (PPM) Ovm (PPM) Ovm (PPM) Ovm (PPM) Ovm (PPM) Ovm (PPM)	
25	

MW-92 DRILLING LOG

CARNAVON DRI	1 9	V-92	1
	1 9	V-92	1
	VE		//
			//
		/	4/
5			7
4 2 4 4 4		13	
	_		
NOTES			

W.O. NO. <u>389-035</u>	Boring/Well II	MW-92	7	Date Drilled	5/24/01
Project Former Cameron In	on Works	Owner Cam	neron		
Location _1000 N Silber Rd		Boring T.D.	50'	Boring Diam.	8.25 "
N. Coord1635.83 ' E. (Coord. 4571.55	Surface Eleva	ition 65.9		MSL Datum
**	/C Diam.				
Casing: Type Schedule 40 PV	/C Diam.	2° Leng	gth38 *	Sump Length	_2'
Top of Casing E	levation 65.46'		2.	Stickup _0'	
Depth to Water: 1, F	1, 34.67 (.6/18	/01)	2. Ft)
Drilling Company Fugro Ge	eosciences, Inc.	Driller Ra	y Reed		
Drilling Method Hollow S	tem Auger	Log By _Ma	rcel G. St. Ma	rie	
T-1000 (# 10)(E-00)(E-00)					

Drilling	Metho	d	Hollow St	em Au	iger	Log By	_ Marcel G	i. St. Marie
Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	OVM (PPM)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
65.9-	0-					0-2	0-2	GRAVELLY SAND: medium-grain, brown, roots, soft, moist, 100 %
65-			A A			U-2	0-2	recovery.
		7		8.000	0.0	2-4	2-24	SILTY CLAY: dark brown, light to dark gray and tan mottling, traces of sand, some iron staining increasing with depth, rootlets, inter-layering of large, white concretions, increasing with depth, moist, stiff, plastic, 60 %
9	5-	17	[*]	188	0.0	4-6		recovery,
60 -	3-	Ħ			0.0	6-8		At 6-8': black nodules. At 8.5-8': marble to pea-size, white concretions.
-		H	a a	101330	0,0	8-10		
	10-	1			0.0	10-12		
55 -	-	77		100000	0.0			At 11-12'; firm
-		77	a a	1 1	0.0	12-14		At 12-14': No recovery.
1	7	7	-	1.00		14-16		
	15-	1/2	1	1				2
50-	10	17	a a	-	0.0	16-18		J
- 4		77	A A	1000	0.0			At 17-18"; layer of silty sand, fine grain, tan to light gray, damp, loose.
1		11		1	0.0	18-20		At 18-18.5': clay contains some cemented sands, light gray.
- 3	1	17			0.0			At 18.5-19.5': layer of sitly sand, fine grain, tan to light gray, damp, loose.
1.5	20-	77			0.0	20-22		At 21,5-22': layer of silty sand, fine grain, tan to light gray, moist,
45-		77	a a		0.0 0.0 0.0	22-24		medium dense, with pockets of cemented sands. At 22-22.5': layer of silty sands, red. dry. loose At 22.5-23': silty day is stiff and plastic. At 23-23.5': layering of partly cemented sand, gray, dense.
-	25-	777		e e	0.0	24-25	24-38	SILTY SAND: red, brown, fine grain, moderately sorted, moist, loose. 68 % recovery.

EIXIVI.	•					DRILLING	LOG
W.O. NO.	389-035	Boring/Well ID MV	V-92	Date Drilled	5/24/01	SKETCH MAP	
Project	Former Cameron Iron Work	sOwner_	Cameron				MW 02
Location	1000 N Silber Rd	Boring T	.D. <u>50</u> '	Boring Diam.	8.25 "		MW-92
N. Coord.	-1635.83' E. Coord.	4571.55 ' Surface I	Elevation65.9	N	ISL Datum	CARNAVON DAIVE	
Screen: T	Type _ Schedule 40 PVC	Diam. <u>2.*</u>	Length10 '	Slot Size	0.01		/
Casing: T	Type Schedule 40 PVC	Diam. 2*	Length38 '	Sump Length	_2'		[5]
	Top of Casing Elevation	65.46 '	_	Stickup 0'		NOTES	
Depth to W	/ater: 1. Ft. 34.6	67 (6/18/01) 2. Ft	()		
Drilling Cor	mpany Fugro Geoscienc	es, Inc Driller	Ray Reed				
Drilling Met	thod Hollow Stem Aug	er Log By	Marcel G. St. Mar	ie		£	

Drilling Company Drilling Method _	Hollow Stem Aug		Driller Log By	Marcel G.	St. Marie
Elevation (Feet) Depth (Feet)	Well Construction Sample Type	OVM (PPM)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
35 - 30 - 35 - 30 - 40 - 25 - 20 - 20 - 20 - 20 - 20 - 20 - 2			26-28 28-30 30-32 32-34 34-36 36-38 38-40	38-50	At 23.5-24': no nodules or roots in clay. At 25-26': silty clay, red to brown, gray and tan mottling, firm, very plastic. At 26-30': damp. At 30-34': moist. At 34-38': wet. At 37.5-38': silty clay, red to brown, very soft, saturated. NOT SAMPLED: Flowing sands.
20		*			T.D. = 50 '

MW-92

ch2m:

PROJECT NUMBER 684444.17.05.02

BORING NUMBER

MW-93R

SHEET 1 OF 2

SOIL BORING LOG

PROJECT: Silber Rd. Well Installation LOCATION : Houston, TX D.	DATE: 4-10-2017
---	-----------------

WEATHER: 79° F, Cloudy DRILLING CONTRACTOR Best Drilling

DRILLING METHOD AND EQUIPMENT USED: Continuous Sampling/Hollow Stem Auger

WATER LEVELS: 33.5' START: 0835 END: 1030 LOGGER: Shannon Boesch

WATER I	LEVELS :		33.5'	START:	0835 END : 1030	LOGGER: Shannon Boesch
DEPTH BE	ELOW SUF	RFACE (F	Γ)	STANDARD	CORE DESCRIPTION	COMMENTS
	INTERVAL	. (FT)		PENETRATION		
		RECOVE	RY (%)	TEST	SOIL NAME, USCS GROUP SYMBOL, COLOR,	DEPTH OF CASING, DRILLING RATE,
			#/TYPE	RESULTS	MOISTURE CONTENT, RELATIVE DENSITY,	DRILLING FLUID LOSS,
				6"-6"-6"	OR CONSISTENCY, SOIL STRUCTURE,	TESTS, AND INSTRUMENTATION.
				(N)	MINERALOGY.	OVM (ppm): Breathing Zone Above Hole
					Silty Clay (CL):	
_					orangish tan brown, moderate plasticity, very hard, rootlets, slightly moist, iron oxide staining, trace	
_					organic matter throughout, no odor.	-
		100%				PID: 0-3' = 2.1 ppm
_						_ 11B. 0-0 - 2.1 ppm
_						_
5	5.0					DID: 3 5' = 1 0 ppm
3—	5.0				Silty Clay (CL):	PID: 3-5' = 1.0 ppm
					orange tan to olive grey, low to moderate plasticity,	
					abundant clacareous nodules, very compacted,	
_					hard, dry, no odor.	_ PID: 5-7' = 1.5 ppm
		70%				
_						
_						-
10	10.0					PID: 7-9' = 1.9 ppm
10_	10.0				Silty Clay to Lean Clay (CL):	_
					olive grey with iron oxide red staining, very crumbly,	PID: 9-11' = 0.0 ppm
_					abundant calcareous nodules, dry, no odor, low to	
_					moderate plasticity, trace black organic staining.	-
		40%				DID: 44 43! = 0.0 ppm
_						_ PID: 11-13' = 0.0 ppm
_						_
45	45.0					DID 40.451 N
15	15.0				Clayey Sand (SC):	PID: 13-15' = No recovery
					tan with iron oxide staining, low plasicity, fine to	
					coarse, well graded, dry.	
_					Sand (SP):	_ PID: 15-17' = 0.0 ppm
		20%			tan, coarse grain, poorly graded, dry, no odor,	
_					loose.	-
						_ PID: 17-19' = No recovery
20	20.0					_
					Clayey Sand to Silty Sand (SC-SM):	
_					tan with red iron oxide staining, loose, medium to very fine grain, well graded, friable.	_ PID: 19-21' = 0.8 ppm
					tory into grain, troil gradou, mable.	_
		20%				
_						_ PID: 21-23' = 2.7 ppm
25	25.0					PID: 23-25' = No recovery
					Sand (SW):	
_					red orange brown, slightly compacted, very fine grain graded to coarse grain with depth, moist to	-
					damp with depth, well graded, no odor.	_ PID: 25-27' = 2.5 ppm
		50%				
-		5576				-
						_ PID: 27-29' = No recovery
1 -						7
30	30.0					

Sampler Signature: Date:

ch2m:

Sampler Signature:

PROJECT NUMBER 684444.17.05.02

BORING NUMBER

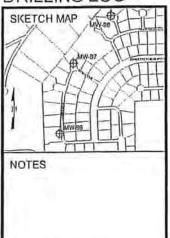
MW-93R

SHEET 2 OF 2

SOIL BORING LOG

PROJEC	T:	Silber R	d. Well Inst	tallation	LOCATION : Houst	on,	TX DATE: 4-10-2017			
WEATH	ER:	79° F, Clo	udy		DRILLING CONTRACTOF Best Drilling					
DRILLIN	G METH	DD AND I	EQUIPMEN	T USED : Contin	uous Sampling/Hollow Stem Auger					
	LEVELS		33.5'	START :			LOGGER: Shannon Boo	esch		
	ELOW SU INTERVA		T)	STANDARD PENETRATION	CORE DESCRIPTION		COMMENTS			
		RECOVE	RY (%) #/TYPE	TEST RESULTS 6"-6"-6"	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY, OR CONSISTENCY, SOIL STRUCTURE,		DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION.			
				(N)	MINERALOGY.		OVM (ppm): Breathing Zone Above Hole			
					Sand (SW):					
_ _					red orange brown, saturated, slightly compacted, red clay nodules at 30.5' bgs, fine to coarse grain, well graded, no odor.	-	PID: 29-31' = 2.7 ppm			
_		40%				_	PID: 31-33' = 2.7 ppm			
- 35	35.0					_	PID: 33-35' = No recovery	_		
_ - -		40%			Sand (SW): tan to white, damp to moist with depth, slightly compacted, medium to coarse grain, well graded, becomes very compacted and hard at 36.5' bgs, almost like a sandstone.	_	PID: 35-37' = 2.9 ppm			
- - 40	40.0	40%				_	PID: 37-39' = 2.9 ppm			
	42.0				Sand (SW): Same as above.	_	PID: 39-41' = 1.6 ppm	_		
- -	42.0				Clay (CH): reddish brown, very compact, hard, iron oxide staining, high plasticity, slightly moist to dry with depth, no odor.	_	PID: 41-43' = 0.3 ppm	-		
45	45.0						PID: 41-43' = 0.8 ppm	_		
- -					Bottom of boring at 45' bgs on 4/10/2017					
-						_		_		
- -						-				
-						-				
_ _						_		_		
- -						-				
_						-				

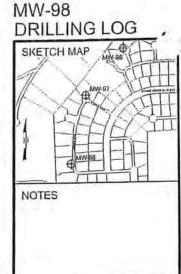
Page 2 of 2


ERM-Southwest, Inc. ERM.

W.O. NO. <u>389-043</u> Boring/Well ID <u>MW-98</u> Date Drilled <u>2/6/02</u> Former Cameron Iron Works Owner Cameron Project Boring T.D. 43 Boring Diam. 8.25 Boring Diam. 1000 N. Silber Rd Location N. Coord. <u>-2613.45</u> E. Coord, <u>5320.71'</u> Surface Elevation <u>63.1'</u> MSL Datum Screen: Type Schedule 40 PVC Diam. 2" Length 10' Slot Size Casing: Type Schedule 40 PVC Diam. 2" Length 31' Sump Length Stickup 0' Top of Casing Elevation 62.93 ' 1. Ft. 33.73 (2/6/02) 2. Ft.

Depth to Water:

____ Driller ___ Alfred Arrembide Master Monitoring Drilling Company Log By Gregory Wheeler, Geologist Hollow Stem Auger **Drilling Method**

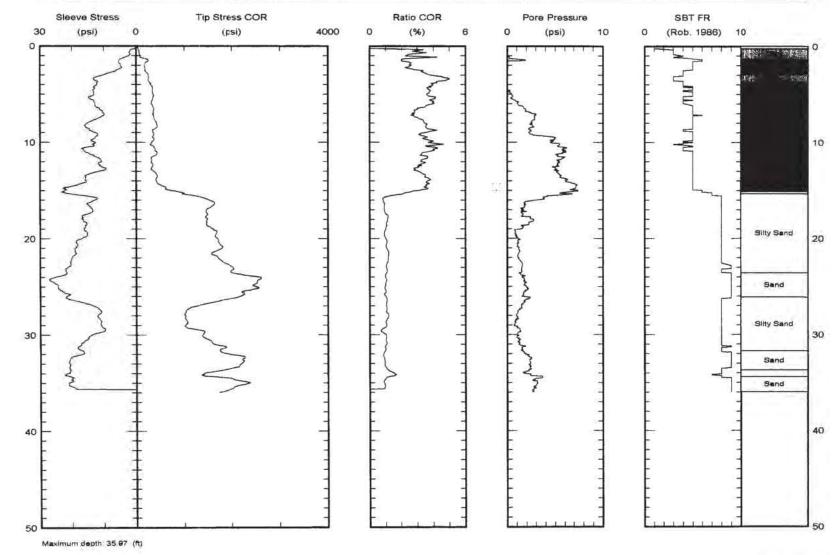

MW-98 DRILLING LOG

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	OVM (PPM)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soll Classification (Color, Texture, Structure)
;3.1= - -	0-		1 1	A.	0.0	0-5	0-7.4	SILTY SANDY CLAY: yellowish gray, motiled, organic matter, black staining, rootlets, soft, moist, 100% recovery.
60-	5- 5-				0.0	5-10		At 3.5-5': white nodules.
55 - -	- - 10-				0.0	10.15	7.4-8.4 8.4-12.3 \	SANDY CLAY: medium-grained sand, mottled, white nodules, moist, 100% recovery. SANDY SILTY CLAY: yellowish with gray and black mottling, white nodules to 11.6 ft, rootlets, moist, 80% recovery.
50-	- 10				0.0 0.0 0.0	10-15	12.3-17.8	SILTY CLAYEY SAND: yellowish with tan and black mottling, medium-grained sand, moist, 60% recovery.
10.00	15- -	//	4	1/ \	0.0	15-20		
45 - -	-	///		$\ \cdot\ _{\cdot}$	0.0	-1	17.8-30.8	SILTY SAND: yellowish with tan and black mottling, medium-grained sand, traces of clay, moist, 58% recovery.
40-	20-				0.0	20-25		At 21,5-30.8': gray.
l Ĉ	25-			.//				

MW-98 Date Drilled 2/6/02 Boring/Well ID W.O. NO. 389-043 Owner Cameron Former Cameron Iron Works Project Boring T.D. 43' Boring Diam. 8.25" Location 1000 N. Silber Rd N. Coord. _-2613.45 E. Coord. _5320.71 ' Surface Elevation 63.11 MSL Datum ___ Diam. 2 " Length 10 ' Slot Size 0.01 " Screen: Type Schedule 40 PVC Casing: Type Schedule 40 PVC Diam. 2" Length 31' Sump Length Stickup 0' Top of Casing Elevation 62.93* 1. Ft. 33.73 (2/6/02 _) 2, Ft._ Depth to Water: Driller ____ Alfred Arrambide Master Monitoring Drilling Company Log By Gregory Wheeler, Geologist Hollow Stem Auger

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	OVM (PPM)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
35-	25- - -			V	0.0	25-30		
35-	30-	<u> </u>	1		0.0	30-35	30.8-32.8	SILTY CLAY: gray and brown mottling, white nodules, soft, moist, 50% recovery.
30-	-			M	0.0	1	32.8-40.3	NOT SAMPLED: Flowing sands.
25-	35-				0.0	35-40		
	40-	#		\bigvee	0.0 0.0	40-43	40.3-43	SILTY CLAY: gray and brown mottling, soft, moist, 100% recovery.
20-		77,			0.0			T.D. = 43 '
	45-							
1								
15-								
	50-					1		

Depth (ft)


Applied Research Associates, Inc. South Royalton, VT 05068 802-763-8348 cpt@ned.ara.com

www.ara.com

Northing: Easting: Elevation: Date: 02/Aug/2007 Test ID: MW-161

Project: CAMERON IRON

Client: ERM Job Site: HOUSTON

Attention Owner: Confidentiality Privilege Notice

Texas Department of Licensing and Regulation
Water Well Driller/Pump Installer Program

This form must be completed and filed with the department

on reverse side of owner's copy.		Email address: W	ll free (800) 80 water.well(ELL REF	03-9202 Dlicense.st PORT	ate.tx.u	IS		owner with n completion	hin 60 da	well.
1) OWNER	A. WE	LL IDENTIFI			ATION	DATA				
Name		Address				City		TX	7702	7
Cameron International Corp	oration	1333 West Lo	oop South,	Suite 1700		Houston		IA	17702	1
2) WELL LOCATION		Physical Address				City		State	Zip	
County Harris		1000 Silber F	Road			Houston	1	TX	7705	5
3) Type of Work	Lat. 29°	46'	25.30" Lo	ng. 95°	2	7' 34.4	0" Grid #			
New Well Reconditionin Replacement Deepening		Use (check) Irrigation [Stock or Live:	Injection	Environ Public S blic Supply, we	Supply	De-wate	Domestic	dt l		N↑
6) Drilling Date		iameter of Ho				thod (che		11		
6) Drilling Date Started 8/2/7	Día. (in)	From (ft)	To (fl)			Air Rotary	Mud Rotar	v.		
Started		Surface		Bore	_	Air Hammer	Cable Too			
Completed 8/2/7	3	0	36.02		erse Circu	Hollow Sten	Auger			
					er CPT					_
From (ft) To (ft) Descri	iption and colo	or of formation	material	8) Borel	hole Co er-ream	ompletion ed [] Gra	Open Havel Packed	lole □	Straigl Pre-P	nt Wall acked
				Gravel Pag			ft. to	fl. Size.		
SEE	ATTACHED	LOG		Casing	, Blank	k Pipe, an	d Well Scree	n Data		
				Dia.	New Or	Steel, Plastic Perf., Slotted	, etc.	Settin	g(ft)	Gage Casing
				(in.)	Used	Screen Mfg.,	if commercial	From	To	Screen
				1	New	PVC		26.02	36.02	0.10
								-	_	
								-		
				4				-	-	
(Use reverse side o	f Well Owner's cor	ov, If necessary)		from 1	ft.	to 26.02	ft. #sacks & m ft. #sacks & m ft. #sacks & m	aterial 3 l	Bent/G	rout
	lugged within			Method U			it. Waterta et in			
, 50	entonite placed in						centrated contam	nation NA		fi.
From (ft) To (ft) From (Material use	d & # Sacks				ft Method Con			
Prom (a)				Verified:						
							(If steel cased, lea	ve blank)		
				_	e Slab In		Surface SI		led	
14) Type Pump				Pitless			Alternativ			
Turbine Jet	Submersible	Cylinder		11) Wat			2 V Tittermativ			
Other NA							Data 08/	02/2007		
Depth to pump bowls, cylinder, jet, et	c., ft.			- Static leve	-		Date 00/	UZI Z UU 1		
	44			Artesian F		gpm			_	-
15) Water Test				12) Pac	kers		Time		- Congress	
Type test 🗌 Pump 🔲 Bailer 🔲	Jetted Estimat	ted		Type		Depth	Туре		Depth	
Yield: NA gpm with ft. draw				1.1						
	which contains und oor-quality ground material/waste con	estrable constituer water - type tamination encoun	nts? Yes V	No If yes, _ ☐ Hydr ☐ Othe	rocarbons r (describ	i (i.e. gas, oil oe)		d and the l	andowne	+ was
informed that such well must be comp	leted or plugged in	such a manner as	to avoid injury	or pollution.						
Company or Individual's Name	e (type or print	Ray Reed	Applied Res	earch Ass	ociates	, Inc.	Lic. No. 22	55 A K	P	
Address P.Ø Box 116A	VAL. P. P.		City To				State TX	Zip	77377	

Licersed Driller/Pump Installer

08/22/2007

Date

Signature

Apprentice

Signature

Additional information or	comments:		
MW-161			

WELL REPORT CONFIDENTIALITY NOTICE

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

From (ft)	To (ft)	Description and color of formation material
	The state of the s	

Attention Owner: Confidentiality Privilege Notice on reverse side of owner's copy

Texas Department of Licensing and Regulation
Water Well Driller/Pump Installer Program
P.O. Box 12157 Austin, Texas 78711 (512) 463-7880 FAX (512) 463-8616
Toll free (800) 803-9202

Email address, water well alicense state tx us

This form must be completed and filed with the department and owner within 60 days upon completion of the well

WELL	REPORT	

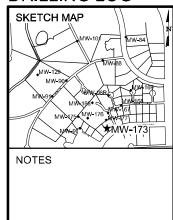
1) OWNED	A WE	LL IDENTI	WELL R		ATIO	UDATA				
1) OWNER Name	A. WE	.\ddress	FICATION	AND LUC	ATTO	City		on all	Z.4º	
Cameron International Corp 2) WELL LOCATION	poration			, Suite 1700	0	Houston		TX	1770:	27
County Harris		Physical Address 1000 Silber				Houston		TX	770:	55
3) Type of Work	Lat. 29°		20.51"	Long. 95			Grid#			
New Welf	Rig Supply	Irrigation Stock or Li	Injection	Public Supply, v	Supply vere plans	De-watering		ell		N↑
6) Drilling Date		Diameter of I			The second second	thod (check)	7			111
Started 12/3/2007	- Dea (m)	From (ft) Surface	To (ft)	Box	od [An Hammer	Mud Rotai Cable Too			
Completed	3	0	40		reise Circu ioi CPT	I Hollow Stem Aug Intom	ct			
F F B	1	66	1	4.00	2428 6	ompletion [T Onen I	Iala 🗔	Ctentin	br Wall
	ription and colo Clay - Yellowi		n materiai	Und	er-ream	ed Gravel	Packed [Other	Pre-I	acked
	Sand - Tan	an I an		The same of the sa		rval from	ft to	ft Size		
				Casin	g, Blanl	k Pipe, and W	ell Scree	en Data		
				Dia	New Or	Steel Plastic etc Peri' Slotted etc		Setti	g (Il)	Gage Casing
MW-	-168			(ttr.)	Used	PVC	nmercial	From 30	40	8creen 0.10
					New	FVC		30	40	0.10
5 1 : 16.12	f Well Owner's cop lugged within 4	18 hours		from 1 from from Method t	n n n 'sed <u>Tre</u>	to ft s	sacks & ma sacks & ma sacks & ma	aterial 3 l	Bent/G	rout_
From (ft) To (ft) From (T	sed & # Sacks		107	y Line NA ft Me				
				Ventice						
	4			10) Sur	face Co	mpletion (II st	eel cased, lea	ve blank)		
10 T P				Surfa			Surface SI			1
14) Type Pump Turbine Jet	Submersible	Cylinder		Pitles:			Alternative	e Procedur	e Used	
Other NA	Control and the Assessment	Cylinder	N.	11) Wa			Date 12/	03/2007	V	
Depth to pump bowls, cylinder, jet, etc	: II			Artesian I	low	gpm				
15) Water Test				12) Pac	kers		Teach			
Type test 🗌 Pump 🔲 Barler 🔲				Туре		Depth	Type		Depth	
Yield NA gpm with ft_drav	vdown after	_ hrs					+			
Hazardous	which contains undo our-quality grounds material waste cont ung, or otherwise c	estrable constitue water - type amination encou ultering the above	untered	No If yes IIyda Othe	rocarbons r (describ water or	(i e gas, oil, etc)		I and the la	indowne	· was
informed that such well must be compl							. N. 22	55 A Y/1	n .	_
Company or Individual's Name	(type or print)	Ray Reed			octates.		No. 22		77377	
Address P.O. Box 164	.	12/27	City T /2007	omball		State	TX	Zip	1	, -
Signature Licensed Driller/Pump I	nstaller		/200/ ate	Signature	Ap	prentice			Date	

TDLR FORM 001WWD / 9-03

Copies to TDLR - Owner - Driller/Pump Installer

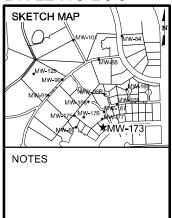
Form provided by Forms On-A-Disk · (214) 340-9429 · FormsOnADisk.com

Additional information or comments:	
MW-168	


WELL REPORT CONFIDENTIALITY NOTICE

TEX. OCC. CODE Title 12. Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner

From (ft)	To (ft)	Description and color of formation material
		40.000
	s vantis akan tula (das)	
	,	


Proj. No. <u>0096401</u>	Boring/Well ID MW-173 Date Drilled 3/4/2009
Project Former Cameron Iron Works	Owner Elkins
Location Stablewood	Boring T.D. 39.35' Boring Diam. 8"
N. Coord E. Coord	Surface Elevation 0' ft. MSL Datum
Screen: Type Schedule 40 PVC	Diam. <u>2 "</u> Length <u>10 '</u> Slot Size <u>0.01 "</u>
Casing: Type Schedule 40 PVC Riser	Diam. <u>2 "</u> Length <u>29.15 '</u> Sump Length <u>0 '</u>
Top of Casing Elevation _	O' Stickup0.2
Depth to Water: 1. Ft. <u>30.57</u>	(<u>3-4-2009/1250</u>) 2. Ft. <u>30.61</u> (<u>3-5-2009/1015</u>)
Drilling Company Best Drilling	Driller
Drilling Method	Log By Stephen Saller

Elevation (Feet)	Depth (Feet)	Graphic Log	We ll Construction	Sample Type	Sample Recovery (%)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
0-	0-	0000				0-5	0-1 1-3	GRAVEL: Shell road base, light brownish gray (10YR 6/2), moist, loose SILTY CLAY: Drak gray (10YR 4/1), moist, (pp=.5 tsf)
_	_						3-5	CLAY: Dark grayish brown (10YR 4/2) mottled with yellowish brown (10YR 5/4), moist, stiff (pp=2 tsf)
- 5-	5— —			۱\ /I	100%	5-10	5-8	CLAY: Gray (10YR 6/1) mottled with brownish yellow (10YR 6/6), moist, very stiff (pp=2.5 tsf)
_	-						8-10	SANDY CLAY: Light gray (10YR 7/1) heavily mottled with brownish yellow (10YR 6/6) and black (10YR 2/1), moist, very stiff (pp=3.5 tsf)
- 10 -	10- -				100%	10-15	10-15	SANDY SILTY CLAY: Light gray (10YR 7/1) heavily mottled with brownish yellow (10YR 6/6) and black (10YR 2/1), moist, very stiff (pp=2.5 tsf), fines upward, black nodules
- -15-	- - 15-							


Proj. No.	009640	1	Borin	g/Well II) <u>MV</u>	V-173		Date Drilled	3/4/2009
Project	Former	Cameron Iron	Works		Owner _	Elkins			
Location	Stablev	vood			Boring T	D. <u>39.3</u>	5'	Boring Diam.	8 "
N. Coord.		E. Co	ord		Surface	Elevation		<u>ft.</u>	MSL Datum
Screen:	Гуре <u>Sc</u>	chedule 40 PV	С	Diam.	2"	Length _	10'	Slot Size _	0.01 "
Casing:	Гуре <u>Sc</u>	chedule 40 PV	C Riser	Diam.	2"	Length _	29.15 '	Sump Length	0'
	Тор	of Casing Elev	ation <u>0</u> '			-	9	Stickup0.2	
Depth to W	/ater:	1. Ft.	30.57	(<u>3-4-2</u>	2009/1256	<u>)</u>) 2.	Ft. <u>30</u>	.61 (_3-5	5 <u>-2009/1015</u>)
Drilling Cor	mpany	Best Drilling			Driller _				
Drilling Me	thod _	Hollow Stem	Auger		Log By	Stephen	Saller		

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Recovery (%)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
-15 - -	15 — —			<u> </u> \/	100%	15-20	15-20	CLAYEY SAND: Light gray (10YR 7/1) mottled with yellow (10YR 7/8), moist, weak (pp=0.5 tsf)
-20 - -	20-				50%	20-25	20-25	SAND: Light gray (10YR 7/1) mottled with yellow (10YR 7/8), moist, loose, thick mottling patterns
-25 - -	25 — —				60%	25-30	25-28	SAND: Brownish yellow (10YR 6/6) mottled with light gray (10YR 7/1), moist, loose
- - -30 -	30-						28-30	SAND: Dark brown (10YR 3/3) mottled with brownish yellow (10YR 6/6), moist, loose

Proj. No.	009640	1	Boring	/Well ID) <u>MV</u>	/- 173		Date Drilled	3/4/2009
Project	Former	Cameron Iron	<i>N</i> orks		Owner _	Elkins			
Location	Stablew	/ood			Boring T.	D. <u>39.3</u>	<u> </u>	Boring Diam.	8 "
N. Coord.		E. Coo	rd		Surface I	Elevation	0'	<u>ft</u>	. MSL Datum
Screen: 7	ГуреЅс	hedule 40 PVC	;	Diam.	2 "	Length _	10'	Slot Size	0.01 "
Casing: 1	Гуре <u>Sc</u>	hedule 40 PVC	Riser	Diam.	2"	Length _	29.15 '	Sump Leng	th <u>0'</u>
	Тор	of Casing Eleva	ation 0'			-		Stickup0.2	2
Depth to W	/ater:	1. Ft	30.57	(<u>3-4-2</u>	2009/1250	<u>)</u>) 2.	Ft. <u>30</u>	<u>.61 (3</u>	<u>-5-2009/1015</u>)
Drilling Cor	mpany	Best Drilling			Driller				
Drilling Met	thod	Hollow Stem	Auger		Log By	Stepher	n Saller		

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Recovery (%)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
-30 -	30-				40%	30-35	30-34	SAND: Yellowish red (5YR 5/8), moist (saturated at 32.5' and below), loose, small light gray and black patches
-35 - -35 -	35-				60%	35-39.35	34-35 35-39.35	CLAYEY SAND: Yellowish red (5YR 5/8), saturated, stiff (pp=1.5 tsf), small light gray and black patches SAND: Yellowish brown (10YR 5/6), wet, loose, medium grained
-40 - -	40-				40%			T.D. = 39.35 '
- -45-	_ _ 45_							

Well Report: Tracking #:170532 Page 1 of 2

STATE OF TEXAS WELL REPORT for Tracking #170532

Latitude:

29°46'17" N

Owner: **Cameron International Corporation** Owner Well #: MW-173 Grid #: 65-13-7

Address: 1333 W. Loop S., Suite 1700

Houston, TX

Well Location: 8725 Memorial Dr.

Houston, TX 77027

Well County: Harris Longitude: 095°27'44" W

No Data GPS Brand Used: Elevation: No Data

Type of Work: **New Well** Proposed Use: Monitor

Drilling Date: Started: 3/4/2009

Completed: 3/4/2009

Diameter of Hole: Diameter: 8 in From Surface To 40 ft

Drilling Method: Hollow Stem Auger

Borehole Gravel Packed From: 28 ft to 40 ft

Completion: Gravel Pack Size: 20/40

Annular Seal Data: 1st Interval: From 0 ft to 26 ft with 15 bentonite gr (#sacks and material)

2nd Interval: No Data 3rd Interval: No Data Method Used: Tremie

Cemented By: Best Drilling Services, Inc.

Distance to Septic Field or other Concentrated Contamination: No Data

Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data

Surface Completion: Surface Slab Installed

Water Level: Static level: No Data

Artesian flow: No Data

Packers: Bentonite 26' - 28'

Casing or Cement/Bentonite left in well: No Data Plugging Info:

Type Of Pump: No Data Well Tests: No Data

Water Quality: Type of Water: No Data

Depth of Strata: No Data

Chemical Analysis Made: No Data

Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Best Drilling Services, Inc. Company

P.O. Box 845 Information:

Well Report: Tracking #:170532 Page 2 of 2

Friendswood, TX 77549

Driller License

5036

Number:

Licensed Well Alfredo Palacios

Driller Signature: Registered Driller

Apprentice Signature:

No Data

Apprentice Registration No Data

Number:
Comments:

No Data

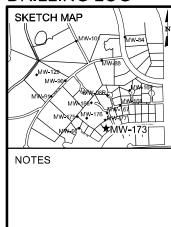
IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #170532) on your written request.

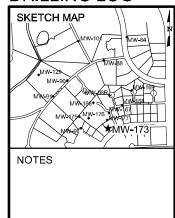
Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

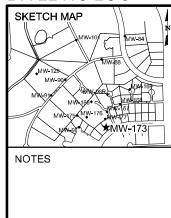

CASING, BLANK PIPE & WELL SCREEN DATA

From (ft) To (ft) Description
0-3 SILTY CLAY
5-8 CLAY
8-15 SANDY CLAY
15-20 CLAYEY SAND
20-40 SAND

Dia. New/Used Type Setting From/To 2 N SCH 40 PVC RISER 0/30 2 N SCH 40 PVC SCREEN 30/40 0.010


Proj. No. 0096401 Boring/Well ID MW-173 Date Drilled 3/4/2009
Project Former Cameron Iron Works Owner Elkins
Location Stablewood Boring T.D. 39.35' Boring Diam. 8"
N. Coord E. Coord Surface Elevation0' ft. MSL Datum
Screen: Type Schedule 40 PVC Diam. 2 " Length 10' Slot Size 0.01"
Casing: Type Schedule 40 PVC Riser Diam. 2 " Length 29.15' Sump Length 0'
Top of Casing Elevation 0' Stickup -0.2
Depth to Water: 1. Ft. 30.57 (3-4-2009/1250) 2. Ft. 30.61 (3-5-2009/1015)
Drilling Company Best Drilling Driller
Drilling Method Hollow Stem Auger Log By Stephen Saller

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Recovery (%)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
0-	0-	0000				0-5	0-1 1-3	GRAVEL: Shell road base, light brownish gray (10YR 6/2), moist, loose SILTY CLAY: Drak gray (10YR 4/1), moist, (pp=.5 tsf)
-							3-5	CLAY: Dark grayish brown (10YR 4/2) mottled with yellowish brown (10YR 5/4), moist, stiff (pp=2 tsf)
- 5-	5- -				100%	5-10	5-8	CLAY: Gray (10YR 6/1) mottled with brownish yellow (10YR 6/6), moist, very stiff (pp=2.5 tsf)
-	- - -						8-10	SANDY CLAY: Light gray (10YR 7/1) heavily mottled with brownish yellow (10YR 6/6) and black (10YR 2/1), moist, very stiff (pp=3.5 tsf)
- 10 -	10 <i>-</i>				100%	10-15	10-15	SANDY SILTY CLAY: Light gray (10YR 7/1) heavily mottled with brownish yellow (10YR 6/6) and black (10YR 2/1), moist, very stiff (pp=2.5 tsf), fines upward, black nodules
- - -15-	_ _ _ _ _ 15							


Proj. No.	009640	1	Bori	ng/Well I	D <u>MV</u>	V-173		Date Drilled	3/4/2009
Project	Former	Cameron I	ron Works		Owner _	Elkins			
Location	Stablev	boov			Boring T	D. <u>39.3</u>	5'	Boring Diam.	8 "
N. Coord.		E.	Coord		Surface	Elevation		<u>ft.</u>	MSL Datum
Screen:	Type <u>So</u>	chedule 40	PVC	_ Diam.	2"	Length _	10'	Slot Size _	0.01"
Casing:	Type <u>Sc</u>	chedule 40	PVC Riser	_ Diam.	2"	Length _	29.15 '	Sump Lengtl	h <u>0'</u>
	Тор	of Casing I	Elevation <u>0 '</u>			=	5	Stickup <u>-0.2</u>	
Depth to W	/ater:	1. F	Ft. <u>30.57</u>	<u>3-4-</u>	2009/1256	<u>0</u>) 2.	Ft. <u>30</u>	.61 (_3-	<u>5-2009/1015</u>)
Drilling Co	mpany	Best Drilli	ing		Driller _				
Drilling Me	thod _	Hollow St	tem Auger		Log By	Stephen	Saller		

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Recovery (%)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
-15 - -	- 15— - -			<u> </u> \/	100%	15-20	15-20	CLAYEY SAND: Light gray (10YR 7/1) mottled with yellow (10YR 7/8), moist, weak (pp=0.5 tsf)
-20 - -20 -	20-				50%	20-25	20-25	SAND: Light gray (10YR 7/1) mottled with yellow (10YR 7/8), moist, loose, thick mottling patterns
- 2 5-					60%	25-30	25-28	SAND: Brownish yellow (10YR 6/6) mottled with light gray (10YR 7/1), moist, loose
- - -30-	- 30-						28-30	SAND: Dark brown (10YR 3/3) mottled with brownish yellow (10YR 6/6), moist, loose

Proj. No.	009640	1	Borii	ng/Well I	D <u>MV</u>	V-173		Date Drilled	3/4/2009
Project	Former	Cameron	Iron Works		Owner _	Elkins			
Location	Stablev	boov			Boring T	D. <u>39.3</u>	5'	Boring Diam.	8 "
N. Coord.		E.	Coord		Surface	Elevation	0'	<u>ft.</u>	MSL Datum
Screen:	Гуре <u>Sc</u>	chedule 40	PVC	_ Diam.	2"	Length _	10'	Slot Size _	0.01"
Casing:	Гуре <u>Sc</u>	chedule 40	PVC Riser	_ Diam.	2"	Length _	29.15 '	Sump Lengtl	h <u>0'</u>
	Тор	of Casing I	Elevation <u>0 '</u>			=	5	Stickup <u>-0.2</u>	
Depth to W	/ater:	1. F	Ft. <u>30.57</u>	<u>3-4-</u>	2009/1256	<u>0</u>) 2.	Ft. <u>30</u>	.61 (_3-	<u>5-2009/1015</u>)
Drilling Co	mpany	Best Drill	ing		Driller _				
Drilling Me	thod _	Hollow S	tem Auger		Log By	Stephen	Saller		

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Recovery (%)	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
-30 - -	30-				40%	30-35	30-34	SAND: Yellowish red (5YR 5/8), moist (saturated at 32.5' and below), loose, small light gray and black patches
-35- -35-	_ - 35— _				60%	35-39.35	34-35 35-39.35	CLAYEY SAND: Yellowish red (5YR 5/8), saturated, stiff (pp=1.5 tsf), small light gray and black patches SAND: Yellowish brown (10YR 5/6), wet, loose, medium grained
-40 -	40-				40%			T.D. = 39,35 '
-45-	- - 45-							

Well Report: Tracking #:170532 Page 1 of 2

STATE OF TEXAS WELL REPORT for Tracking #170532

Latitude:

29°46'17" N

Owner: **Cameron International Corporation** Owner Well #: MW-173 Grid #: 65-13-7

Address: 1333 W. Loop S., Suite 1700

Houston, TX

Well Location: 8725 Memorial Dr.

Houston, TX 77027

Well County: Harris Longitude: 095°27'44" W

No Data GPS Brand Used: Elevation: No Data

Type of Work: **New Well** Proposed Use: Monitor

Drilling Date: Started: 3/4/2009

Completed: 3/4/2009

Diameter of Hole: Diameter: 8 in From Surface To 40 ft

Drilling Method: Hollow Stem Auger

Borehole Gravel Packed From: 28 ft to 40 ft

Completion: Gravel Pack Size: 20/40

Annular Seal Data: 1st Interval: From 0 ft to 26 ft with 15 bentonite gr (#sacks and material)

2nd Interval: No Data 3rd Interval: No Data Method Used: Tremie

Cemented By: Best Drilling Services, Inc.

Distance to Septic Field or other Concentrated Contamination: No Data

Distance to Property Line: No Data Method of Verification: No Data Approved by Variance: No Data

Surface Completion: Surface Slab Installed

Water Level: Static level: No Data

Artesian flow: No Data

Packers: Bentonite 26' - 28'

Casing or Cement/Bentonite left in well: No Data Plugging Info:

Type Of Pump: No Data Well Tests: No Data

Water Quality: Type of Water: No Data

Depth of Strata: No Data

Chemical Analysis Made: No Data

Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Best Drilling Services, Inc. Company

P.O. Box 845 Information:

Well Report: Tracking #:170532 Page 2 of 2

Friendswood, TX 77549

Driller License

5036

Number:

Licensed Well

Alfredo Palacios

Driller Signature:

Registered Driller

No Data

Apprentice Signature:

No Data

Apprentice Registration Number:

Comments: No Data

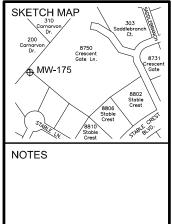
IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #170532) on your written request.

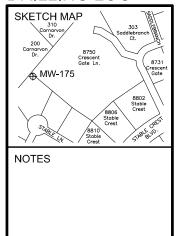
Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL


CASING, BLANK PIPE & WELL SCREEN DATA

From (ft) To (ft) Description
0-3 SILTY CLAY
5-8 CLAY
8-15 SANDY CLAY
15-20 CLAYEY SAND
20-40 SAND

Dia. New/Used Type Setting From/To 2 N SCH 40 PVC RISER 0/30 2 N SCH 40 PVC SCREEN 30/40 0.010


Proj. No.	010125	i7		Boring	/Well II) <u>M\</u>	V-175		Date Dr	illed _	9/2/20	009_
Project	Stablev	vood Rei	mediation			Owner_	Paraffin (Group				
Location	_Housto	n				Boring T	.D. <u>36</u> '		Boring D	Diam.	2"	
N. Coord.	-1665.7	<u>′13 </u>	E. Coord.	5462.90	<u>6'</u>	Surface	E l evation	64.4	3'	ft. N	<u>ISL</u> Da	atum
Screen: T	Гуре <u>S</u> е	ch 40			Diam.	1"	Length _	10 '	Slot Siz	ze	0.0	1 "
Casing: T	Гуре <u>S</u> е	ch 40			Diam.	1"	Length _	26 '	Sump l	_ength	_0'	
	Тор	of Casin	g E l evatior	0'			_		Stickup	0'		
Depth to W	ater:	1.	Ft. <u>30</u>	.81	(<u>9.2.2</u>	2009/113	0/B T O Q .	Ft. <u>0</u>		()
Drilling Cor	mpany	Best D	rilling			Driller _	Alfredo	Palacios				
Drilling Met	thod _	Direct	Push			Log By	Scott Hi	mes				

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
64.43- - -	0-				0-4	0-4	SILTY CLAY: Very dark yellowish brown (10YR 3/2), dense, damp, friable, pp= (>4.5 tsf), rootlets.
- 60 - -	- 5-				4-8	4-7.8	SILTY CLAY: Very pale brown (10YR 7/3) with brownish yellow (10YR 6/8) mottling, dense,plastic, moist, pp= (4.0 tsf).
- - 55 -	- - 10-	000000			8-12	7.8-8 8-12	GRAVELLY CLAY: Very pale brown (10YR 8/2) with white (10YR 8/1) nodules, moist, crumbly, slightly plastic, white nodules are hard (pp > 4.5 tsf). GRAVELLY CLAY: Light gray (10YR 7/2) with (10YR 5/8) mottling increasing with depth, white nodules throughout (~10%), moist, dense,
- - 50 -	-				12-16	12-18	slightly plastic, pp= (>4.5 tsf). SILTY CLAY: Light gray (10YR 7/1) with (7.5YR 5/8) strong brown mottling, moist, dense, plastic, pp= (2.5 tsf), few white nodules.
-	15— — —				16-20	40.00	
- 45 -	20-					18-36	SAND: Very pale brown (10YR 8/2), moist, loose, fine grained, rounded, sorted.

Proj. No. <u>0101257</u> Boring/	Well ID <u>MW-175</u> Date Drilled <u>9/2/2009</u>
Project Stablewood Remediation	Owner Paraffin Group
Location Houston	Boring T.D. 36' Boring Diam. 2"
N. Coord. <u>-1665.713</u> E. Coord. <u>5462.906</u>	6' Surface Elevation 64.43' ft. MSL Datum
Screen: Type Sch 40	Diam. <u>1"</u> Length <u>10'</u> Slot Size <u>0.01"</u>
Casing: Type Sch 40	Diam. 1" Length 26' Sump Length 0'
Top of Casing Elevation <u>0</u> '	Stickup _ 0 '
Depth to Water: 1. Ft. <u>30.81</u>	(<u>9.2.2009/1130/B</u> TOQ. Ft. <u>0</u> ()
Drilling Company Best Drilling	Driller Alfredo Palacios
Drilling Method Direct Push	Log By Scott Himes

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
-	20 — — —			V	20-24		At 20.5' - 5" clay seam, light gray(10YR 7/1) with (10YR 6/8) mottling, moist, plastic, dense, pp= (2.5 tsf).
- 40 - -	_ _ 25_ _				24-28		At 26' - Becomes yellow (10YR 7/8).
- 35 - -	30-				28-32		At 28' - Becomes strong brown (7.5YR 5/8).
30-	- - - 35-				32-36		AA CCL. Uit meticani
- - - 25-	- - - 40-		 				At 36' - Hit refusal. T.D. = 36 '

STATE OF TEXAS WELL REPORT for Tracking #196088

Owner: Cameron International Corp. Owner Well #: MW-175

Address: 1333 W. Loop S., Ste. 1700 Grid #: 65-13-7

Address: 1333 W. Loop S., Ste. 1700 Houston . TX 77027

Houston, TX TTOZT

Well Location: 8802 Stable Crest Blvd. Latitude: 29°46'15" N

Houston, TX 77024

Well County: Harris Longitude: 095°27'46" W

Elevation: No Data GPS Brand Used: No Data

Type of Work: New Well Proposed Use: Test Well

Drilling Date: Started: 9/2/2009

Completed: 9/2/2009

Diameter of Hole: Diameter: 8 in From Surface To 36 ft

Drilling Method: Other: **Direct Push**Borehole Other: **PLUGGED**

Completion:

Annular Seal Data: 1st Interval: From 0 ft to 36 ft with 5 cement benton (#sacks and material)

2nd Interval: **No Data** 3rd Interval: **No Data** Method Used: **Tremie**

Cemented By: Best Drilling Services, Inc.

Distance to Septic Field or other Concentrated Contamination: No Data

Distance to Property Line: **No Data** Method of Verification: **No Data** Approved by Variance: **No Data**

Surface Completion: No Data

Water Level: Static level: No Data

Artesian flow: No Data

Packers: No Data

Plugging Info: Casing or Cement/Bentonite left in well: No Data

Type Of Pump: No Data
Well Tests: No Data

Water Quality: Type of Water: **No Data**

Depth of Strata: No Data

Chemical Analysis Made: No Data

Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Company Best Drilling Services, Inc.

Information: P.O. Box 845

Well Report: Tracking #:196088 Page 2 of 2

Friendswood, TX 77549

Driller License

5036

Number:

Licensed Well

Alfredo Palacios

Driller Signature:

Registered Driller Apprentice Signature:

No Data

Apprentice

No Data

Registration Number:

Comments: No Data

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #196088) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

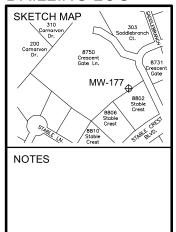
Setting From/To

Type

From (ft) To (ft) Description

0-18 CLAY 18-36 SAND

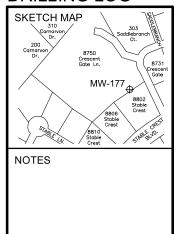
2 N SCH 40 PVC RISÉR 0/26 2 N SCH 40 PVC SCREEN 26/36 0.010


Dia. New/Used

Environmental Resources Management

Proj. No. <u>0101</u>	<u>257</u> Bor	ing/Well ID <u>M</u> '	W-177	Date Drilled <u>8/31/2009</u>
Project Stab	lewood Remediation	Owner_	Paraffin Group	
Location Hous	ston	Boring 7	Г.D. <u>40 '</u>	Boring Diam. 2"
N. Coord171	7.188 E. Coord. <u>5885</u>	' Surface	Elevation63.6	<u>ft. MSL</u> Datum
Screen: Type _	Sch 40	Diam. <u>2 "</u>	Length10 '	Slot Size0.01 "
Casing: Type _	Sch 40	Diam. <u>2 "</u>	Length <u>30 '</u>	Sump Length 0'
To	op of Casing Elevation <u>0</u> '		_	Stickup _0'
Depth to Water:	1. Ft. <u>0</u>	() 2. Ft. <u>C</u>	()
Drilling Company	Best Drilling	Driller _	Alfredo Palacios	
Drilling Method	Hollow Stem Augur	Log By	Scott Himes	

MW-177 DRILLING LOG


Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
63.69 -	0-				0-5	0-6	SILTY CLAY: Pale brown (10YR 6/3) with yellowish brown (10YR 5/8) mottling, moist, dense, plastic, pp= (2.5 tsf).
60 - - - -	5 - -				5-10	6-12.5	SILTY CLAY: Pale brown (10YR 6/3) mixed with white (10YR 8/1) sandy gravel, moist, dense, plastic, pp= (1.5 tsf), gravel decreases with depth.
55 - - - -	10 — —				10-15		
50 –	_ _			$\left \right $		12.5-14 14-15	SANDY CLAY: Pale brown (10YR 6/3) with yellowish brown (10YR 5/8) mottling, moist, slightly dense, plastic, pp= (1.5 tsf), sparse gravel. SAND: Very pale brown (10R 7/3), moist, loose, fine grained.
_	15 — —			/ \ \	15-20	15-20	SAND: Light gray (10YR 7/1) mottled with brownish yellow (10YR 6/8), loose, moist, fine to medium grained.
- 45 - -	20 —						

Environmental Resources Management

Proj. No.	010125	7		Boring	g/Well I	D <u>M\</u>	N-177		Date Drilled	8/31/2009
Project	Stablew	ood Ren	nediation			Owner _	Paraffin (Group		
Location	Houstor	1				Boring T	.D. <u>40 '</u>		Boring Diam.	2 "
N. Coord.	-1717.1	88 <u> </u>	E. Coord.	5885 '		Surface	Elevation	63.69	<u>ft.</u>	MSL Datum
Screen:	Гуре <u>Sc</u>	h 40			Diam	2"	Length _	10 '	Slot Size _	0.01 "
Casing:	Гуре <u>Sc</u>	h 40			Diam	2"	Length _	30 '	Sump Length	n <u>0'</u>
	Тор	of Casing	g Elevation	0'			_		Stickup 0'	
Depth to W	/ater:	1.	Ft. <u>0</u>		() 2.	Ft. <u>0</u>	()
Drilling Cor	mpany	Best Dr	illing			Driller _	Alfredo	Palacios		
Drilling Me	thod	Hollow	Stem Aug	ur		Loa Bv	Scott Hi	mes		

MW-177 DRILLING LOG

Elevation (Feet)	Depth (Feet)	Graphic Log	Well Construction	Sample Type	Sample Interval (Feet)	Description Interval (Feet)	Description/Soil Classification (Color, Texture, Structure)
-	20 — —			\	20-25	20-27	SAND: Pink (5YR 7/3), slightly mottled with brownish yellow (10YR 6/8), loose, moist, fine grained, uniform.
40 -	 25 			/\	25-30	27-30	SAND: Yellowish brown (10YR 5/8), moist, loose, fine grained, uniform.
35 - - - -	30-				30-35	30-40	SAND: Yellowish red (5YR 5/8), saturated, loose, fine grained, uniform.
30 -	- - 35 -				35-40		At 35' - wet.
25 - -	40-						T.D. = 40 '

Well Report: Tracking #:196081 Page 1 of 2

STATE OF TEXAS WELL REPORT for Tracking #196081

Owner: Cameron International Corp. Owner Well #: P-177

Address: 1333 W. Loop S., Ste. 1700 Grid #: 65-13-7

Houston, TX 77027

Well Location: 8802 Stable Crest Blvd. Latitude: 29°46' 15" N

Houston, TX 77024

Well County: Harris Longitude: 095°27'46" W

Elevation: No Data GPS Brand Used: No Data

Type of Work: New Well Proposed Use: Monitor

Drilling Date: Started: 8/31/2009

Completed: 8/31/2009

Diameter of Hole: Diameter: 8 in From Surface To 40 ft

Drilling Method: Hollow Stem Auger

Borehole Gravel Packed From: 28 ft to 40 ft

Completion: Gravel Pack Size: 20/40

Annular Seal Data: 1st Interval: From 0 ft to 26 ft with 5 cement benton (#sacks and material)

2nd Interval: **No Data** 3rd Interval: **No Data** Method Used: **Tremie**

Cemented By: Best Drilling Services, Inc.

Distance to Septic Field or other Concentrated Contamination: No Data

Distance to Property Line: **No Data** Method of Verification: **No Data** Approved by Variance: **No Data**

Surface Completion: Surface Slab Installed

Water Level: Static level: No Data

Artesian flow: No Data

Packers: Bentonite 26' - 28'

Plugging Info: Casing or Cement/Bentonite left in well: No Data

Type Of Pump: No Data
Well Tests: No Data

Water Quality: Type of Water: No Data

Depth of Strata: No Data

Chemical Analysis Made: No Data

Did the driller knowingly penetrate any strata which contained undesirable constituents: No Data

Certification Data: The driller certified that the driller drilled this well (or the well was drilled under the driller's direct

supervision) and that each and all of the statements herein are true and correct. The driller understood that failure to complete the required items will result in the log(s) being returned for

completion and resubmittal.

Company Best Drilling Services, Inc.

Information: P.O. Box 845

Well Report: Tracking #:196081 Page 2 of 2

Friendswood, TX 77549

Driller License

5036

Number:

Alfredo Palacios

Licensed Well Driller Signature:

Registered Driller

No Data

No Data

Apprentice Signature:

No Data

Apprentice Registration Number:

Comments:

IMPORTANT NOTICE FOR PERSONS HAVING WELLS DRILLED CONCERNING CONFIDENTIALITY

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to keep information in Well Reports confidential. The Department shall hold the contents of the well log confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner.

Please include the report's Tracking number (Tracking #196081) on your written request.

Texas Department of Licensing & Regulation P.O. Box 12157 Austin, TX 78711 (512) 463-7880

DESC. & COLOR OF FORMATION MATERIAL

CASING, BLANK PIPE & WELL SCREEN DATA

Type

Setting From/To

From (ft) To (ft) Description 0-14 CLAY

2 N SCH 40 PVC RISÉR 0/30 14-40 SAND

2 N SCH 40 PVC SCREEN 30/40 0.010

Dia. New/Used

ch2m:

Sampler Signature:

PROJECT NUMBER 684444.17.05.02

BORING NUMBER

MW-178

SHEET 1 OF 2

SOIL BORING LOG

PROJECT:	Silber Rd. Well Installation	LOCATION : Houston, TX	DATE: 4-10-2017	
WEATHER:	79° F, Cloudy	DRILLING CONTRACTOR Best Drilling		

DRILLING METHOD AND EQUIPMENT USED: Continuous Sampling/Hollow Stem Auger

	LEVELS :		26.11'		1330 on 4-10-2017 END : 0805 on 4-11-2	017 LOGGER : Shannon Boesch
	ELOW SUI		T)	STANDARD	CORE DESCRIPTION	COMMENTS
	INTERVA	L (FT)		PENETRATION		
		RECOVE		TEST	SOIL NAME, USCS GROUP SYMBOL, COLOR,	DEPTH OF CASING, DRILLING RATE,
			#/TYPE	RESULTS	MOISTURE CONTENT, RELATIVE DENSITY,	DRILLING FLUID LOSS,
				6"-6"-6"	OR CONSISTENCY, SOIL STRUCTURE,	TESTS, AND INSTRUMENTATION.
				(N)	MINERALOGY.	OVM (ppm): Breathing Zone Above Hole
					Silty to Sandy Clay (CL): dark brown with iron oxide staining, very fine grain,	
-					moderate plasticity, hard to very hard, no odor, dry.	
_					-	_ PID: 0-3' = 0.9 ppm
		100%				
_					-	-
-					-	-
5	5.0					PID: 3-5' = 0.9 ppm
<u> </u>	3.0				Sandy Clay to Clayey Sand (CL-SC):	
_					light tan with red orange iron oxide staining, low ot	_
					moderate plasticity, hard to very hard, dry, no odor,	
_					very fine grain.	_ PID: 5-7' = 1.2 ppm
		60%				
_					-	-
_					-	_ PID: 7-9' = 1.0 ppm
10	10.0					
10_	10.0				Clayey Sand (SC):	_
					tan to white with red iron oxide staining, low	PID: 9-11' = 1.8 ppm
-					plasticity, dry, very fine to fine grain, moderately	
_					compacted.	-
		70%				DID: 44 401 = 4.0 mmm
-					-	PID: 11-13' = 1.8 ppm
_					_	_
15	15.0					_ PID: 13-15' = 1.8 ppm
					Sand (SP):	
_					white to light tan, loose, poorly graded, dry, fine to medium grain, no odor, some iron oxide staining.	-
_						_ PID: 15-17' = 1.0 ppm
		10%				
-					-	-
l _						PID: 17-19' = No recovery
_						
20	20.0					-
					Sand (SP):	
-					same as above, but coarse to very coarse grain, poorly graded, no odor.	PID: 19-21' = 0.0 ppm
					poorty graded, no odor.	_
_		10%				1
_		1070			-	_ PID: 21-23' = No recovery
_					_]
25	25.0					_ PID: 23-25' = No recovery
					Sand (SP):	
-					tan, saturated, coarse to very coarse grain, poorly graded, no odor.	-
					graded, 110 oddr.	PID: 25-27' = 1.1 ppm
1 -		100/] "
-		10%			-	- -
						PID: 27-29' = No recovery
-					-	_
30	30.0					
	•		•	•		

Page 1 of 2

Date:

ch2m:

PROJECT NUMBER 684444.17.05.02

BORING NUMBER MW-178

SHEET 2 OF 2

SOIL BORING LOG

PROJECT :	Silber Rd. Well Installation	LOCATION: Houston, TX	DATE: 4-10-2017

WEATHER: 79° F, Cloudy DRILLING CONTRACTOF Best Drilling

DRILLING METHOD AND EQUIPMENT USED: Continuous Sampling/Hollow Stem Auger

WATER LEVELS 26.11' START: 1330 on 4-10-2017 END: 0805 on 4-11-2017 LOGGER: Shannon Boesch

DEPTH BELOW SURFACE (FT) STANDARD CORE DESCRIPTION COMMENTS

WATER	LEVELS		26.11'	START :	: 1330 on 4-10-2017	END: 0805 on 4-11-20	LOGGER: Shannon Boesch
DEPTH B	ELOW SU	RFACE (F	T)	STANDARD	CORE DE	SCRIPTION	COMMENTS
	INTERVA	L (FT)		PENETRATION			
		RECOVE		TEST	SOIL NAME, USCS GRO	UP SYMBOL, COLOR,	DEPTH OF CASING, DRILLING RATE,
			#/TYPE	RESULTS	MOISTURE CONTENT, F	RELATIVE DENSITY,	DRILLING FLUID LOSS,
				6"-6"-6"-6"	OR CONSISTENCY, SOI	L STRUCTURE,	TESTS, AND INSTRUMENTATION.
				(N)	MINERALOGY.		OVM (ppm): Breathing Zone Above Hole
					Sand (SW):		
_					tan, saturated to ~31' bgs		PID: 29-31' = 0.9 ppm
					damp with depth, mediur		
_					well graded, loose to sligh	lly compacted, no odor	-
		60%					PID: 31-33' = 1.2 ppm
_						_	_
_						-	-
35	35.0						DID: 00 OFL. No
	35.0				Cond (CM).		PID: 33-35' = No recovery
					Sand (SW):		
_					No Recovery, flo	owing sands. –	-
						_	PID: 35-37' = No recovery
		0%					
_		070				-	-
							PID: 37-39' = No recovery
_						-	
40	40.0						
					Sand (SW):		
_					No Recovery, fl	owing sands.	PID: 39-41' = No recovery
_						-	-
		0%					PID: 41-43' = No recovery
_						-	
_						_	_
45	45.0						DID 40 451 N
45	45.0				Bottom of boring at 45		PID: 43-45' = No recovery
					Bottom of boning at 10	- bg0 011 1/1 1/20 1/	_
_						-	-
_						_	_
_						-	-
_							_
_						-	-
_						_	_
-						-	-
_						_	_
							_
-						-	-
_						_	_
_						-	-
_						_	_

Sampler Signature: Date:

PROJECT NUMBER:	BORING NUMBER:				
684444	MW-179	SHEET	1	OF	2

PROJECT : Silber Road, Houston TX	LOCATION:
ELEVATION:	DRILLING CONTRACTOR : Best Drilling Services

	: 34.0 ft bgs		START : 11/27/17 12:10	END : 11/27/1	7 13:40	LOGG	SER : Gavin Wagoner			
DEPTH BELOW E	XISTING GRA	DE (ft)	SOIL DESCRIPTION	ဗ္ဂ						
INTERV	AL (ft)			20	(E					
	RECOVERY	(ft)	SOIL NAME, USCS GROUP SYMBOL, COI MOISTURE CONTENT, RELATIVE DENSIT	LOR, Y OR	PID (ppm)	COMMENTS	WELL DIAGRAM			
		SAMPLE ID	CONSISTENCY, SOIL STRUCTURE, MINERA	LOR, Y OR ALOGY	II.					
5 _ 5.0	1.0		Well Graded Gravel (GW) gravel fill, dry, max 0.5 inch diameter clasts Silt (ML) yellowish brown, (10YR 5/4), stiff, dry, no odd Lean Clay (CL)	-	N/A N/A 0.0		2'x2' well pad with flush mount			
10 10.0	5.0		very pale brown, (10YR 7/4), very stiff, dry, m calcarous noduals and ferrous staining, mino sand	ninor - r silt and - - - - - - -	0.0		-			
15 15.0	5.0			- - - - - - - - - -	0.0					
20 20.0	4.0		Silty Sand (SM) very pale brown, (10YR 7/3), dense, dry, no calcarous noduals, minor ferrous staining. Or 25 feet drilling very difficult with steam comin string.	ver 20 to	0.0		Schedule 4 PVC riser pipe			
25 25.0	1.0				0.0					
30	3.0		Well Graded Sand (SW) very pale brown, (10YR 7/4), loose, dry, mind no odor. Water at 34'. Flowing sand below we Very hard sandstone section at 38'	or clay,	0.0					

PROJECT NUMBER:	BORING NUMBER:				
684444	MW-179	SHEET	2	OF	2

PROJECT : Silber Road, Houston TX	LOCATION:
ELEVATION:	DRILLING CONTRACTOR : Best Drilling Services

		: 34.0 ft b		START : 11/27/17 12:10	END : 11/2	1	13:40	LOGG	ER : Gavir	n Wagoner
PTH B		(ISTING G	RADE (ft)	SOIL DESCRIPTION		.0G				
	INTERVA			SOIL NAME LISCS GROUP SYMPOL O	OLOR	SYMBOLLIC LOG	PID (ppm)		\A/E1 !	_ DIAGRAM
		RECOVE		SOIL NAME, USCS GROUP SYMBOL, C MOISTURE CONTENT, RELATIVE DENS	SITY OR	BOLI	a) Q	COMMENTS	VVELI	- DIAGRAM
			SAMPLE ID	CONSISTENCY, SOIL STRUCTURE, MINE	RALOGY	SYM				
	30.0			Well Graded Sand (SW)	_				8 8	
-				Same as 25-30	-		0.0			
					_		0.0			Bentonit
-		3.5			-					Seal
_ 1					-		0.0			
abla					-					Silica fili
5	35.0				_					pack
-					-		0.0			
1					-					
-					-		0.0			
1		5.0			_					
-					-					
$\begin{bmatrix} 1 \end{bmatrix}$	40.0				_		0.0			
0_	40.0									0.010 slotted
1					_					screen v
4					-		0.0			endcap
1		4.0			-					
-					-		0.0			
					_					
5	45.0				-					
				Bottom of Boring at 45.0 ft bgs on 11/27/20	117 _		0.0		, , , , ,	
					-	1				
					_					
					-					
					=					
					-					
					_	4				
					-	1				
					-	-				
					-	1				
					=	-				
					=	1				
					-	-				
					-	ł				
					-	1				
					-	-				
					-	1				
					-	1				
				1						

PROJECT NUMBER:	BORING NUMBER:				
684444	MW-180	SHEET	1	OF	2

PROJECT : Silber Road, Houston TX	LOCATION:
ELEVATION:	DRILLING CONTRACTOR: Boot Drilling Sorvings

DEPTH BELOW E	EXISTING GRA	ADE (ft)	SOIL DESCRIPTION	(D			
LINITED				ŏ			i
INTER	INTERVAL (ft)				Q (E		
	RECOVER	Y (ft)	SOIL NAME, USCS GROUP SYMBOL, CO MOISTURE CONTENT, RELATIVE DENSI	TY OR	<u>id</u>)	COMMENTS	WELL DIAGRAM
		SAMPLE ID	CONSISTENCY, SOIL STRUCTURE, MINER	RALOGY &	□		
5 _ 5.0 10 _ 10.0 - 15 _ 15.0 20 _ 20.0 25 _ 25.0	2.0		MOISTURE CONTENT, RELATIVE DENSI CONSISTENCY, SOIL STRUCTURE, MINEF Lean Clay (CL) brown, (10YR 5/3), very stiff, dry, non plastic sandy units and minor woody debre. Top 6" pieces. Lean Clay (CL) light gray, (10YR 7/2), medium stiff, dry, bed moderate sand, minor roots Poorly Graded Sand (SP) very pale brown, (10YR 7/4), loose, dry, no of the content of the con	TY OR RALOGY c, minor fill metal dding,	0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.1		4'x4' cemer well pad with flush mount Schedule 4 PVC riser pipe
▼ =	3.0		Water at 27'	, wet	0.0		Bentonite seal

PROJECT NUMBER:	BORING NUMBER:				
684444	MW-180	SHEET	2 (OF	2

PROJECT : Silber Road, Houston TX	LOCATION:
FI EVATION:	DRILLING CONTRACTOR: Best Drilling Services

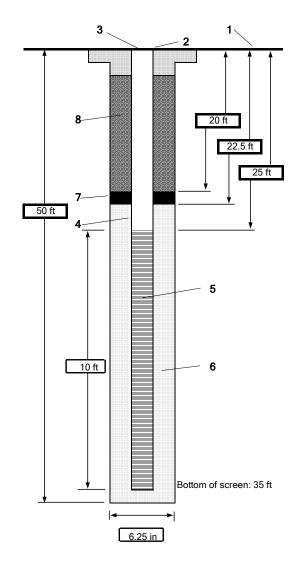
WATER LEVELS			START : 11/27/17 07:45	END : 11/2	7/17	09:00	LOGG	ER : Gavin Wagoner
DEPTH BELOW EX		ADE (ft)	SOIL DESCRIPTION		90			
INTERVAL (ft) RECOVERY (ft)			SOIL NAME LISCS GROUP SYMBOL COLOR		JC LC		COMMENTS.	WELL DIAGRAM
	RECOVER		SOIL DESCRIPTION SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY (E) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C			WELL DIAGRAM		
		SAMPLE ID	CONSISTENCY, SOIL STRUCTURE, MINE	RALOGY	SYMI	_		
35 35.0	5.0	SAMPLE ID	Well Graded Sand (SW) very pale brown, (10YR 6/4), medium dens flowing sand Bottom of Boring at 40.0 ft bgs on 11/27/20	e, wet,		0.0 0.0 0.1 0.0 0.0		0.010 slotted screen with endcap

Well Completion Diagrams

PROJECT NUMBER D3542628

WELL NUMBER MW-181

SHEET 1 OF 1


WELL COMPLETION DIAGRAM

PROJECT : Silber Rd Pre-Design LOCATION: Houston, Texas

DRILLING CONTRACTOR: Best Drilling

DRILLING METHOD AND EQUIPMENT USED : CME Hollow Stem Auger

WATER LEVELS: 17.10 END: 05/16/2022 1740 LOGGER: D. Rowan START: 05/16/2022 1610

1- Ground elevation at well

TBD

2- Top of casing elevation a) vent hole?

TBD N/A

3- Wellhead protection cover type Traffic rated 6-inch steel manway

a) weep hole?

N/A

b) concrete pad dimensions

2-inch Schedule 40 PVC

2 ft x 2 ft x 6 in

4- Dia./type of well riser

5- Type/slot size of screen

2-inch Schedule 40 PVC 10 ft 0.010-inch factory slot

6- Type screen filter a) Quantity used

20/40 Silica Sand

3.5 x 50lb bags (175 lb)

7- Type of seal a) Quantity used

8- Grout

3/8" Bentonite Chip Hole Plug 1.5 x 50lb bags (75 lb)

a) Grout mix used

High Solids Bentonite Portland Cement

Grout

b) Method of placement c) Vol. of well casing grout

Tremie 85 gallons

Development method

Pump and Surge

Development time

1 hour

Estimated purge volume

55 gallons

Boring advanced to 50 ft bgs with natural collapse and filter pack sand

to 35 ft bgs

Leaend:

bgs - below ground surface

Dia. - diameter

N/A - not applicable

ft - feet

MW - monitoring well PVC - polyvinyl chloride

in - inch

TBD - to be determined

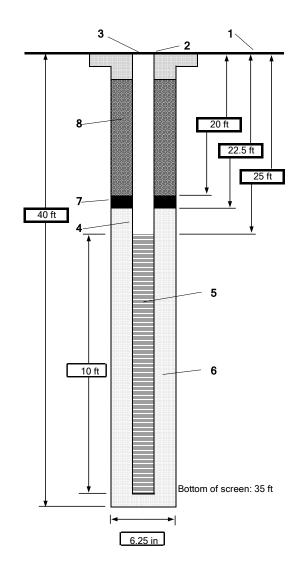
lb - pound

Vol. - volume

PROJECT NUMBER D3542628

WELL NUMBER MW-182

SHEET 1 OF 1


WELL COMPLETION DIAGRAM

PROJECT : Silber Rd Pre-Design LOCATION : Houston, Texas

DRILLING CONTRACTOR: Best Drilling

DRILLING METHOD AND EQUIPMENT USED : CME Hollow Stem Auger

WATER LEVELS: 18.25 START: 05/17/2022 0930 END: 05/17/2022 1100 LOGGER: D. Rowan

1- Ground elevation at well TB

TBD

2- Top of casing elevation a) vent hole?

TBD N/A

3- Wellhead protection cover type Traffic rated 6-inch steel manway

a) weep hole?

N/A

b) concrete pad dimensions 2 ft x 2 ft x 6 in

4- Dia./type of well riser 2-inch Schedule 40 PVC

5- Type/slot size of screen

2-inch Schedule 40 PVC

10 ft 0.010-inch factory slot

6- Type screen filter
a) Quantity used

20/40 Silica Sand 3.5 x 50lb bags (175 lb)

7- Type of seal a) Quantity used

15x

3/8" Bentonite Chip Hole Plug 1.5 x 50lb bags (75 lb)

8- Grout

a) Grout mix used

High Solids Bentonite Portland Cement

Grout

b) Method of placementc) Vol. of well casing grout

Tremie 80 gallons

, 33

Pump and Surge

Development method

Development time

Development unic

1 hour

Estimated purge volume

55 gallons

Comments

Boring advanced to 40 ft bgs with natural collapse to 35 ft bgs

Legend:

bgs - below ground surface

Dia. - diameter ft - feet in - inch lb - pound

MW - monitoring well N/A - not applicable

PVC - polyvinyl chloride TBD - to be determined

Vol. - volume

Appendix 3 Studies and Tests Documentation

2022 Groundwater Modeling, Former Cameron Iron Works Facility, Houston, Texas

PREPARED FOR Cameron International Corporation
PREPARED BY: CH2M HILL Engineers, Inc. (CH2M)

DATE: September 20, 2022

1.0 Introduction

This groundwater modeling technical memorandum presents the results of the updated groundwater flow and transport modeling performed for the Former Cameron Iron Works facility (site) located on Silber Road, northwest of the highway interchange of the Interstate (I-) 10 and I-610 in Houston, Texas (Figure 1-1). The technical memorandum is prepared in response to the Texas Commission on Environmental Quality (TCEQ) comment letter dated August 31, 2021 (TCEQ 2021), to update the 2017 groundwater model by including chemicals of concerns (COCs), such as tetrachloroethene (PCE), trichloroethene (TCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride.

1.1 Background

Constructed in the 1940s, the facility operated through the 1980s included metal forging and product manufacturing for the oilfield industry. The site features were demolished in 1999. An entertainment and shopping complex was constructed on most of the site property. Past operations led to the release of chlorinated volatile organic compounds into shallow groundwater. In 2001, routine groundwater monitoring to the south of I-10 indicated that the plume had migrated beyond the former site boundary. Between 2003 and 2016, site groundwater response actions were conducted, which included in situ chemical oxidation using permanganate at multiple areas, operation of the North and South Treatment Systems, and monitored natural attenuation.

In 2017, CH2M developed groundwater flow and transport models to evaluate the benefit of continued operation of the North and South Treatment Systems to reduce the remediation timeframe for groundwater and mitigate possible environmental impacts on surface water bodies (CH2M 2017). The two groundwater treatment systems located onsite and offsite were shut off to begin a rebound study in November 2016. The 2017 groundwater modeling evaluation focused on 1,1-DCE, the primary risk driver with the greatest concentrations and largest plume extent. Results of the 2017 modeling indicated that continued operation of the North and South Treatment Systems did not provide a significant advantage over natural attenuation alone. In 2021, the South Treatment System was decommissioned as requested by the property owner and with TCEQ's approval, leaving only the North Treatment System in place.

To address TCEQ's comments dated January 24, 2022 (TCEQ 2022), the groundwater models originally prepared in 2017 have been updated to include the analysis of additional COCs, including, PCE, TCE, 1,1-DCE, and vinyl chloride.

1.2 Modeling Objectives

The modeling objectives are as follows:

- Estimate the remediation timeframe for the site under monitored natural attenuation (MNA) only (that is, decommissioning the North Treatment System); and MNA with continued operation of the North Treatment System.
- Evaluate the possible benefit of operating the North Treatment System to reduce the remediation timeframe.
- Evaluate possible future COC concentrations that might enter nearby surface water bodies.
- Evaluate increased risk to surface water bodies that might arise from ceasing operations at the North Treatment System.

1.3 Model Function

The numerical groundwater model was developed and updated with consideration of the availability and reliability of input data to fulfill the modeling objectives. This three-dimensional (3D) model was set up to simulate steady-state groundwater flow, along with the transport of 1,1-DCE, vinyl chloride, PCE, and TCE through the steady-state groundwater flow field. The groundwater flow regime in the study area has remained relatively stable. Hydraulic boundary conditions and hydraulic calibration targets were based on site monitoring data collected in 2021.

Transport simulations included advection, adsorption, mechanical dispersion, matrix diffusion, and degradation processes. The transport formulation conceptualizes the subsurface with a mobile domain (where advection is the dominant transport process) and an immobile domain that serves as a mass storage zone (where slow advection and diffusion are the more dominant transport processes). A 10-year transport simulation period was implemented for quasi-calibration, and a 100-year transport simulation period was implemented for the projection simulations to help achieve the modeling objectives (Section 1.2).

The model is georeferenced horizontally to the North American Datum of 1983 State Plane Texas South Central system and vertically to the North American Vertical Datum of 1988 (NAVD88).

1.4 Model Assumptions and Limitations

The numerical groundwater models described herein include the following assumptions and limitations:

- Modeling the subsurface in the study area as an equivalent porous medium is valid.
- Modeling groundwater in the study area as a single-density fluid is valid.
- Changes in COC concentrations do not affect groundwater flow in the study area.
- Conceptual errors associated with boundary conditions assigned along the model perimeter and bottom are negligible.
- It is possible that specific subsurface features that act as barriers or conduits to groundwater flow have not been explicitly represented.

Numerical groundwater models can only approximate subsurface processes, despite their high degree of precision. A major cause of uncertainty in these types of models is the discrepancy between the coverage of measurements needed to fully understand subsurface conditions and the coverage of measurements generally made under the constraints of limited time and budget (Rojstaczer 1994).

This technical memorandum contains forward-looking information, also known as projections. Forward-looking information includes statements related to activities, events, or conditions that could potentially occur in the future. Forward-looking information is based on several factors and assumptions that were

considered reasonable at the time this technical memorandum was written. Decisions made using forward-looking information are subject to known and unknown risks associated with uncertainties. Actual future conditions could be different from those projected or implied by the forward-looking information presented herein.

Given these assumptions and limitations, although useful to support site decisions, numerical groundwater models should be considered insight tools and qualitative predictors of future conditions. Therefore, important planning decisions that are informed by output from the groundwater model must be made with an understanding of the uncertainty in, and sensitivity to, model input parameters and should consider other site data, professional judgment, and inclusion of safety factors. Additionally, decisions made based on output from this model should be reevaluated as site conditions change, as new data become available, and as the knowledge of subsurface conditions evolves.

2.0 Conceptual Model Overview

2.1 Site Information

The site is a historical manufacturing facility. Past operations conducted at the site included machining metals, degreasing, and lubricating parts. The manufacturing facility was decommissioned in the 1980s. The site is currently used as a commercial area for shopping, dining, and entertainment. Surrounding land use is mixed commercial and residential (CH2M 2022).

The Response Action Plan (RAP) (Environmental Resources Management [ERM] 2003a) established an onsite plume management zone in conjunction with the operation of a groundwater pump-and-treat system known as the North Treatment System in September 2003 (Figure 2-1). The North Treatment System consists of six extraction wells and nine injection wells.

After the 2009 RAP Addendum was approved (ERM 2009), the South Treatment System was installed to establish hydraulic control of the offsite leading-edge plume south of I-10 (Figure 2-1). The South Treatment System consisted of five extraction wells.

The North and South Treatment Systems were shut off in 2016, as approved by TCEQ in 2016. The South Treatment System and associated extraction wells were decommissioned in November 2021 (CH2M 2022).

2.2 Climate

The climate of the Gulf Coast region is subtropical and influenced primarily by the Gulf of Mexico. Winters are mild and summers are hot, with high humidity in the northeast and semi-arid to arid conditions in the southwest. Average annual precipitation ranges from 28 inches in the southwest to 58 inches in the northeast. In the Houston area where the site is located, the average annual precipitation is 50 to 55 inches, whereas the annual evaporation is approximately 45 to 55 inches (Texas Water Development Board [TWDB] 2006). Annual precipitation for Houston, Texas, from 1991 through 2020 averages 51.8 inches per year (in/yr).¹

2.3 Regional Hydrogeology

The site is located within the Western Gulf geomorphic province of the Gulf Coast Aquifer. The Gulf Coast Aquifer has been divided into four units as follows from bottom to top: (1) the Catahoula confining system, (2) the Jasper aquifer, (3) the Evangeline aquifer, and (4) the Chicot aquifer. The Chicot aquifer is made up of the Willis Sand, the Bentley and Montgomery formations, the Beaumont Clay, and alluvial deposits at the surface (TWDB 2006). Affected groundwater beneath the site occurs within the

¹ https://www.weather.gov/hgx/climate_iah_normals_summary (Accessed April 28, 2022)

Beaumont Clay, which consists of thinly interbedded clays and silts with local lenses of fine-grained sand originating from the late Pleistocene Epoch interdistributary fluvial delta deposit (ERM 2003a).

2.4 Local Hydrogeology

The stratigraphy of the affected aquifer in the study area has been characterized into three strata: Stratum I, II, and III. These are displayed on the cross sections from the RAP (ERM 2003a) provided as Figures 2-2a through 2-2d. Stratum I is a firm to hard, cohesive, moist, clay and sandy silty clay unit. Stratum II is the uppermost water-bearing zone where COCs are present. It consists of sand, clayey sand, and silty sand with a saturated thickness up to 30 feet. Stratum III consists of clays with silty sand layers. Stratum III serves as a barrier to the vertical migration of affected groundwater with a thickness of at least 50 feet (ERM 2003b).

Groundwater elevation data collected at the site since 1991 have consistently suggested that groundwater flow is generally from north to south within the study area.

Aquifer testing conducted at 15 site monitor wells in the central and southern portions of the site included both long-term, constant-rate pumping and short-term step-drawdown tests. Hydraulic conductivity values calculated from the testing averaged approximately 22 feet per day (7.8×10-3 centimeters per second [cm/s]) with a maximum value of approximately 70 feet per day (2.5×10-2 cm/s) (ERM 2001). Groundwater seepage velocity was estimated to range from 45 feet to 150 feet per year (ERM 2001).

2.5 Hydrology

There are several surface water bodies in the study area interacting with the affected aquifer. Buffalo Bayou is located at the southern boundary of the study area (Figure 2-1). It is primarily a gaining stream that intersects the uppermost water-bearing zone (Stratum II) and has incised several feet into the underlying clay (Stratum III). The Harris County Flood Control Ditch (HCFCD) is oriented in a north-south direction and also gains water along portions of its path (Figure 2-1). HCFCD transects the uppermost water-bearing zone (Stratum II) within the southern 1,300 feet before the confluence with Buffalo Bayou (ERM 2003b).

In addition, the Texas Department of Transportation (TxDOT) operates several dewatering systems, including one located near the I-610/I-10 interchange. These dewatering systems serve as groundwater sinks and may have influenced the distribution of site-related COCs (ERM 2016).

2.6 Groundwater Quality

As previously mentioned, COCs for this modeling effort include 1,1-DCE, PCE, TCE, and vinyl chloride. Although anerobic degradation products, such as vinyl chloride and cis-1,2-dichloroethene (cis-1,2-DCE), are also detected, their associated plumes are smaller with generally lower concentrations, indicating degradation is occurring at the site. However, the site condition is aerobic, as evidenced by the high dissolved oxygen (minimum value of 2.12 milligrams per liter with an average of 2.93 milligrams per liter) and oxidation-reduction potential values (minimum value of 23.6 millivolts with average of 157 millivolts) (CH2M 2022). The latter suggests that substantial anaerobic degradation is not likely occurring.

3.0 Groundwater Flow Model Construction

The following subsections describe the methodology used to construct and update the groundwater flow model.

3.1 Code Selection

The MODFLOW-SURFACT code (HydroGeoLogic Inc. [HGL] 2011) was selected for this effort in conjunction with the Groundwater Vistas Version 8 (Environmental Simulations Incorporated 2021) pre-

and post-processing software package. MODFLOW-SURFACT is a powerful, 3D, finite-difference flow and transport modeling code for analyzing subsurface systems. It offers advanced features over public-domain versions of MODFLOW, addressing issues such as drained cell rewetting, pumping wells handling, and numerical dispersion and oscillations often encountered during transport simulations.

3.2 Model Domain

The model domain remained unchanged from the 2017 modeling. The active model domain is a rectangular area with dimensions of 11,000 feet by 15,000 feet, considerably larger than the site (Figure 3-1). The model has four model layers, with Model Layer 1 including the unsaturated Stratum I and the water-bearing Stratum II, and Model Layers 2 and 3 representing Stratum III. The regional Chicot aquifer is represented by Model Layer 4.

The model bottom elevations were assigned based on examination of the available lithologic logs and cross sections (Figures 2-2a to 2-2d). Model Layer 1 has a thickness of approximately 45 feet with top elevations based on U.S. Geological Survey (USGS) digital elevation model data for the study area. Model Layer 2 has a thickness of 60 to 80 feet, and Model Layer 3 has a uniform thickness of 80 feet. Model Layers 2 and 3 have a combined thickness of 140 feet to 160 feet. Model Layer 4, representing the regional Chicot aquifer, has a uniform thickness of 470 feet estimated from the numerical flow model for the Gulf Coast Aquifer System developed by USGS (Kasmarek 2012). The model domain is laterally discretized into uniform grid cells of 50 feet by 50 feet, resulting in 220 by 330 (that is, 66,000) cells per model layer.

3.3 Subsurface Hydraulic Properties

The subsurface flow parameters required by steady-state 3D groundwater flow models include horizontal hydraulic conductivity (K_h) and vertical hydraulic conductivity (K_v). Model Layer 1 was initially assigned a constant K_h of 21.8 feet per day (7.7 × 10-3 cm/s), which is the previously reported average K_h value estimated from aquifer testing. The final distribution of K_h in Model Layer 1 was determined through model calibration, as described in Section 4.

Model Layers 2 and 3 represent aquitard materials with a constant K_h of 0.001 foot per day (3.5 × 10-7 cm/s), which was also determined through model calibration to match the observed groundwater level at DW-02, the only deep monitoring well at the site with historical water level measurements (Figure 2-2a). Model Layer 4 had a constant K_h of 25 feet per day (8.8 × 10-3 cm/s) calculated from the transmissivity values used in the USGS model (Kasmarek 2012). The K_v values were computed based on an initially assumed vertical anisotropy (that is, ratio of K_h to K_v) of 100 to 1.

3.4 Boundary Conditions for Groundwater Flow

The boundary conditions for the groundwater flow model were chosen based on the understanding of available hydrologic data and groundwater flow conditions at the site. The eastern and western model boundaries were oriented parallel to the general groundwater flow direction and were implemented as no-flow boundaries. The upgradient (northern) and downgradient (southern) boundaries were aligned perpendicular to the general groundwater flow direction and were implemented as specified-head boundaries. The model bottom is also implemented as a no-flow boundary. The initial head values associated with these specified-head boundaries were established by extrapolating the 2015 groundwater-level contours as part of the 2017 modeling effort. The final specified-head values were determined through model calibration, as described in Section 4.

Buffalo Bayou is implemented as a river boundary, which is a two-way, head-dependent flux boundary condition. The gaining portion of the HCFCD was implemented as a drain boundary. The TxDOT dewatering systems were also implemented as drains. The bayou stage and drain-bottom elevations were estimated by using the USGS digital elevation model, which has a 2-foot resolution.

A specified-flux boundary representing areal groundwater recharge was assigned at each cell in Model Layer 1 not already assigned a different boundary condition. The model uses 20 recharge zones with constant recharge rates ranging from 1 to 2 in/yr, based on a study published by TWDB (TWDB 2011). The recharge values were finalized through model calibration, as described in Section 4.

3.5 Time Discretization for Groundwater Flow

Numerical models describe the field problem at discrete time intervals. This flow model was designed to simulate a steady-state flow condition. As such, the hydraulics associated with the modeled groundwater flow system do not change through time. To complete the simulations as efficiently as possible, the adaptive time-stepping and output control (ATO) package of MODFLOW-SURFACT was employed. The ATO package allows input of minimum and maximum time-step durations and automatically selects a time-step duration between these values to efficiently achieve a mass-conserved mathematical solution while minimizing model run times.

4.0 Groundwater Flow Model Calibration

4.1 Calibration Targets

The groundwater flow model was calibrated under steady-state flow condition by using the measured heads at 39 site monitoring wells in December 2021 (Figure 4-1) as quantitative calibration targets. Calibration summary statistics were computed to provide a quantitative measure of the flow model's ability to replicate target head values. Head calibration was evaluated by using the following summary statistics:

- Residual, computed as the simulated head value minus the target head value
- Mean residual (MR), computed as the sum of all residuals divided by the number of observations
- Coefficient of determination (R2), computed as the square of the correlation coefficient
- Root mean squared residual (RMSR), computed as the square root of the mean of all squared residuals
- RMSR divided by the range of target head values (RMSR/Range)

During the quantitative calibration, CH2M implemented the following goals:

- Minimize spatial bias of residual errors in key areas of the domain.
- Minimize residual, MR, RMSR, and RMSR/Range values.
- Maintain R2 values as close to 1 as possible.

Figure 4-1 depicts the locations of the calibration targets selected for this effort.

4.2 Calibration Process

CH2M implemented an approach that combined both manual and autocalibration techniques to achieve sufficient, effective calibration. Calibration model parameters included K_h , groundwater recharge, and specified heads along the northern and southern boundaries. The K_v values were "tied" to the K_h values by using a vertical anisotropy (that is, K_h to K_v ratio) of 100 to 1 during calibration.

Calibration was facilitated by using the automated parameter estimation package, PEST, a widely used, model-independent parameter optimizer (Doherty 2021a, 2021b). The pilot point approach provided by PEST was used to facilitate the calibration of a heterogeneous K_h field for Model Layer 1. Additionally, the K_h values for Model Layer 1 were constrained to 0.1 to 100 feet per day (3.5 × 10⁻⁵ to 3.5 × 10⁻² cm/s) during calibration, which is a range established based on the hydraulic conductivity values derived from aquifer testing (ERM 2001).

Groundwater recharge rates for the 20 recharge zones were allowed to vary from 1 to 2 in/yr, and the specified heads were allowed to vary from 48 to 60 feet North American Vertical Datum 88 (NAVD88) along the northern boundary and from 15 to 35 feet NAVD88 along the southern boundary. Both the groundwater recharge and the specified heads were ultimately estimated through PEST calibration.

4.3 Calibration Results

Figure 4-1 shows the target well locations. Table 4-1 and Figures 4-2 and 4-3 provide summary statistics and plots characterizing the match between modeled and target heads. Data presented on Figure 4-2 indicate good agreement between modeled and target heads. Because the points fall above, below, and close to the 1:1 correlation line, global bias in modeled heads is not evident from Figure 4-2. The summary statistics associated with the residuals are as follows:

- MR = 0.12 foot
- RMSR = 0.45 foot
- Range = 24.77 feet
- RMSR/Range = 1.82 percent
- R2 = 1.00
- Number of measurements = 39

Table 4-1 summarizes the residuals for the flow model calibration. The RMSR/Range of 1.8 percent is much less than the "industry standard" of 10 percent for an acceptable calibration (Spitz and Moreno 1996).

Figure 4-3 presents a map of head residuals. This map aids in identifying whether spatial bias is present in the head residual. Such bias would be revealed by clusters of wells in which larger residuals occur. As Figure 4-3 shows, there is no obvious spatial bias in the modeled heads, and most residuals are within ± 0.5 foot.

Figure 4-4 shows the distributions of calibrated K_h in Model Layer 1, ranging from 0.1 to 93.2 feet per day (3.5 × 10-5 to 3.3 × 10-2 cm/s) with an arithmetic mean value of 26.6 feet per day (9.4 × 10^{-3} cm/s), comparable to K_h values derived from pumping tests. The calibrated K_h value for Model Layers 2 and 3 was 0.001 foot per day (3.5 × 10^{-7} cm/s). The K_h value for Model Layer 4 was held at a constant of 25 feet per day (8.8 × 10^{-3} cm/s) during calibration. The vertical anisotropy of 100 to 1 was maintained during model calibration.

Figure 4-5 shows the calibrated groundwater recharge values, which had a narrow range of 1 to 1.57 in/yr with an average value of 1.39 in/yr, representing about 2 to 3 percent of the average annual precipitation (Section 2.2). The distribution of the calibrated recharge values is consistent with the land uses, with smaller recharges in the residential and commercial areas and larger values in the vegetated area in the southeastern corner of the study area.

Table 4-2 summarizes the groundwater balance for Model Layer 1 (Stratum I and Stratum II) simulated by the calibrated model. The groundwater balance focuses on these strata because they are the relevant strata for the modeling objectives (Section 1.2).

The largest groundwater inflow and outflow components in Model Layer 1 are the recharge from precipitation and groundwater discharge to Buffalo Bayou, respectively. The magnitudes of flows for the groundwater balance components in Table 4-2 seem reasonable (that is, dozens to low hundreds of gallons per minute [gpm]) for the subsurface materials present beneath the urban landscape near the site.

5.0 Solute Transport Modeling Setup

This section describes the development of solute transport models and the evaluation of transport parameters.

5.1 Solute Transport Modeling Approach

The solute transport modeling included four COCs: 1,1-DCE, PCE, TCE, and vinyl chloride. Modeling excluded cis-1,2-DCE because it is currently less than the critical protective concentration level (cPCL) of 70 micrograms per liter (μ g/L) throughout the site (CH2M 2022). For each of the four COCs, a solute transport model was constructed by expanding the calibrated groundwater flow model to include key transport processes, including advection, adsorption, mechanical dispersion, matrix diffusion, and degradation. Because of the limited degree of anerobic degradation, it was difficult to quantify the relationships among the different COCs via a reactive degradation pathway. As such, chemical reactions among the COCs were not simulated, and degradation of each COC was evaluated independently.

The transport models were first quasi-calibrated using COC concentration data collected between May 2013 and December 2021. For this application, *quasi-calibrated* means that the transport models did not undergo a rigorous exercise comparing COC concentrations at individual wells against modeled results over time. However, adjustments to transport parameters were made to improve consistency between the modeled and detected COC concentration trends since 2013. The K_h and K_v values from flow calibration remained unchanged. The purpose of the quasi-calibration was to arrive at a set of transport parameters that are reasonable for site conditions. Unlike the flow model calibration, which was quantitatively evaluated using a set of calibration criteria, quasi-calibration of the transport models was qualitatively evaluated by visual inspection of the matches between the measured and modeled COC chemographs, starting in 2013.

The first-order degradation half-lives were further evaluated as part of the projection simulations (refer to Section 6). This is because the short duration of the quasi-calibration period does not permit full assessment of the influence of degradation half-lives on modeled COC concentrations since 2013.

5.2 Subsurface Transport Modeling Properties

The transport modeling employed a dual-porosity formulation to simulate the matrix-diffusion process. The dual-porosity model uses several transport properties or parameters to mathematically describe matrix diffusion, including total porosity, fraction of mobile porosity, and mass transfer coefficient between the mobile and immobile domains. Other transport parameters included dispersivity, sorption coefficient, and first-order degradation half-life.

5.2.1 Porosity

Total porosity (θ_t) is the ratio of the entire pore space in a transport medium to its bulk volume. In a dual-porosity model, the total flow domain is partitioned into a mobile and an immobile domain, with a mobile porosity (θ_m) for the mobile domain and an immobile porosity (θ_{im}) for the immobile domain. Advection occurs only in the mobile domain while chemicals enter and exit the immobile domain by matrix diffusion. θ_m and θ_{im} are related to θ_t through the fraction of mobile porosity (Φ) as follows:

$$\theta_{\rm m} = \theta_{\rm t} \times \Phi \tag{1}$$

$$\theta_{im} = \theta_t \times (1 - \Phi) \tag{2}$$

The initial values used for the porosity terms were 0.40 for θ_t , 0.25 for Φ , 0.10 for θ_m , and 0.30 for θ_{im} , based on professional judgment for literature values (Freeze and Cherry 1979).

5.2.2 Mass Transfer Coefficient

The mass transfer coefficient (γ) quantifies the rate of diffusive flux between the mobile and the immobile domains at each model cell at each time step. When an advecting solute undergoes first-order mass transfer between the mobile and immobile domains, the reciprocal of the mass transfer coefficient provides an approximation of the mean residence time of the solute in the immobile storage zone. Assuming the COC plumes were created prior to the 1980s, at least 40 years or on the order of 15,000 days ago, a rough estimate for the mass transfer coefficient is 7.0×10^{-5} per day (d^{-1}) (that is,

 $1 \div 15,000$). The initial value for the mass transfer coefficient was set at $1.0 \times 10^{-5} \, d^{-1}$ and was allowed to go as high as $1.0 \times 10^{-4} \, d^{-1}$ during quasi-calibration.

5.2.3 Dispersivity

Dispersivity is a transport parameter used to quantify the mechanical dispersion process during transport. The mechanical dispersion is a measure of the spread and mixing of chemical mass as it moves through the tortuous subsurface pathways. MODFLOW-SURFACT incorporates longitudinal (D_L), transverse (D_T), and vertical dispersivity (D_V) to describe the mechanical dispersion. D_L was chosen based on the length of the 1,1-DCE plume of approximately 8,000 feet, or 2,438 meters, using the following formula (Xu and Eckstein 1995; Al-Suwaiyan 1996):

$$D_{L} = 0.82 \times (\log_{10} [L])^{2.446}$$
 (3)

Where L is the plume length in meters.

 D_L value of approximately 15.24 meters (or 50 feet) was estimated using Equation (3), which was regarded as a maximum value for a dual-porosity transport model. The initial value D_L value was set at 10 feet; initial D_T was set at 1 foot, according to a ratio of D_L : D_T = 10:1; initial D_V was set at 0.1 foot, according to a ratio of D_L : D_V = 100:1. A D_L value of 10 feet, as opposed to 50 feet, was assigned based on experience applying dual-porosity transport models at other sites. This experience has shown that including the mass transfer process with the dual-porosity transport formulation does not require as high of a D_L value as indicated by the earlier work of Xu and Eckstein (1995) and Al-Suwaiyan (1996).

5.2.4 Sorption Coefficient

Several isotherms are available for describing the sorption process; however, a linear isotherm was selected for this effort because it was adequate for achieving the modeling objectives (Section 1.2). The sorption coefficient (K_d) in a linear isotherm model measures the tendency of a chemical to bind to sediment surfaces during transport. Unlike the other transport parameters, which are common to all COCs, K_d is chemical specific. For organic chemicals, K_d is often obtained by multiplying the organic carbon-water partitioning coefficient (K_{oc}) by the fraction of organic carbon content (f_{oc}) in the sediments.

The initial K_d values were calculated using the K_{oc} values published by the United States Environmental Protection Agency (USEPA)², assuming an f_{OC} value of 0.2 percent (Table 5-1).

5.2.5 Degradation Rate

The degradation rate constant quantifies the rate of chemical mass reduction during transport. The causes for mass reduction can be biotic, abiotic, or result from other chemical reactions. Many organic chemicals are subject to the influence of biological degradation in the subsurface. For convenience, the degradation process is often described using degradation half-life (DHL). The DHL is defined as the duration required for concentrations to decrease to one-half of the initial value, solely from degradation processes. The degradation rate constant (DRC) and DHL are related as follows:

$$DHL = \frac{\ln{(2)}}{DRC} \text{ or } DRC = \frac{\ln{(2)}}{DHL}$$
 (4)

Another transport parameter closely related to DHL is attenuation half-life (AHL), which is also defined as the duration required for the concentration to decrease to one-half of the initial value. However, unlike DHL where concentration reduction is solely attributed to degradation, the AHL accounts for all transport attenuation processes, with degradation only being one of them. The AHL can readily be estimated by conducting trend analyses of site monitoring data, and it can provide a sense of the lower

² https://semspub.epa.gov/work/HQ/175223.pdf.

limit for DHL. Thus, the DHL value in a solute transport model should always be greater (that is, slower) than the AHL value.

The AHLs for the four COCs have been estimated for the site by using site concentration monitoring data (CH2M 2022). These data were used as the basis for estimating the initial DHL values for the transport modeling. The initial DHL values used for transport modeling were as follows: 10 years for PCE, 30 years for TCE, 30 years for 1,1-DCE, and 20 years for vinyl chloride.

5.3 Modified Boundary Conditions

For the projection transport simulations, it was necessary to modify the model boundary conditions (Figure 5-1). These scenario simulations incorporate the operation rates of the North Treatment System in 2015, the latest operation rates recorded prior to the system's shut down in November 2016.

5.4 Time Discretization for Solute Transport

The transport modeling quasi-calibration period included 3,650 days (10 years using uniform 365-day years) to cover the period from May 2013 through December 2021. The projection had simulation periods of 36,500 days (100 years) to simulate the potential COC plume transport and fate over the next 100 years.

All transport simulations employed adaptative time-stepping using the ATO package, with an initial time-step size of 0.1 day, a minimum time step of 1.0×10^{-4} day, a maximum time step of 10 days, a time-step multiplier of 1.2, and a time-step dividing factor of 2.

5.5 Quasi-calibration Transport Set Up and Results

Quasi-calibration of the transport model was set up as follows:

- The quasi-calibration simulations had a simulation period of 10 years.
- All four COCs were included in the quasi-calibration. Interactions among the different COCs were not simulated.
- The measured COC concentrations in May 2013 were spatially distributed via kriging to establish the initial transport conditions in both the mobile and immobile domains (set equal in both domains). Figures 5-2a through 5-2d show the initial COC concentrations.
- The quasi-calibration assumed instantaneous concentration equilibrium between the solid and the liquid phases.
- The quasi-calibration assumed no external sources other than the chemical mass trapped in the immobile domain and sorbed to the sediments at the beginning.

 θ_t was held at a constant value of 0.4 in all transport modeling, a typical value for porous media. All other transport parameters were evaluated with D_L , D_T , D_V , Φ , γ , and K_d for all four COCs finalized during quasi-calibration. D_T and D_V were tied to D_L at ratios of D_L : D_T =10:1 and D_L : D_V =100:1, respectively. Table 5-2 summarizes the initial values, the minimum and maximum values allowed during calibration, and the calibrated values.

The DHL was included in the quasi-calibration involving 1,1-DCE where three different DHL values (DHL = 10 years, 20 years, and 50 years, respectively) were evaluated. It was discovered, however, that the short duration of the quasi-calibration period did not allow for a reasonable assessment of the influence of the DHL on the simulation results. As such, DHL was not included in the quasi-calibration effort involving the other three COCs. DHL values were further evaluated as part of the projection simulation (Section 5.6).

The modeled versus measured chemographs are included in Attachment A. For all four COCs, the model was capable of adequately matching the measured concentration ranges and trends to achieve the

modeling objectives (Section 1.2). The quasi-calibration was achieved through autocalibration by using PEST followed by manual adjustments. The quality of the quasi-calibration was assessed through visual inspection of the modeled and measured COC chemographs (Attachment A).

5.6 Further Evaluation of Degradation

DHL values were further evaluated using projection simulations with longer simulation periods of 100 years.

The initial transport conditions for the projection simulations were established by using the most current 2021 annual groundwater sampling event data in combination with results from the predesign investigation conducted in May and June 2022. Annual groundwater sampling was conducted in December 2021 where the 40 existing site monitoring wells were sampled. The predesign investigation used direct-push technology to collect discrete grab groundwater samples from 36 soil boring locations, with up to three samples at different depth intervals collected at each boring. For these soil boring samples, the maximum COC concentrations detected at each boring were used to establish the initial conditions for the project simulations.

Other than longer simulation periods and different initial conditions, the projection simulations had the same assumptions as the quasi-calibration runs (for example, instantaneous equilibrium between the liquid and the solid phases, no external COC sources, and no interactions among the different COCs during transport).

Two sets of DHL values were evaluated, both of which were converted from the site-specific AHLs using a conversion factor and rounding to the nearest 5 years (Table 5-3). The first DHL value (DHL1) was obtained using a conversion factor of 1.33, assuming that degradation alone contributed to 75 percent $(1 \div 1.33)$ of the site-specific AHL. The second DHL value (DHL2) was obtained using a conversion factor of 2, assuming that degradation accounts for 50 percent of the site-specific AHL.

To evaluate the projection simulation results, the simulated concentrations for each COC were plotted alongside the measured concentrations at three selected monitoring wells (Figures 5-3a to 5-3d). The selection of monitoring wells focused on the wells located within or near the plume cores. The trends of the measured concentrations at the selected wells were established by fitting the post-2011 concentrations with decreasing trends and projecting the fits forward in time using the exponential trendlines.

The chemographs shown on Figures 5-3a to 5-3d indicate that the decreasing trends of the exponential fits to recent concentration data are generally steeper than the projected modeled trends. It is important to keep in mind that the portions of the exponential fits that are projected into the future do not consider "tailing," which often occurs at environmental sites. Tailing is when the concentration trends through time slow down and persist for longer periods at a given concentration. The modeled projections include transport processes that can result in tailing, which is why the projected trendlines are not as steep as the extrapolated exponential fits. Regardless, the projected DHL1 concentration trends are more consistent than the DHL2 trends relative to the measured data trends. DHL1 values were therefore retained in the subsequent projection simulations.

6.0 Projection Transport Scenario Simulation Results

In order to assess the benefit of operating the North Treatment System in accelerating the restoration of the affected aquifer and in preventing COC migration into surface water bodies, comparative transport scenario simulations were conducted assuming the operation of the North Treatment System. The projection simulations were set up as follows:

- The four COCs were included in the evaluation, assuming no interactions among the different COCs.
- The projection simulations had simulation periods of 100 years.

- The measured COC concentrations in the December 2021 sampling and during the predesign investigation conducted in May and June 2022 were spatially distributed via kriging to establish the initial transport conditions in both the mobile and immobile domains.
- The projection simulations assume instantaneous equilibrium between the solid and the liquid phases.
- The projection simulations assume no external sources other than the chemicals trapped in the immobile domain and sorbed to the sediments at the beginning of the projection.
- The transport parameters were held at the values finalized through the evaluations discussed in Section 5 shown in Tables 5-2 and 5-3.
- Projection simulations assume the operation of the North Treatment System at 2015 pumping rates, the latest rates recorded before the North Treatment System was shut down.

Figures 6-1a through 6-1d show the initial COC distributions for the projection simulations.

For each projection simulation, the modeled plume area, defined as the two-dimensional, planar plume area with modeled concentrations exceeding the cPCL, was calculated. For each COC, the plume areas over time projected under MNA (no pumping) conditions were plotted alongside those projected assuming the operation of the North Treatment System.

Figure 6-2 show the model projected plume areas for the four COCs. The projected plume sizes decrease over time for all scenarios. For 1,1-DCE and vinyl chloride, the reduction in projected plume sizes is slightly faster with the operation of the North Treatment System than under MNA alone. For PCE and TCE, the reduction rates in projected plume sizes are identical with or without the operation of the North Treatment System.

Table 6-1 summarizes the projected remediation timeframes, defined as the time required to reduce the plume size to zero, for all projection simulations, starting from 2022. TCE dominates the projected remediation timeframe, requiring 70 years under MNA and 63 years assuming the operation of the North Treatment System to restore the aquifer to less than the cPCL of 5 μ g/L. For 1,1-DCE, the projected remediation timeframe is 47 years with and without the operation of the North Treatment System. The projected remediation timeframes for vinyl chloride and PCE are less than 30 years with or without the operation of the North Treatment System.

Impacts on the surface water bodies by the COC plumes were evaluated by examining the modeled COC concentrations in groundwater at seven selected locations adjacent to the surface water bodies: one for the TxDOT Silber Tunnel, two for HCFCD, three for Buffalo Bayou, and one for Incised Drain 3 (Figures 6-3a to 6-3d). For each COC, the projected concentrations under MNA and assuming the operation of the North Treatment System were plotted on the same graph for comparison.

As shown on Figures 6-3a through 6-3d, the simulations projected that concentrations of the four COCs in groundwater discharging to the surface water bodies would generally decrease over time. The rate of reduction in modeled concentrations would generally be the same with or without the operation of the North Treatment System. The simulations further suggest that COC discharge concentrations would remain less than their respective groundwater cPCLs at all selected locations throughout the entire simulation period.

7.0 Conclusions

Section 1.2 describes the modeling objectives, which have been achieved. Groundwater flow and transport modeling were conducted to estimate the remediation timeframes at the site located on Silber Road in Houston, Texas. Quasi-calibration of the solute transport models was performed to estimate the transport parameter values that are suitable for the site conditions. Comparative

projection simulations were conducted under MNA assumptions with and without the operation of the North Treatment System. The results of the projection simulations indicate the following:

- TCE has the longest remediation timeframe, with estimated remediation timeframes of 70 years
 under MNA only and 63 years assuming the operation of the North Treatment System. 1,1-DCE has
 the second-longest estimated remediation timeframe of 47 years under MNA with or without the
 operation of the North Treatment System. The estimated remediation timeframes for vinyl chloride
 and PCE are shorter and would not exceed 30 years with or without the operation of the North
 Treatment System, according to the model.
- Continuous operation of the North Treatment System at 2015 rates might shorten the remediation timeframe of TCE from 70 years to 63 years, and for vinyl chloride from 29 years to 26 years.
 Operation of the North Treatment System would not accelerate the remediation of the PCE and 1,1-DCE plumes, according to the model.
- HCFCD, Buffalo Bayou, and the Silber Tunnel dewatering systems would not be affected by groundwater with COC concentrations exceeding the protective concentration levels, with or without the operation of the North Treatment system.

8.0 References

Al-Suwaiyan, M. 1996. *Discussion of* "Use of Weighted Least-Squares Method in Evaluation of the Relationship Between Dispersivity and Scale," by M. Xu and Y. Eckstein. *Ground Water*. Vol. 34. No. 4. p. 578.

CH2M HILL Engineers, Inc. (CH2M). 2017. *Groundwater Flow and Transport Modeling for the Former Cameron Iron Works Facility, Houston, Texas.* July.

CH2M HILL Engineers, Inc. (CH2M). 2022. 2021 Response Action Effectiveness Report, Voluntary Cleanup Program No. 221, Former Cameron Iron Works Facility, 1000 Silber Road, Houston, Texas. March.

Doherty, J. 2021a. *PEST Model-Independent Parameter Estimation User Manual Part I: PEST, SENSAN and Global Optimisers*. Seventh Edition published in 2018. Latest additions in January 2021.

Doherty, J. 2021b. *PEST Model-Independent Parameter Estimation User Manual Part II: PEST Utility Support Software.* Seventh Edition published in 2018. Latest additions in May 2021.

Environmental Simulations Incorporated. 2021. ESI - *Online User Manual - Groundwater Vistas version 8.* Accessed October 5. http://www.groundwatermodels.com/Groundwater_Vistas.php.

Environmental Resources Management (ERM). 2001. Affected Property Assessment Report (APAR) for Ground Water, Former Cameron Iron Works Facility, Houston, Texas Voluntary Cleanup Program (VCP) No. 221. October 3.

Environmental Resources Management (ERM). 2003a. *Response Action Plan, Former Cameron Iron Works Facility, Houston, Texas*. August.

Environmental Resources Management (ERM). 2003b. *Human Health and Ecological Risk Assessment for Surface Water and Sediment, Former Cameron Iron Works Facility.* June.

Environmental Resources Management (ERM). 2009. *Response Action Plan Addendum, Former Cameron Iron Works Facility, Houston, Texas.* July.

Environmental Resources Management (ERM). 2016. Draft 2015 Annual Ground Water Monitoring Report and Field Activities Summary, Former Cameron Iron Works Facility, Houston, Texas. May 13.

Freeze, R.A. and J.A. Cherry. 1979. Groundwater. Prentice-Hall, Inc. New Jersey, 07632. 604 p.

HydroGeoLogic Inc. (HGL). 2011. *MODHMS/MODFLOW-SURFACT, a comprehensive MOFLOW-based hydrologic modeling system*. Reston, Virginia.

Kasmarek, M.C. 2012. *Hydrogeology and simulation of ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas* (ver. 1.1, December 2013). U.S. Geological Survey Scientific Investigations Report 2012–5154. p. 55.

Rojstaczer, S. 1994. "The Limitations of Groundwater Models." *Journal of Geological Education*. Volume 42. pp. 362–368.

Spitz, K. and J. Moreno. 1996. *A Practical Guide to Groundwater and Solute Transport Modeling*. John Wiley & Sons, Inc., New York.

Texas Commission on Environmental Quality (TCEQ). 2021. *Comments to 2020 Response Action Effectiveness Report (RAER), Cameron – Katy Road Facility (Site), located at 1000 Silber Road, Houston, Harris County, TX.* August 31.

Texas Commission on Environmental Quality (TCEQ). 2022. Comment Letter, Former Cameron Iron Works Facility Site, located at 1000 Silber Road, Houston, Harris County, TX; Voluntary Cleanup Program (VCP) No. 221; Customer No. CN603108770 Regulated Entity No. RN101474880. January 24.

Texas Water Development Board (TWDB). 2006. Aquifers of the Gulf Coast of Texas. February.

Texas Water Development Board (TWDB). 2011. *Estimation of Groundwater Recharge to the Gulf Coast Aquifer in Texas*.

Xu, M. and Y. Eckstein. 1995. "Use of Weighted Least-Squares Method in Evaluation of the Relationship Between Dispersivity and Scale." *Ground Water*. Vol. 33. No. 6. pp. 905–908.

Tables

Table 4-1. Comparison of Modeled and Target Heads

2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility, Houston, Texas

Well	Target Head (feet NAVD88)	Modeled Head (feet NAVD88)	Residual ^a (feet)
MW-01	48.73	48.66	-0.07
MW-15R	46.14	46.29	0.15
MW-16R	45.80	45.81	0.01
MW-17R	44.44	44.52	0.08
MW-50R	49.22	49.24	0.02
MW-65	46.72	46.73	0.01
MW-70	45.79	45.78	-0.01
MW-71	44.27	44.49	0.22
MW-74	43.14	43.39	0.25
MW-76	40.83	40.89	0.06
MW-77	43.75	43.92	0.17
MW-83	37.27	37.49	0.22
MW-88	34.28	34.51	0.23
MW-89	31.47	31.73	0.26
MW-90	32.98	32.92	-0.06
MW-92	28.41	29.23	0.82
MW-93R	28.88	28.45	-0.43
MW-97	30.71	31.07	0.36
MW-98	27.42	27.29	-0.13
MW-100	44.43	44.37	-0.06
MW-106	24.45	25.15	0.70
MW-108	47.30	47.52	0.22
MW-109	48.08	47.46	-0.62
MW-110	46.82	47.06	0.24
MW-111	46.43	46.57	0.14
MW-112	46.05	46.25	0.20
MW-113	45.82	45.81	-0.01
MW-121	40.39	40.64	0.25
MW-122	39.28	39.49	0.21
MW-145	39.69	39.87	0.18
MW-146	38.79	38.61	-0.18

Table 4-1. Comparison of Modeled and Target Heads

2022 Groundwater Modeling Technical Memorandum

Former Cameron Iron Works Facility, Houston, Texas

Well	Target Head (feet NAVD88)	Modeled Head (feet NAVD88)	Residual ^a (feet)
MW-147	37.87	37.67	-0.20
MW-160	35.60	35.19	-0.41
MW-161	33.78	33.17	-0.61
MW-162	31.63	33.58	1.95
MW-163	37.73	38.57	0.84
MW-168	32.32	32.21	-0.11
MW-178	39.36	39.07	-0.29
MW-179	27.45	27.57	0.12

^a Residual was computed as the modeled head value minus the target head value.

Note:

NAVD88 = North American Vertical Datum of 1988

Table 4-2. Modeled Model Layer 1 Groundwater Balance

2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility, Houston, Texas

	Groundwater Balance Term	Volumetric Rate (gpm)
Inflows	Groundwater Recharge from Precipitation	271.1
	Subsurface Inflow Along Northern Boundary	10.2
inilows	Groundwater Recharge from Buffalo Bayou	0.2
	Total Groundwater Inflows	281.5
	Groundwater Discharge to Buffalo Bayou	155.8
	Groundwater Discharge to Silber Tunnel	50.2
	Subsurface Outflow Along Southern Boundary	26.8
0.46	Downward Vertical Flow through Aquitard	20.2
Outflows	Groundwater Discharge to HCFCD	11.8
	Groundwater Discharge to Incised Drain 3	12.0
	Groundwater Discharge to Incised Drain 2	4.7
	Total Groundwater Outflows	281.5

Notes:

gpm = gallon(s) per minute

HCFCD = Harris County Flood Control Ditch

Table 5-1. Estimated Sorption Coefficients

2022 Groundwater Modeling Technical Memorandum

Former Cameron Iron Works Facility, Houston, Texas

Constituent	K _{oc} (cm ³ /g)	K _d (cm ³ /g)
1,1-DCE	65	1.30 × 10 ⁻¹
Vinyl Chloride	18.6	3.72 × 10 ⁻²
PCE	155	3.10 × 10 ⁻¹
TCE	166	3.32 × 10 ⁻¹

Notes:

cm³/g= cubic centimeter(s) per gram

1,1-DCE = 1,1-dichloroethene

Koc = organic carbon-water partitioning coefficient

Kd = sorption coefficient

PCE = tetrachloroethene

TCE = trichloroethene

Table 5-2. Transport Parameters Evaluated During Quasi-calibration

2022 Groundwater Modeling Technical Memorandum

Former Cameron Iron Works Facility, Houston, Texas

Transport Parameter	Initial Value	Minimum	Maximum	Calibrated
D _L (feet)	10	1	50	50
D _T (feet)	1	0.1	5	5
D _V (feet)	0.1	0.01	0.5	0.5
Φ	0.25	0.025	1	0.27
γ (d ⁻¹)	1.00 × 10 ⁻⁵	1.00 × 10 ⁻⁶	1.00 × 10 ⁻⁴	2.74 × 10 ⁻⁵
K _d for 1,1-DCE (cm ³ /g)	1.30 × 10 ⁻¹	1.30 × 10 ⁻²	1.30 × 10 ⁰	1.30 × 10 ⁻¹
K _d for Vinyl Chloride (cm³/g)	3.72 × 10 ⁻²	3.72 × 10 ⁻³	3.72 × 10 ⁻¹	3.72 × 10 ⁻²
K _d for PCE (cm ³ /g)	3.10 × 10 ⁻¹	3.10 × 10 ⁻²	3.10 × 10 ⁰	3.10 × 10 ⁻¹
K _d for TCE (cm ³ /g)	3.32 × 10 ⁻¹	3.32 × 10 ⁻²	3.32 × 10 ⁰	3.32 × 10 ⁻¹

Notes:

γ = mass transfer coefficient

 Φ = fraction of mobile porosity

cm³/g = cubic centimeters per gram

d-1= 1/day

D_L = longitudinal dispersivity

D_T = transverse dispersivity

D_V = vertical dispersivity

K_d = sorption coefficient

1,1-DCE = 1,1-dichloroethene

Maximum = maximum value allowed during quasi-calibration

Minimum = minimum value allowed during quasi-calibration

PCE = tetrachloroethene

TCE = trichloroethene

Table 5-3. DHLs Evaluated in Projection Simulations

2022 Groundwater Modeling Technical Memorandum

Former Cameron Iron Works Facility, Houston, Texas

Constituent	ARC (year ⁻¹)	AHL (years)	DHL1 (years)	DHL2 (years)
1,1-DCE	0.046	15.1	20	30
Vinyl Chloride	0.086	8.1	10	15
PCE	0.154	4.5	5	10
TCE	0.050	13.9	20	30

Notes:

ARC = attenuation rate constant

AHL = attenuation half-life

1,1-DCE = 1,1-dichloroethene

DHL1 = degradation half-life converted from the AHL using a conversion factor of 1.33 and rounding to the nearest 5 years

DHL2 = degradation half-life converted from the AHL using a conversion factor of 2 and rounded to the nearest 5 years

PCE = tetrachloroethene

TCE = trichloroethene

FES0909221326PNS PAGE 1 OF 1

Table 6-1. Projected Remediation Timeframes

2022 Groundwater Modeling Technical Memorandum

Former Cameron Iron Works Facility, Houston, Texas

		Projected Remediation Timeframe (Years) ^a		
Constituent	cPCL (μg/L)	MNA Only	With Remedy Operation	
1,1-DCE	7	47	47	
Vinyl Chloride	2	29	26	
PCE	5	22	22	
TCE	5	70	63	

^a The remediation time is projected from year 2022.

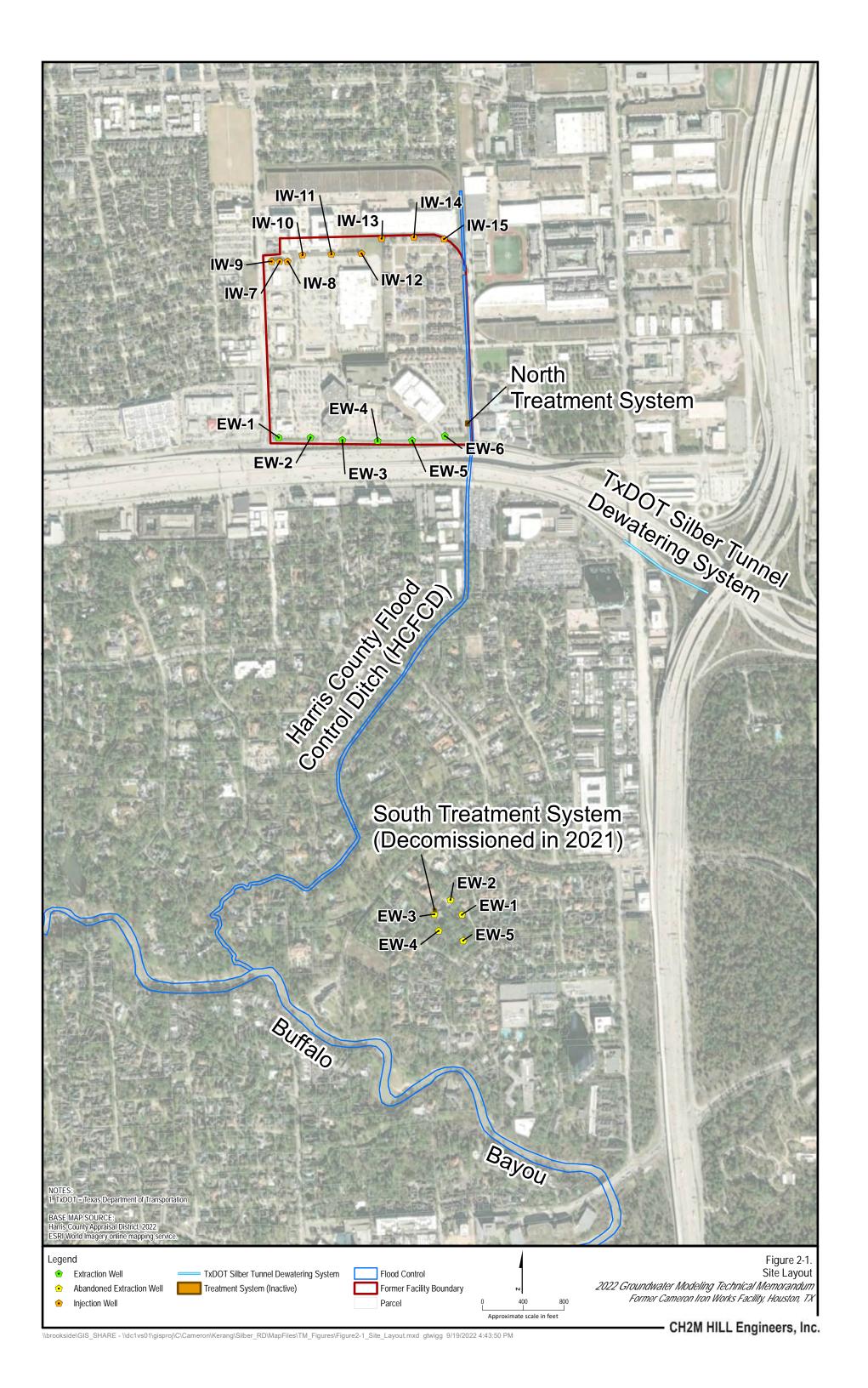
Notes:

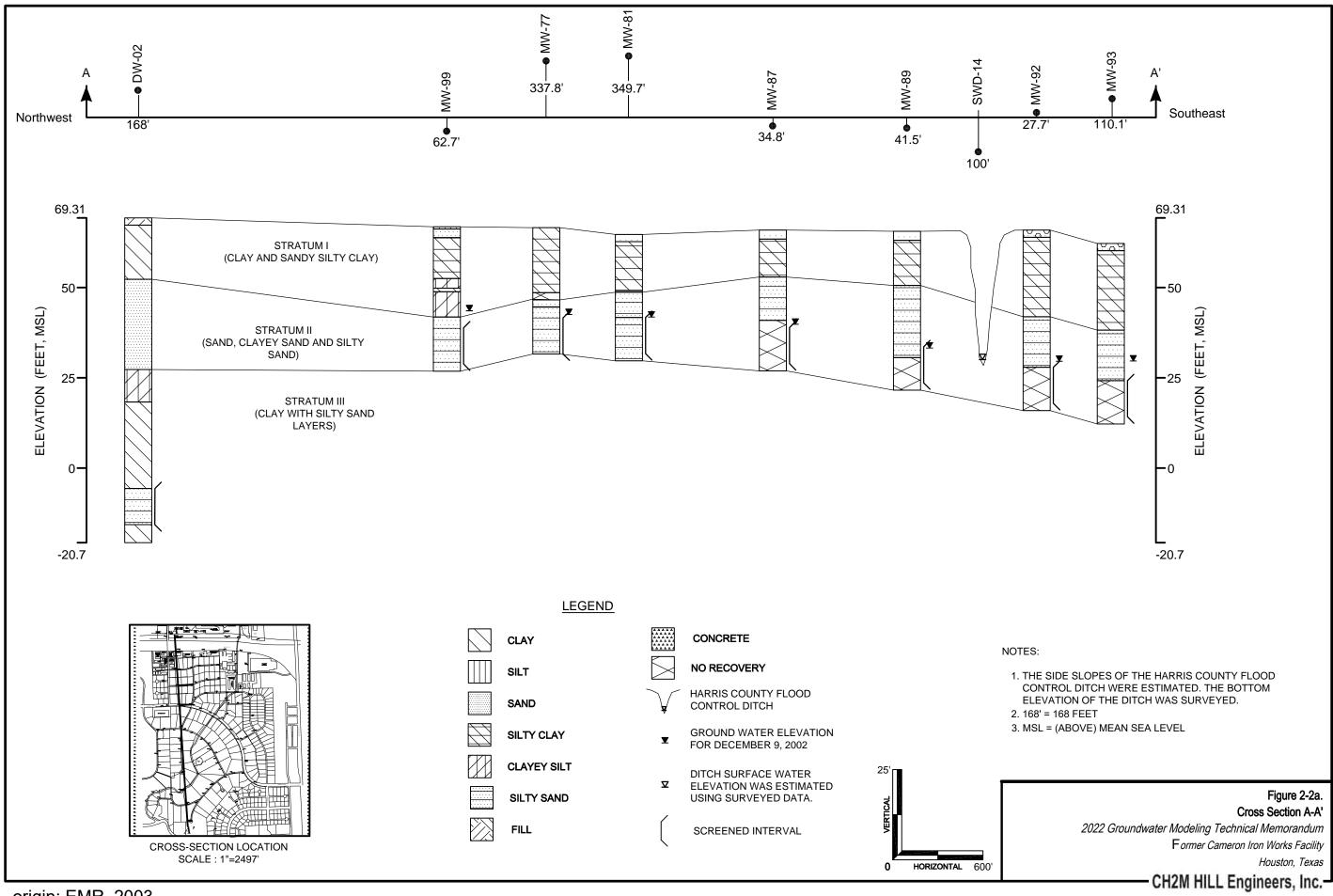
μg/L = micrograms per liter

cPCL = critical protective concentration level

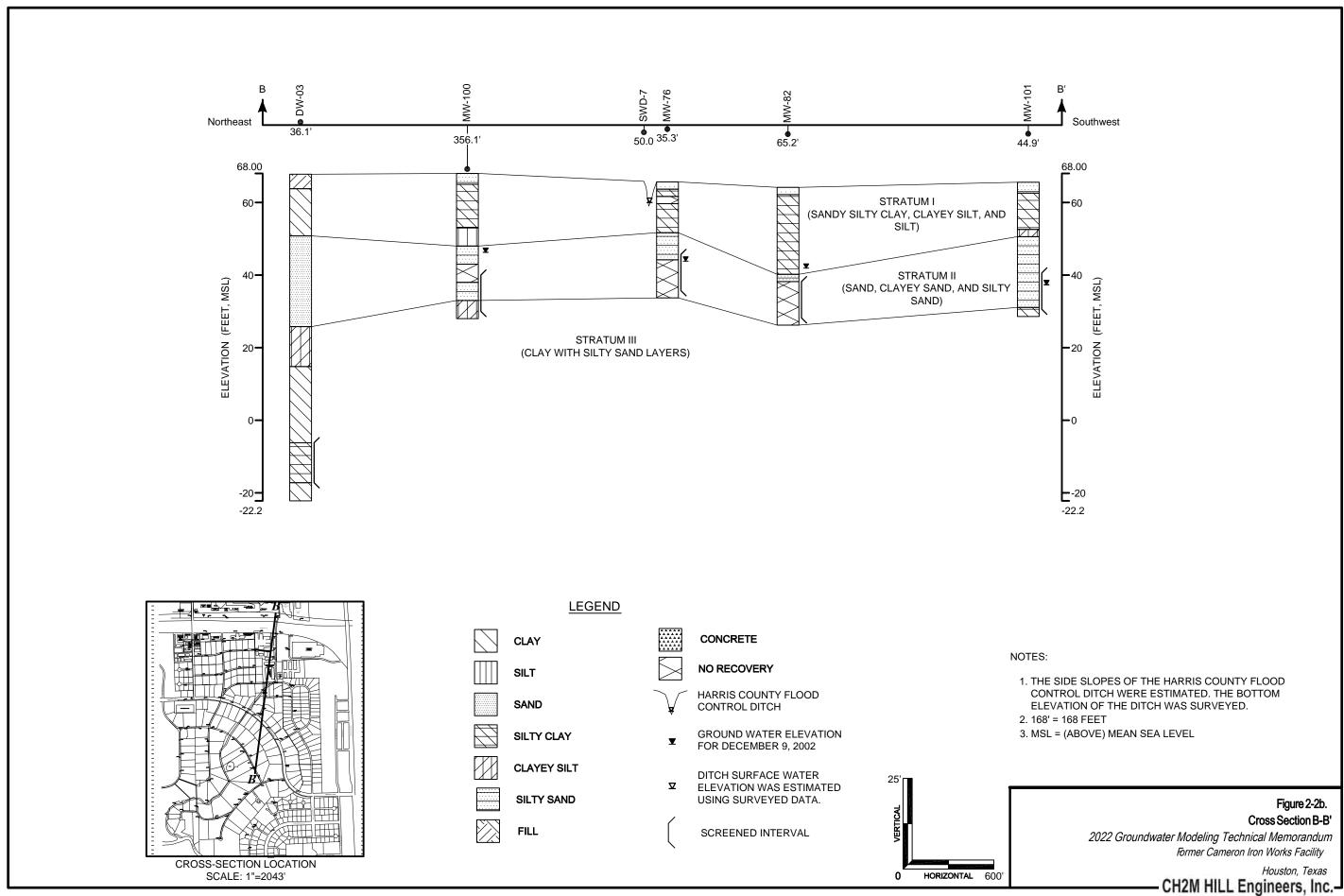
1,1-DCE = 1,1-dichloroethene

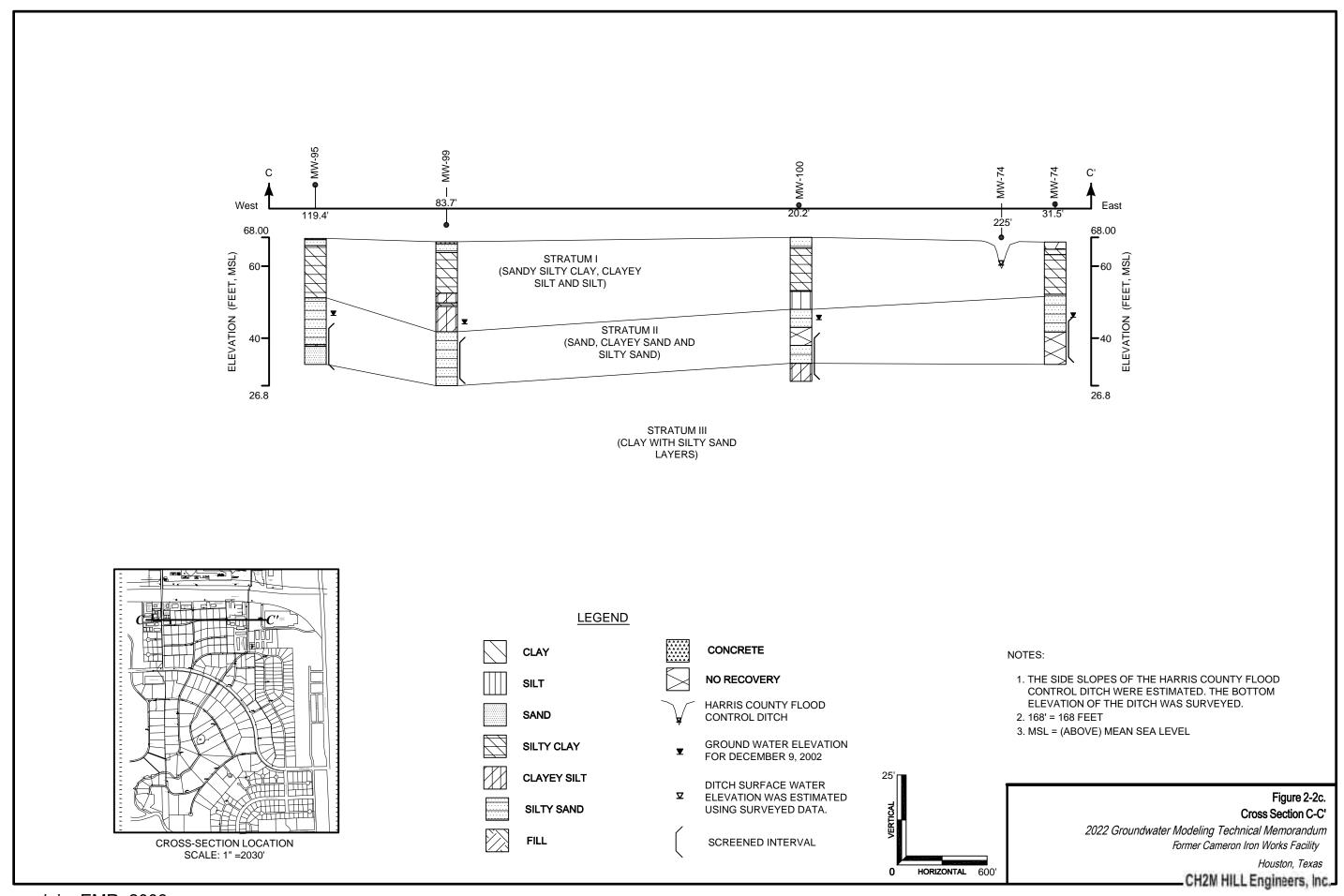
MNA = monitored natural attenuation

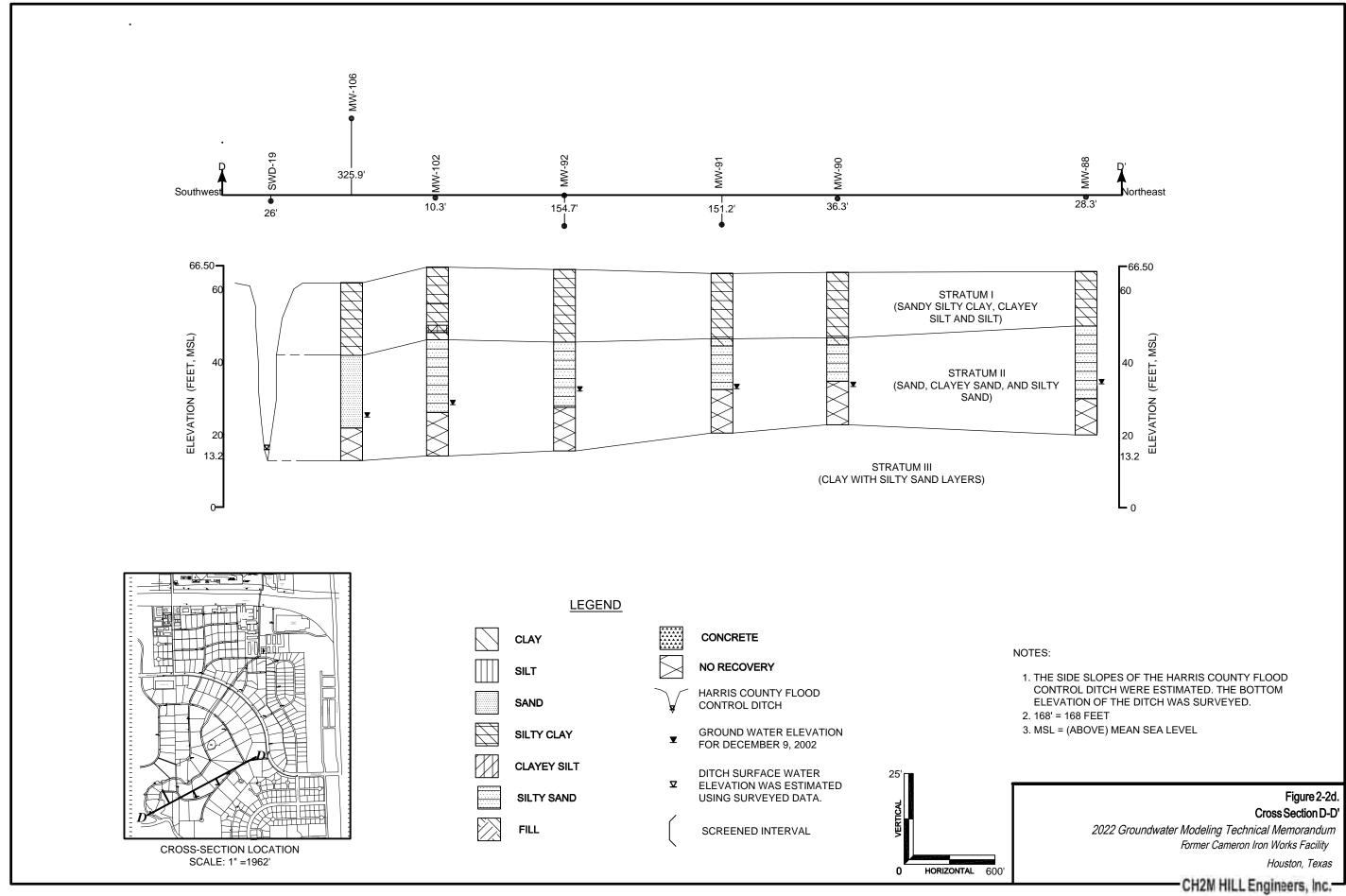

PCE = tetrachloroethene

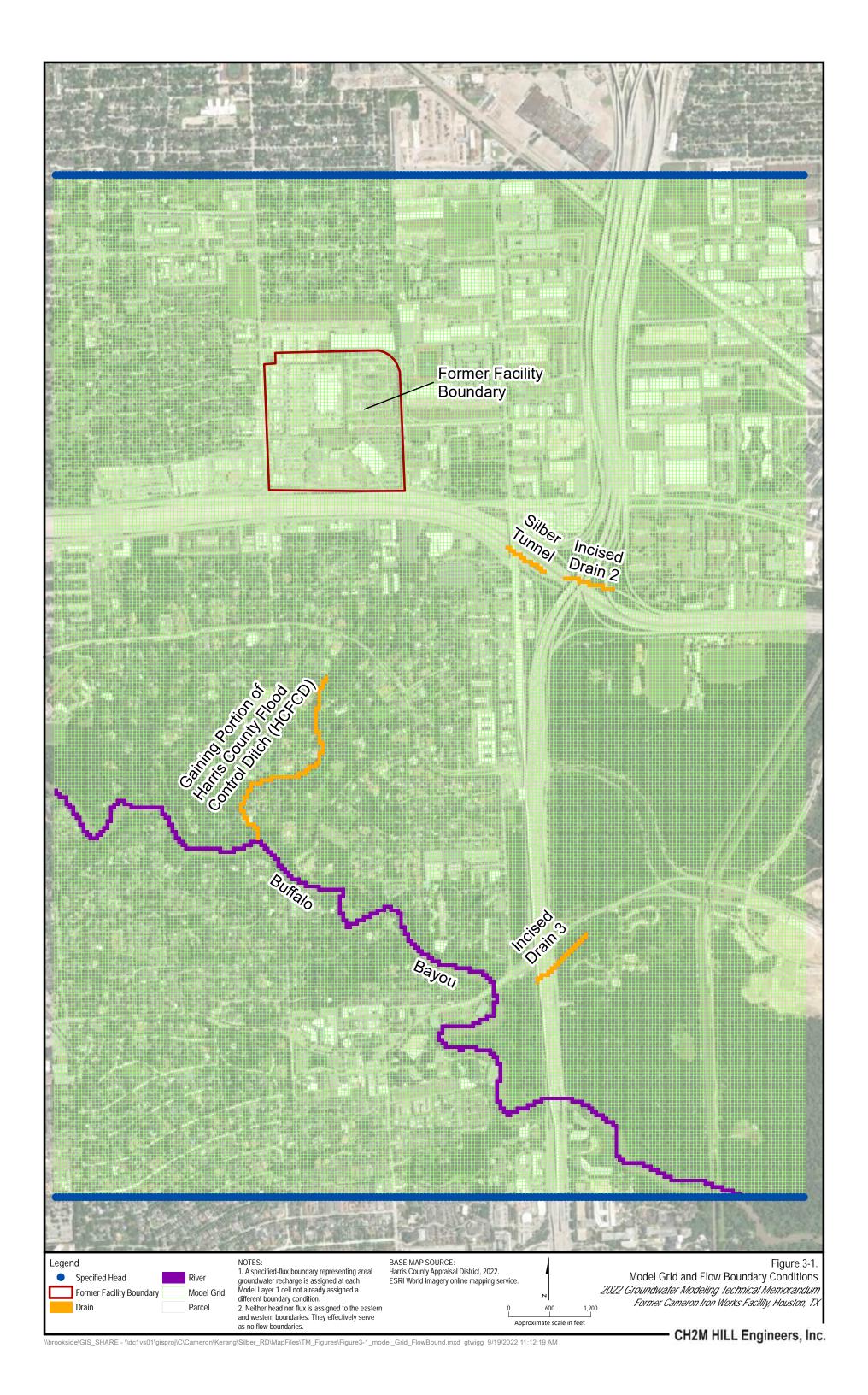

TCE = trichloroethene

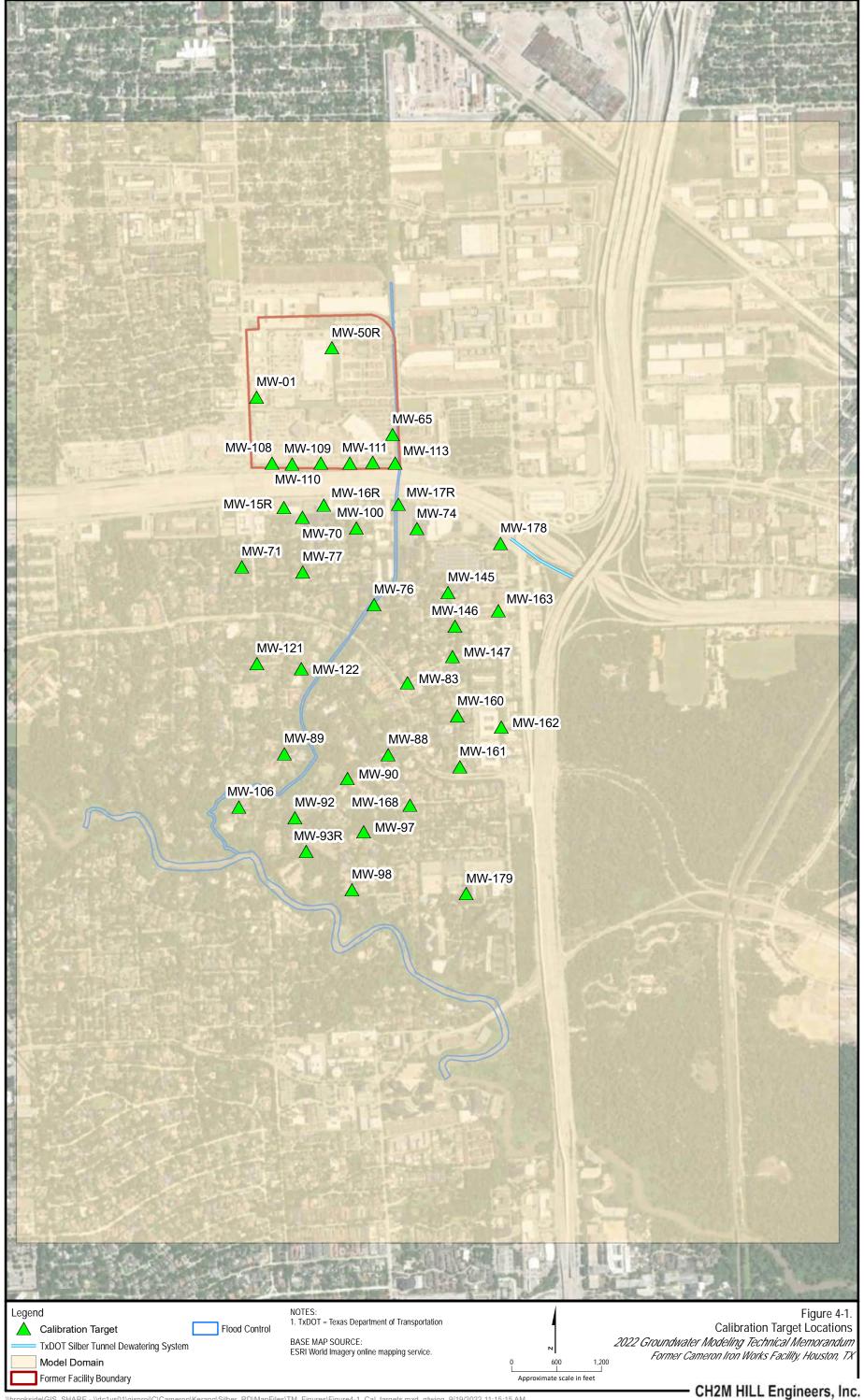
FES0909221326PNS PAGE 1 OF 1

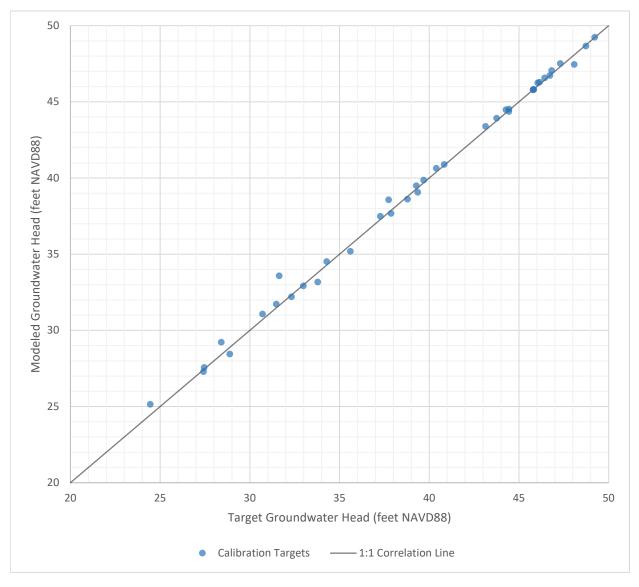

Figures




origin: EMR, 2003

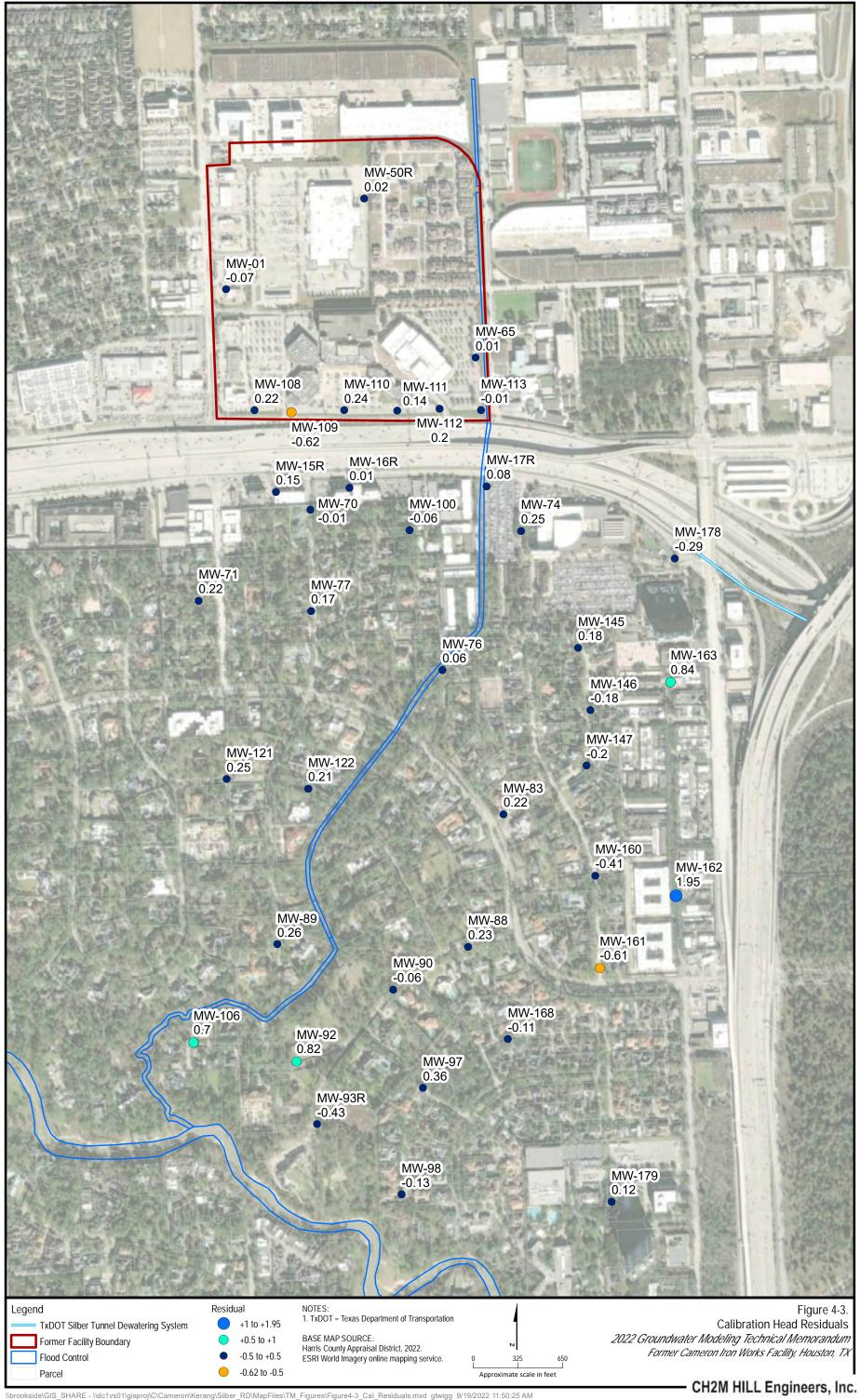


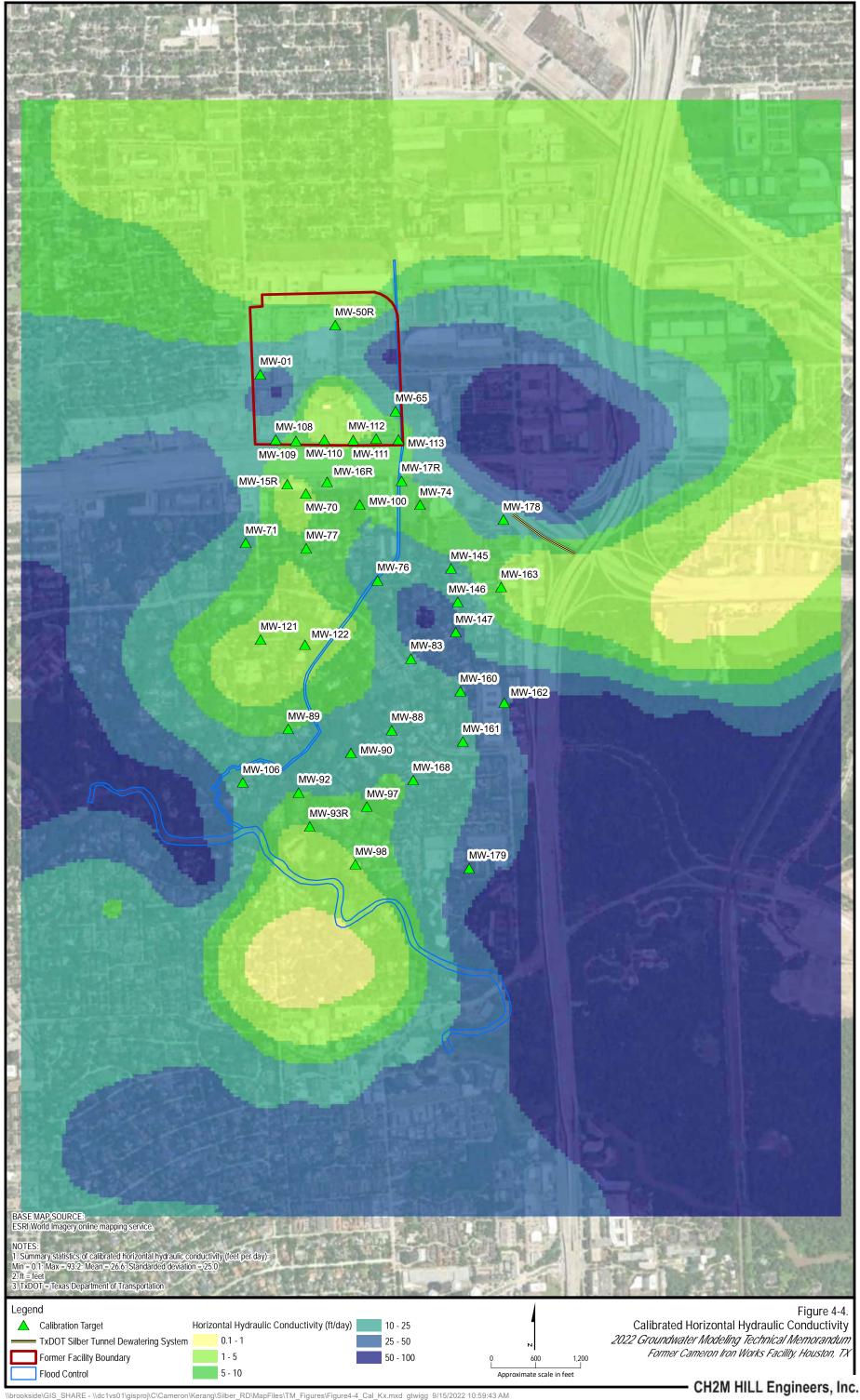

origin: EMR, 2003

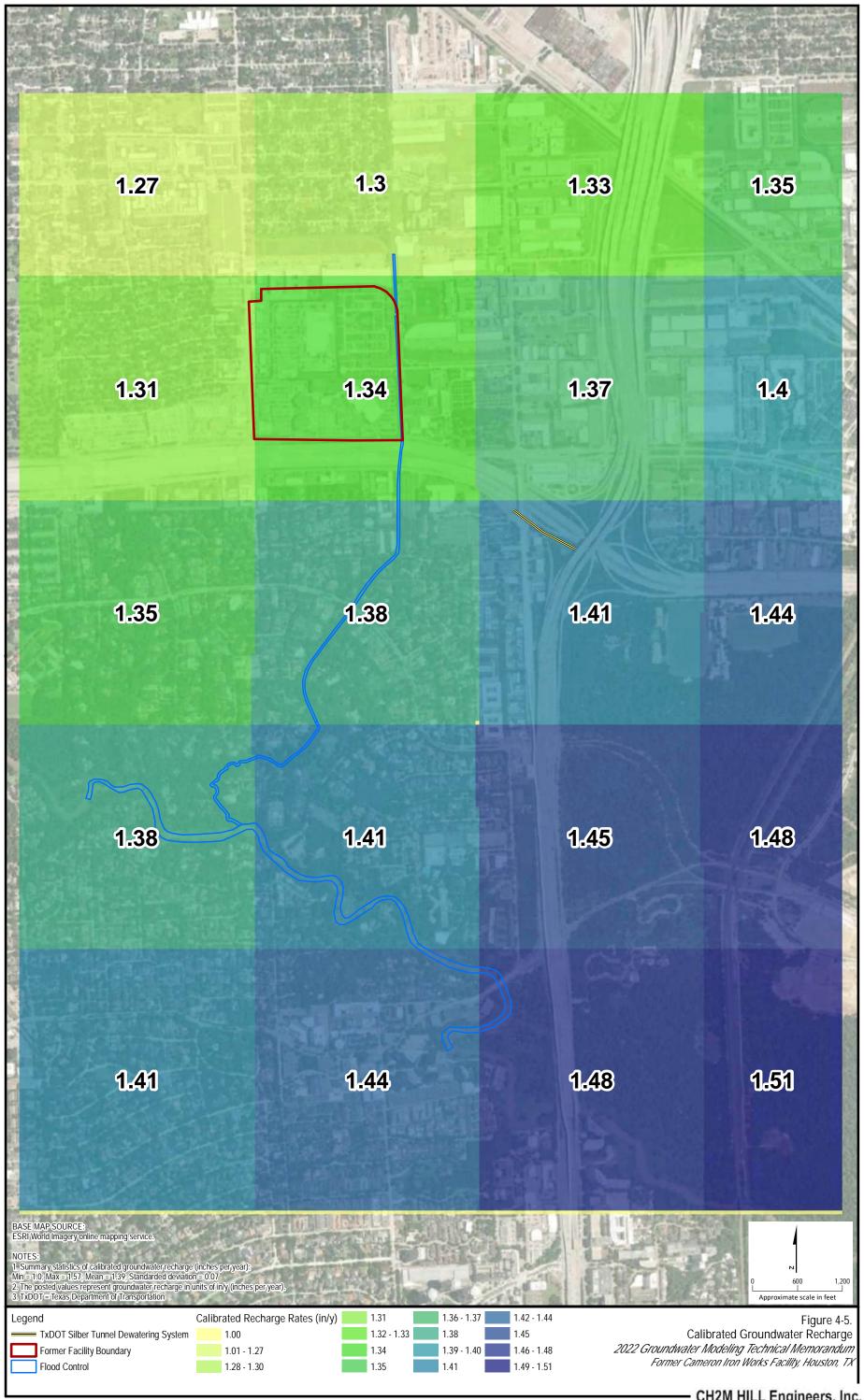


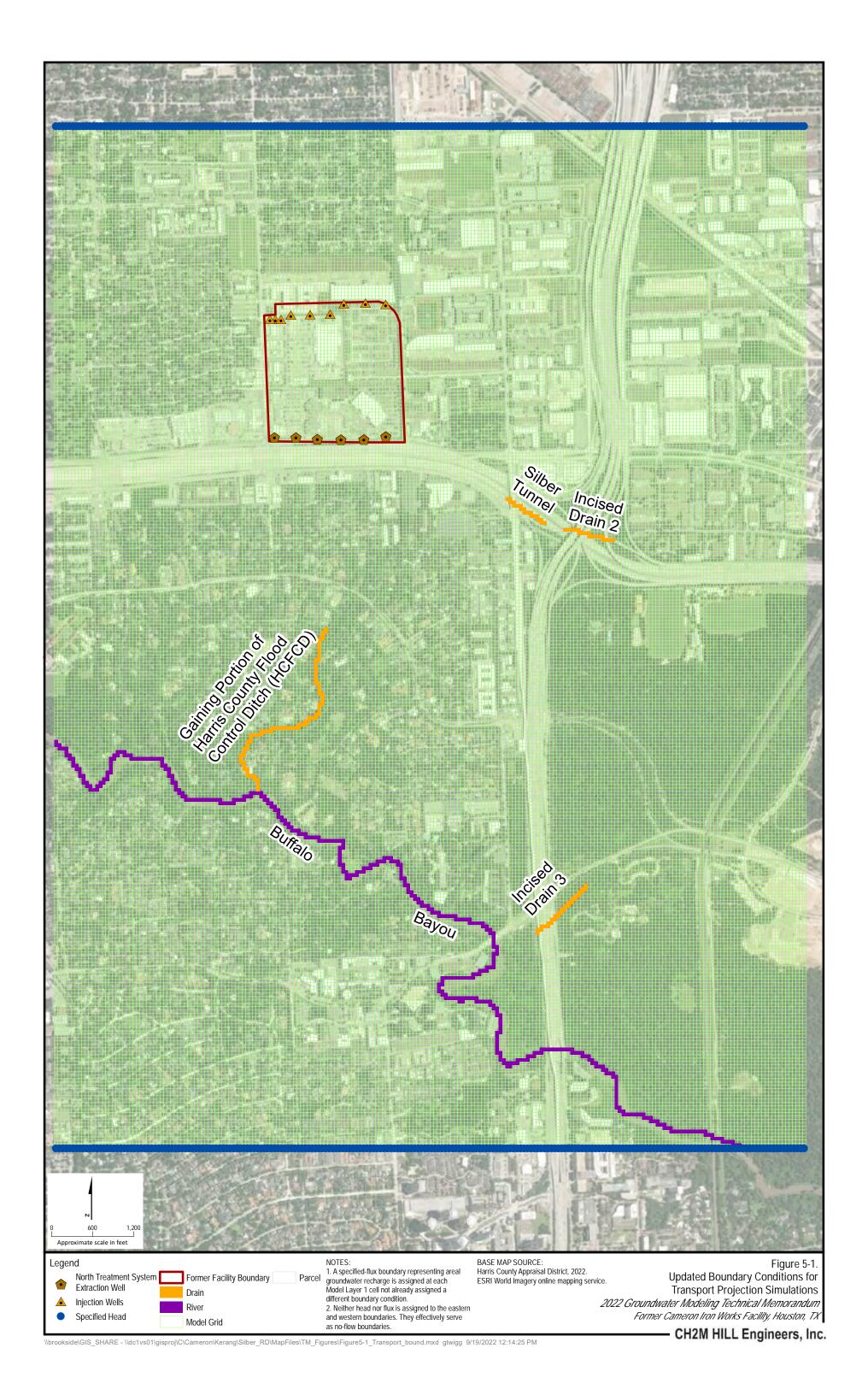
origin: EMR, 2003

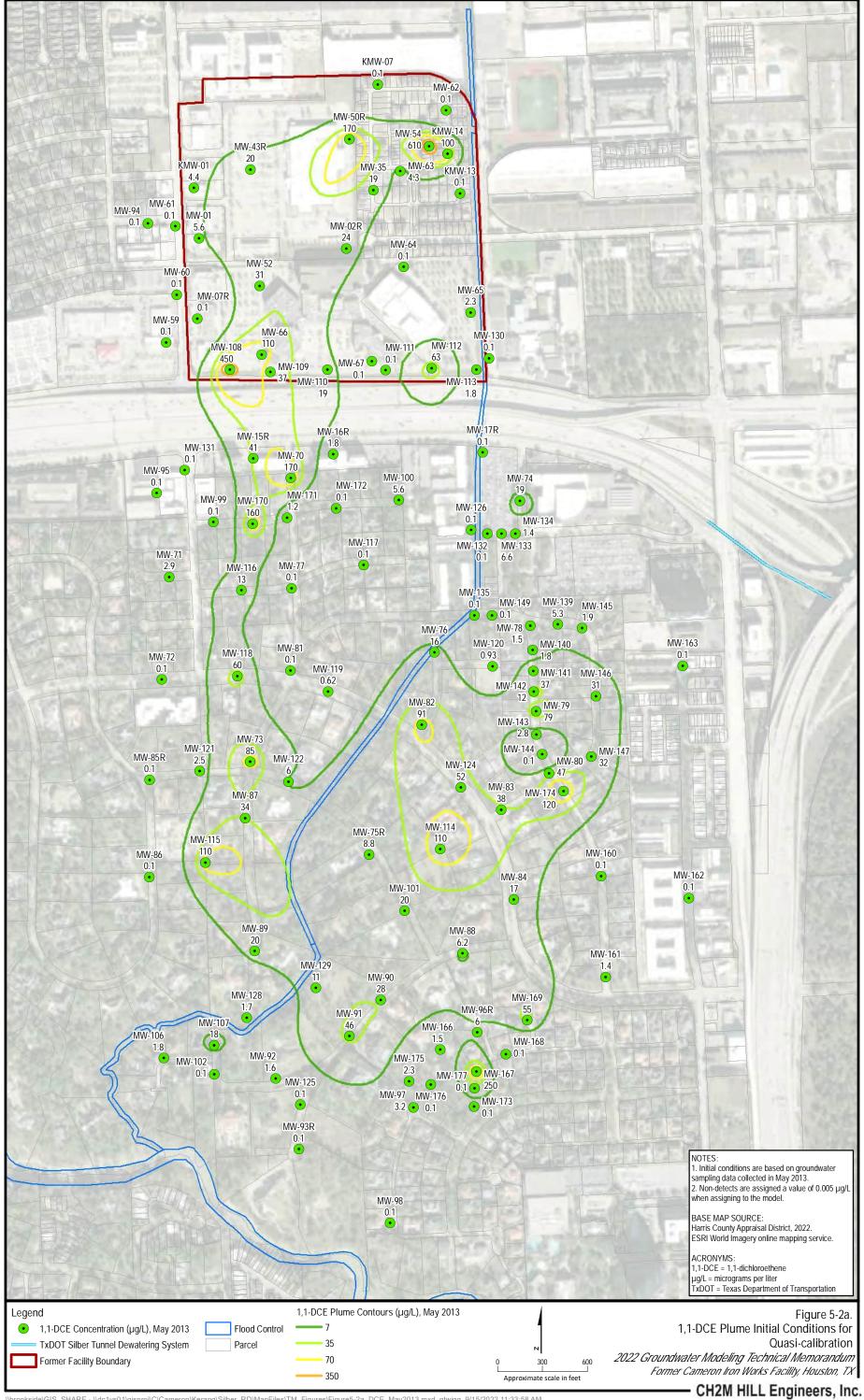
Note: NAVD88 = North American Vertical Datum of 1988

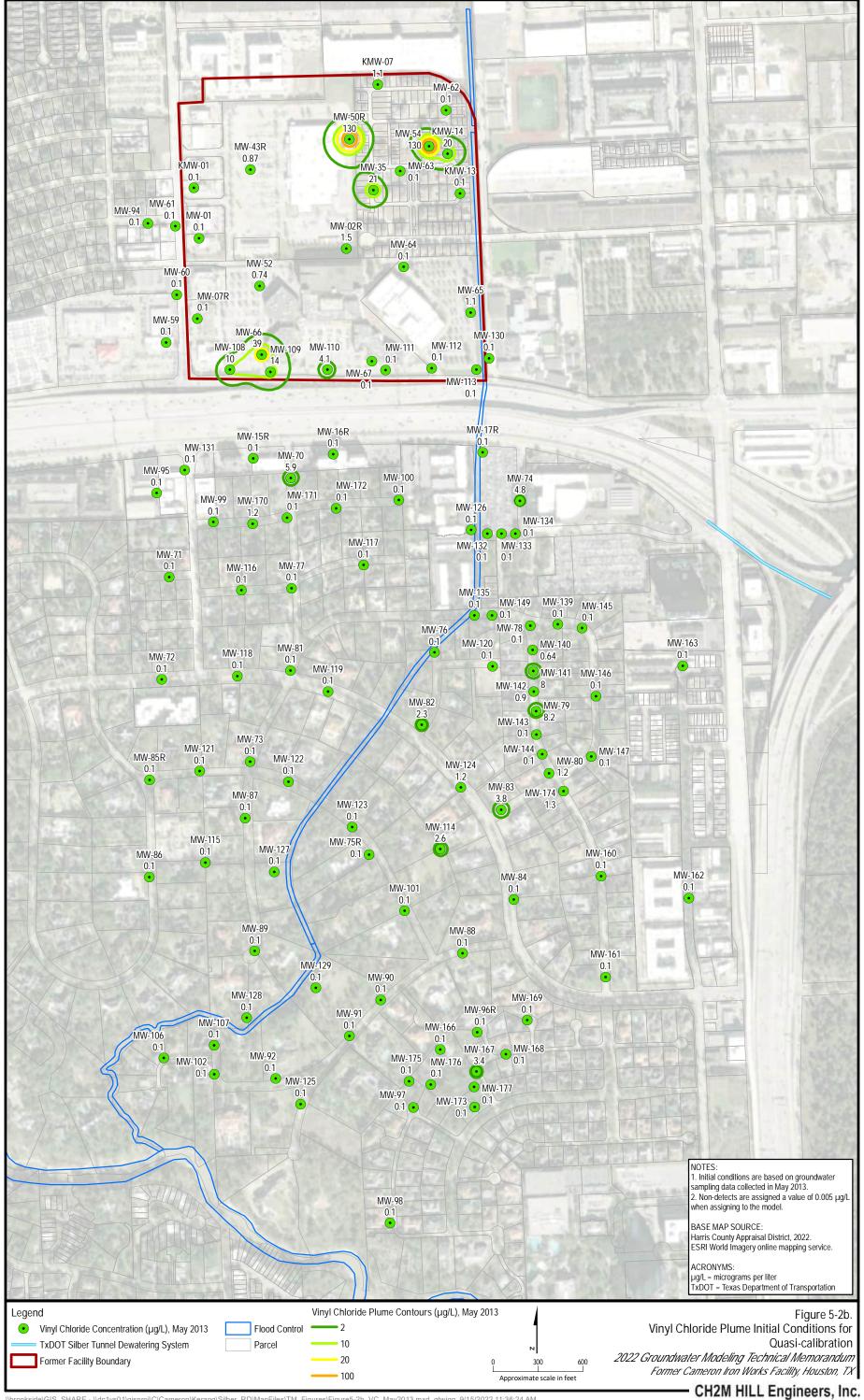

Figure 4-2.

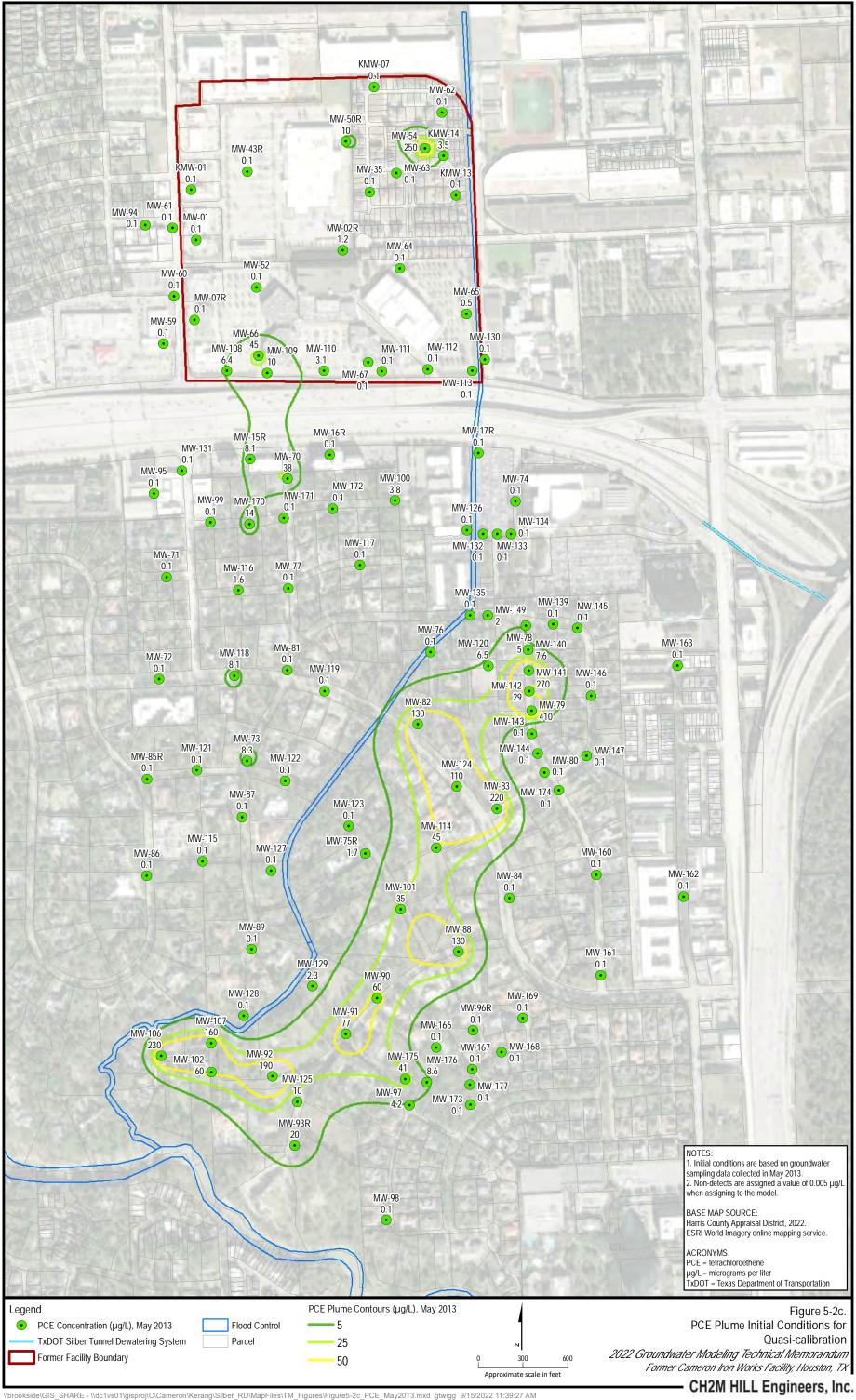

Modeled versus Target Heads

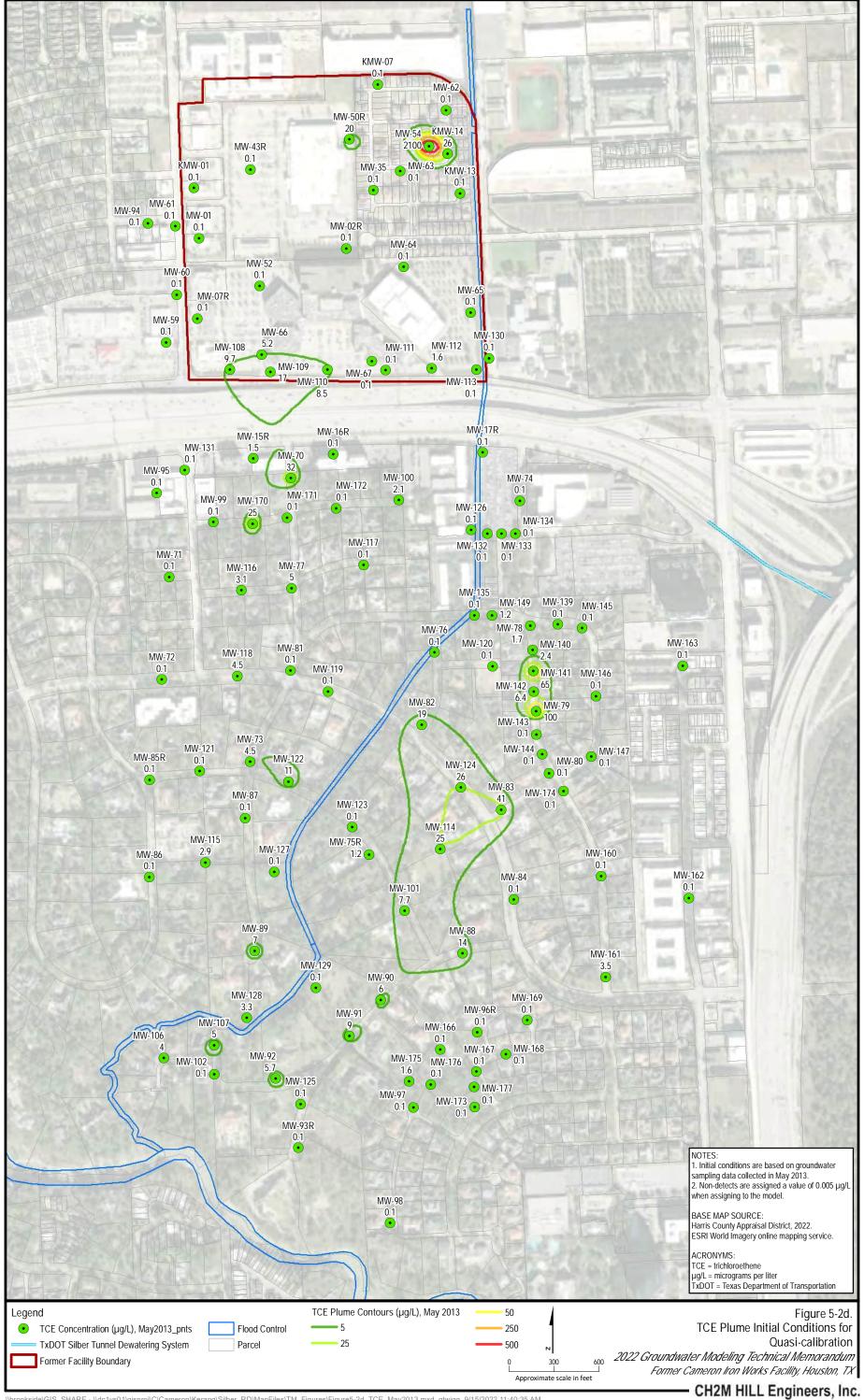

2022 Groundwater Modeling Technical Memorandum

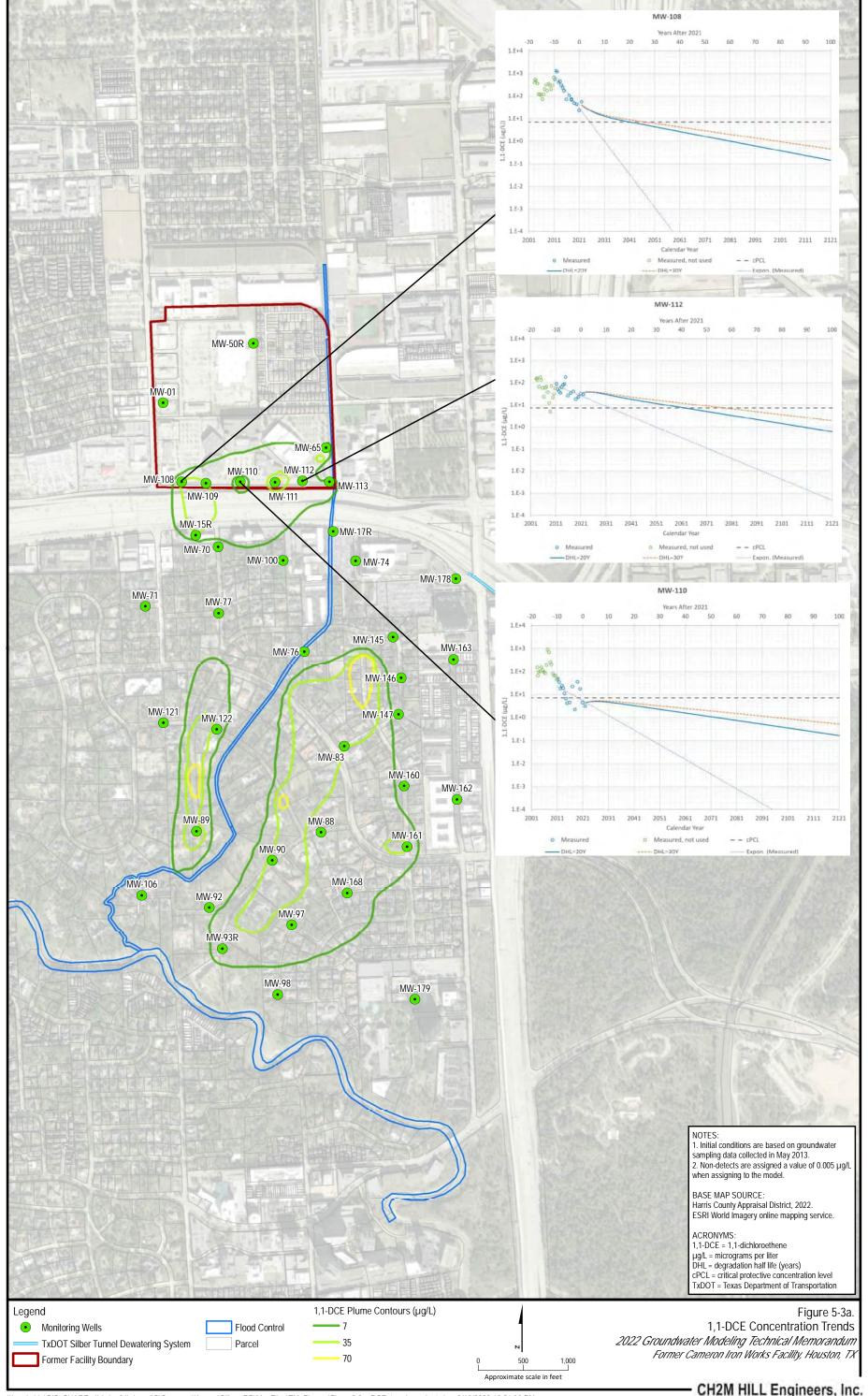

Former Cameron Iron Works Facility

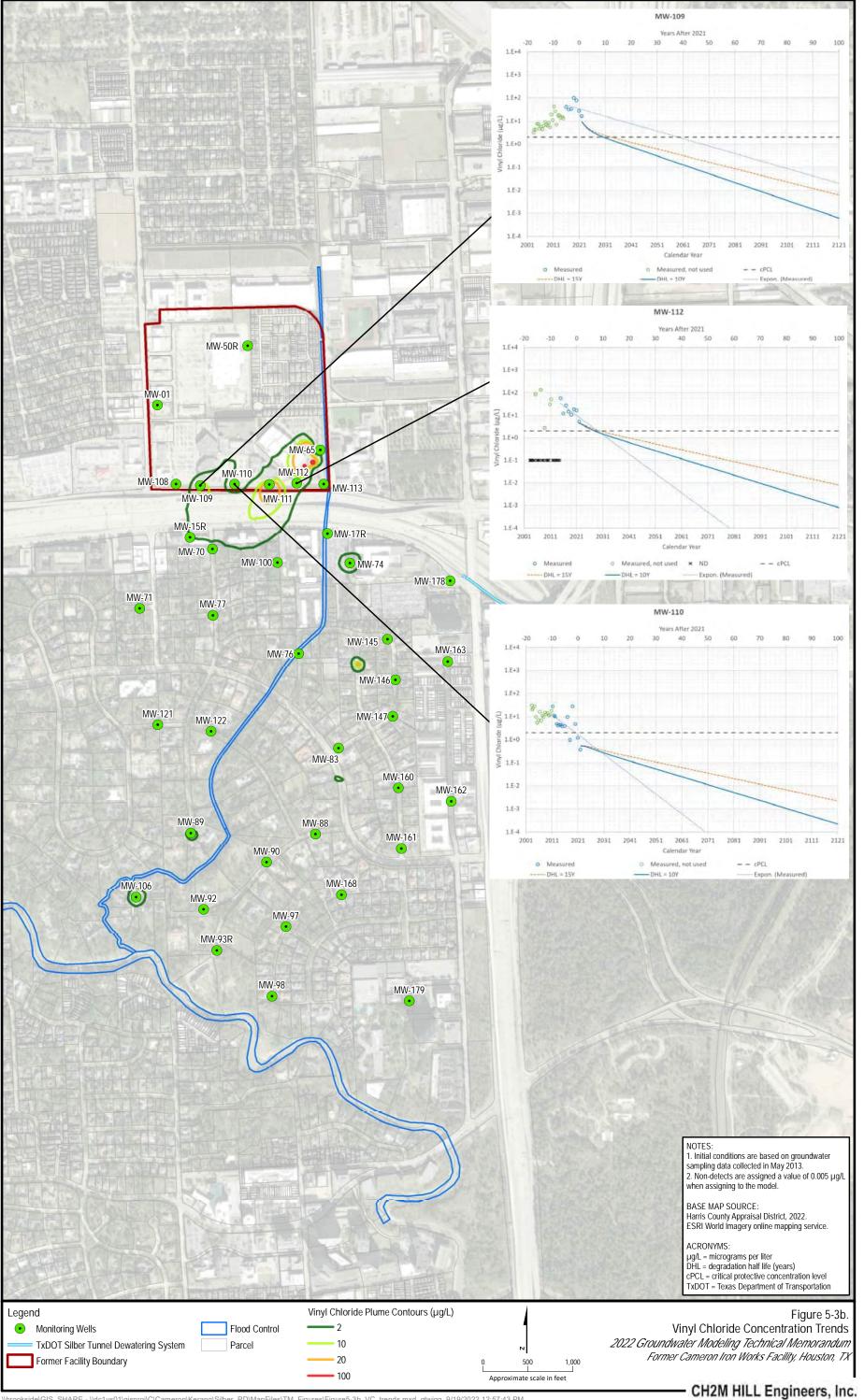

Houston, Texas

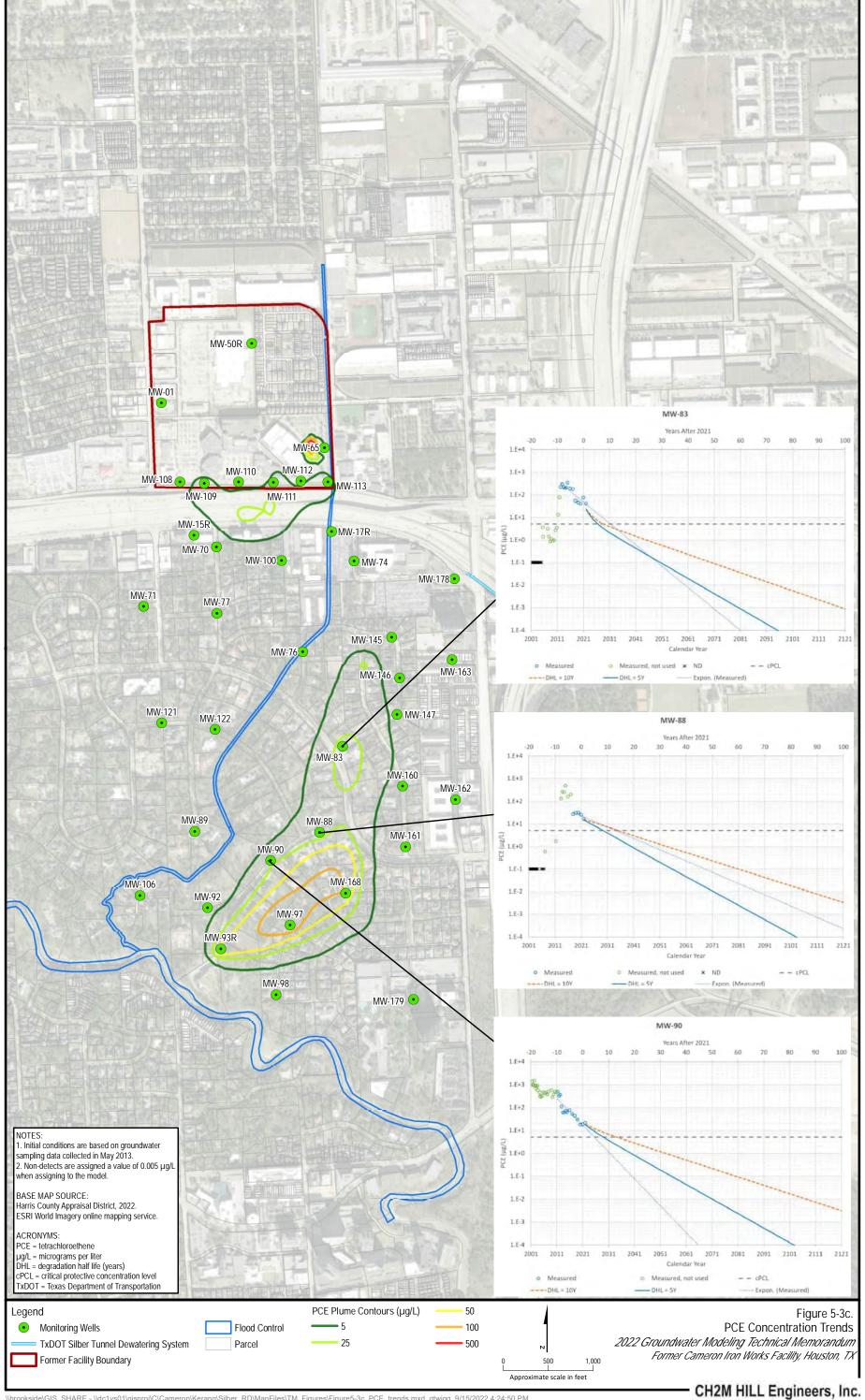


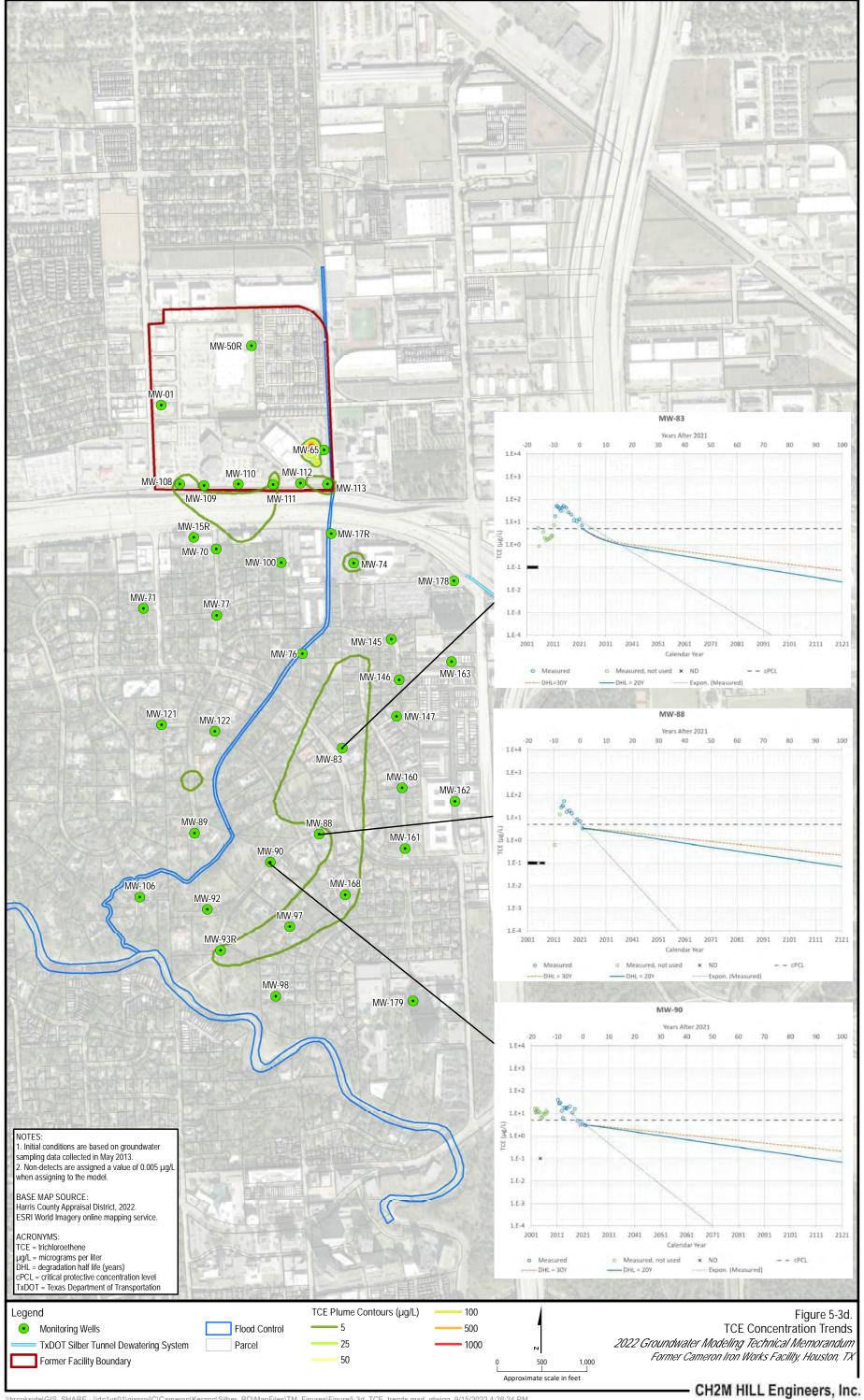


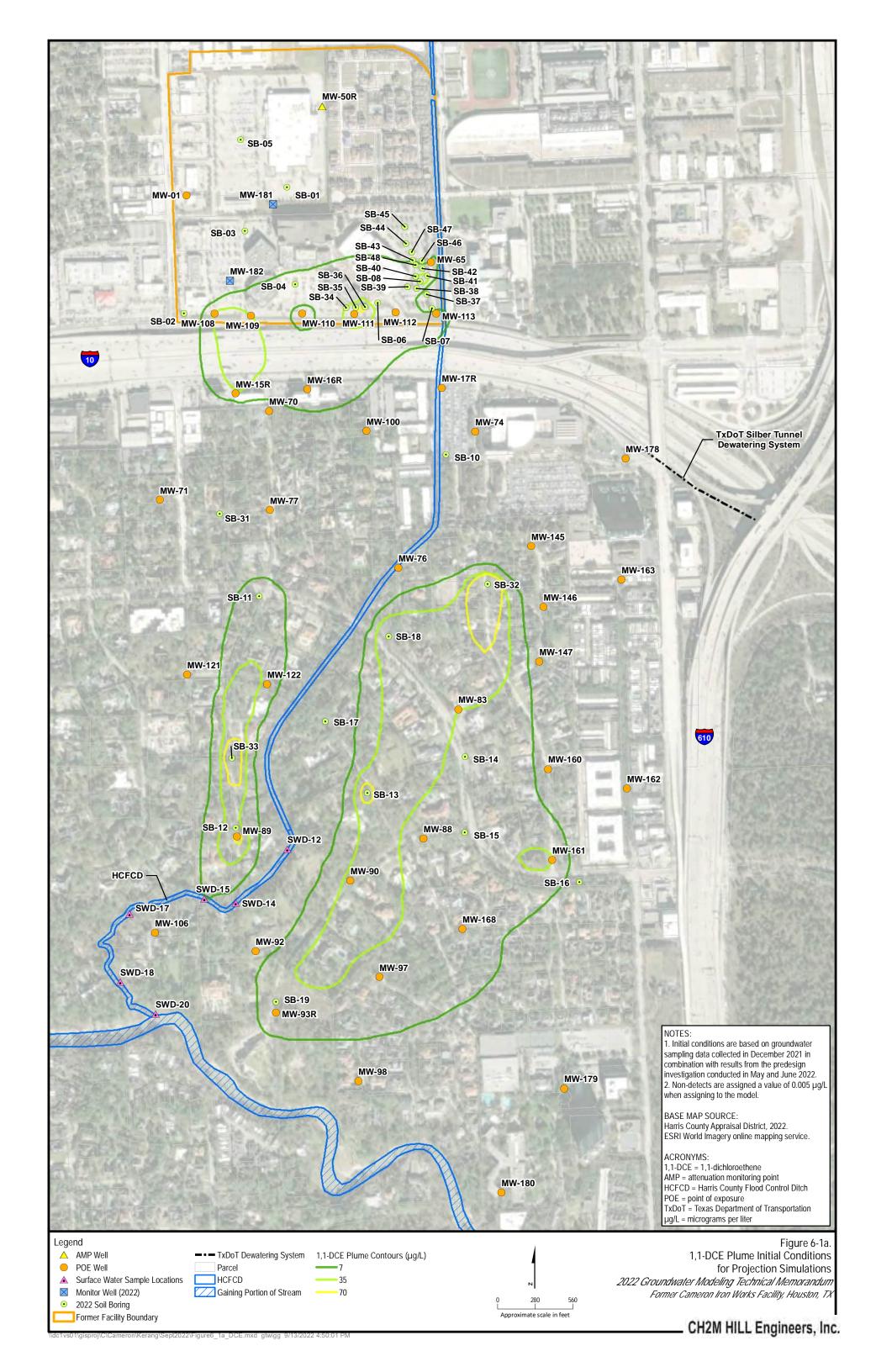


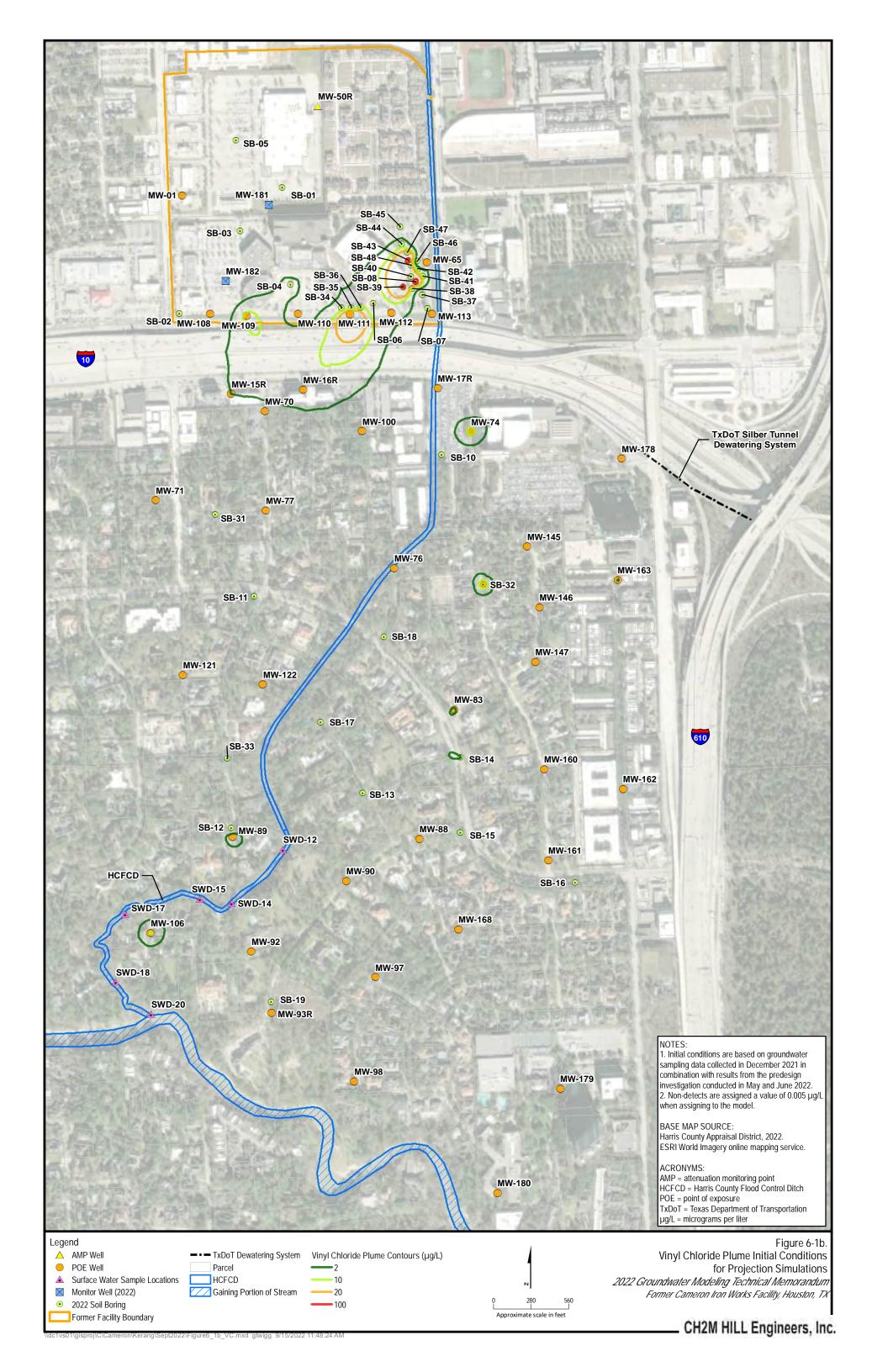


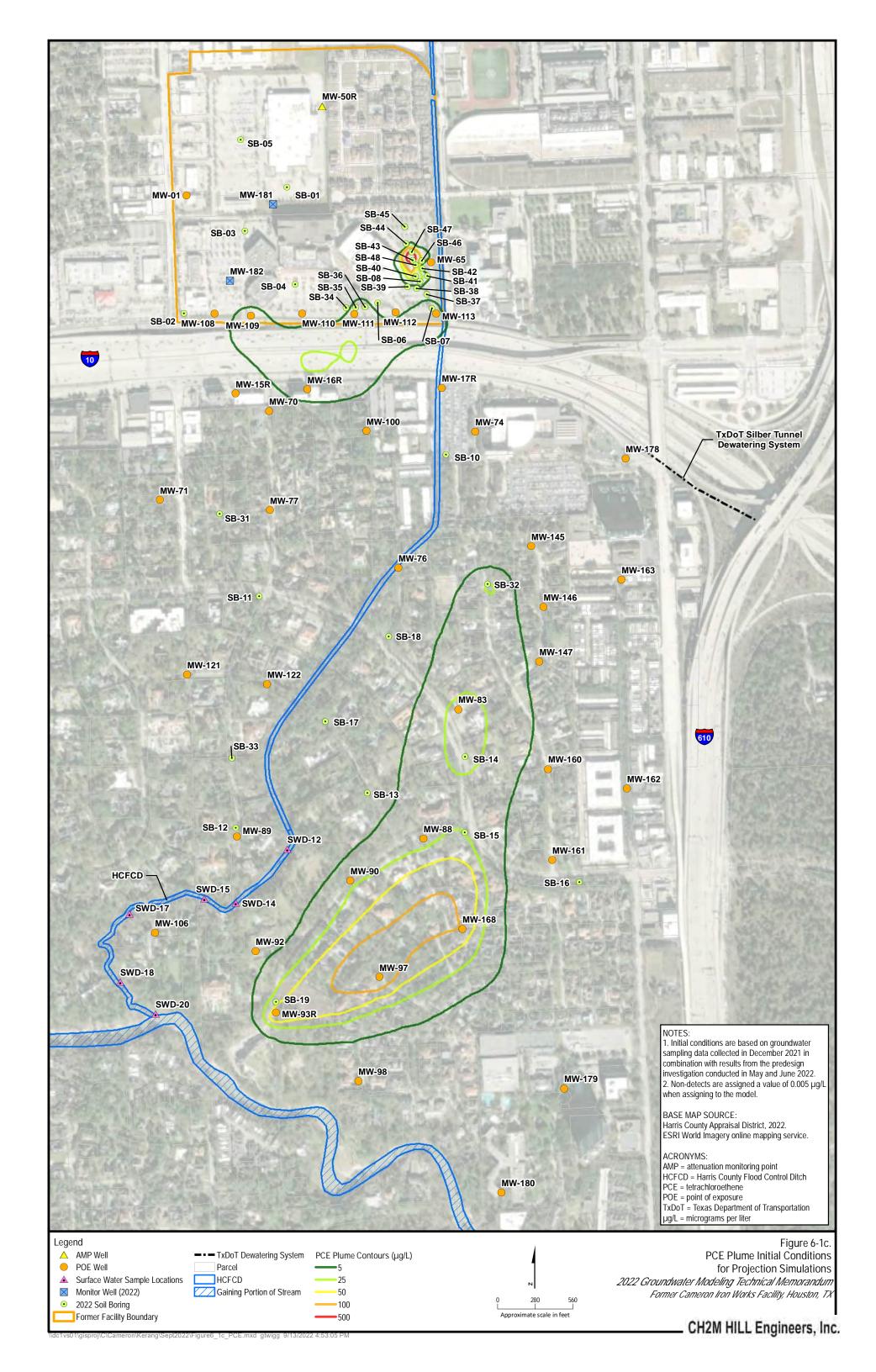


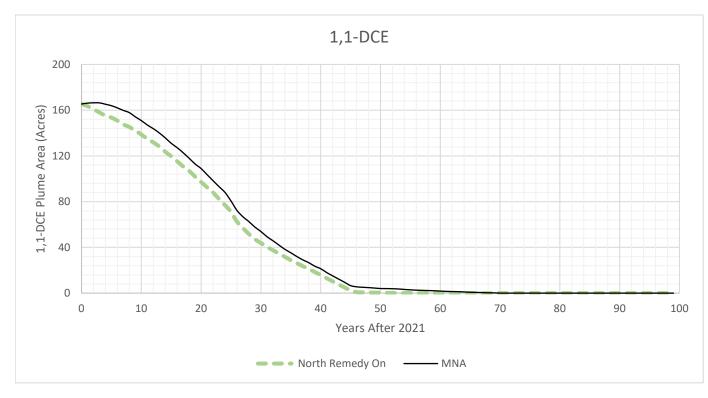


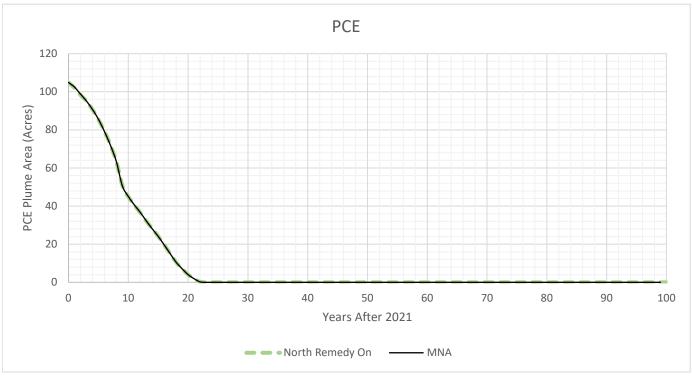


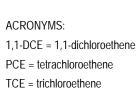


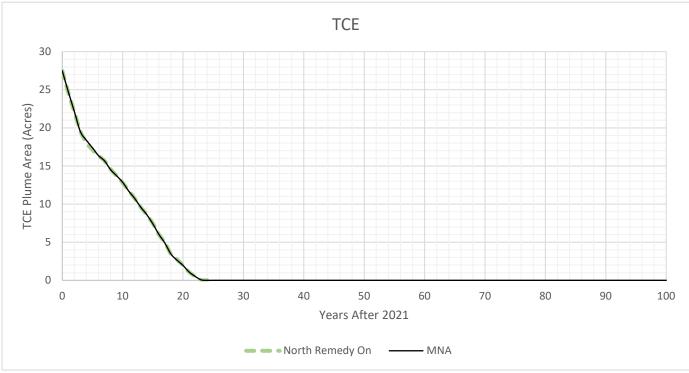


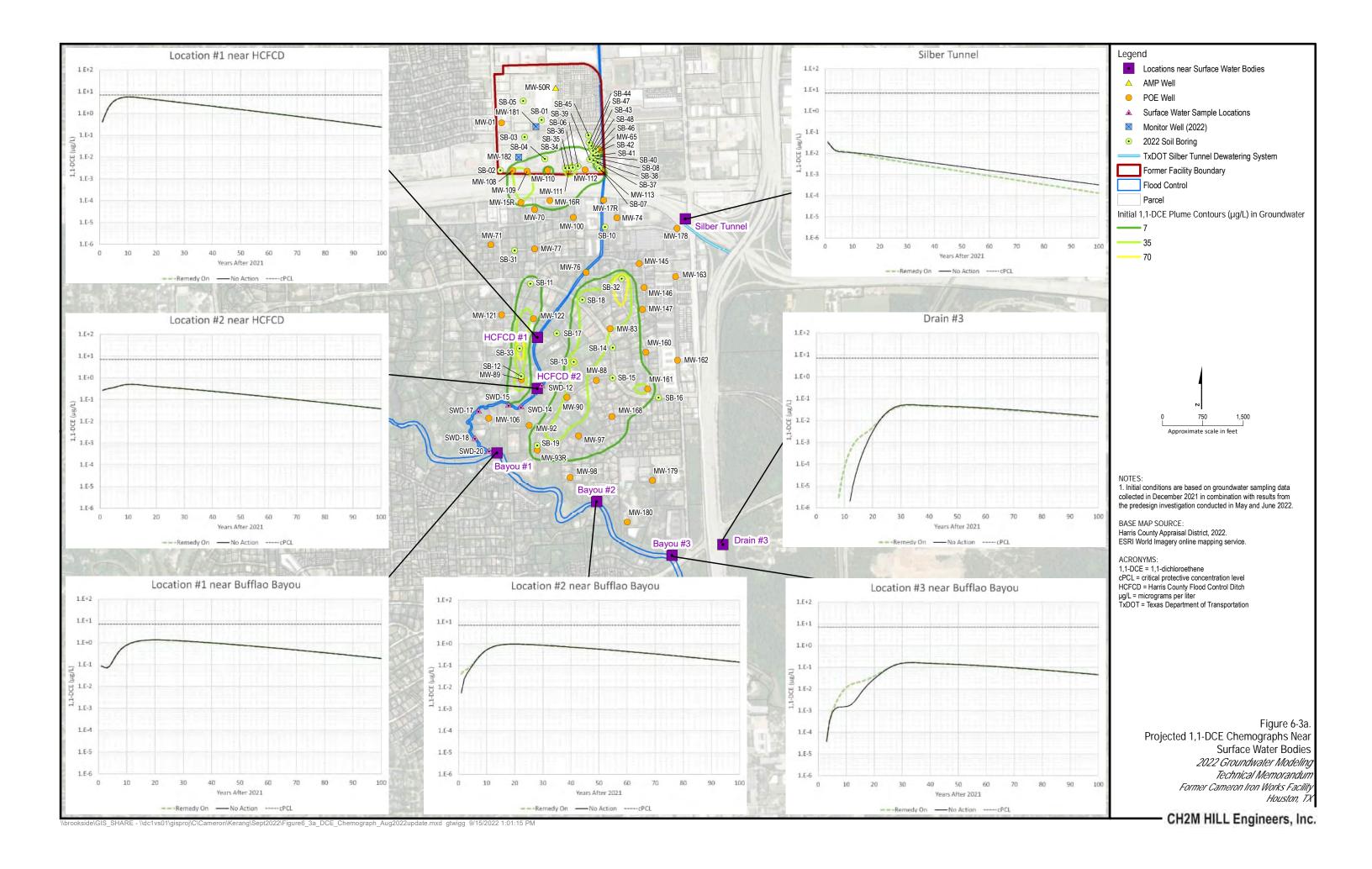


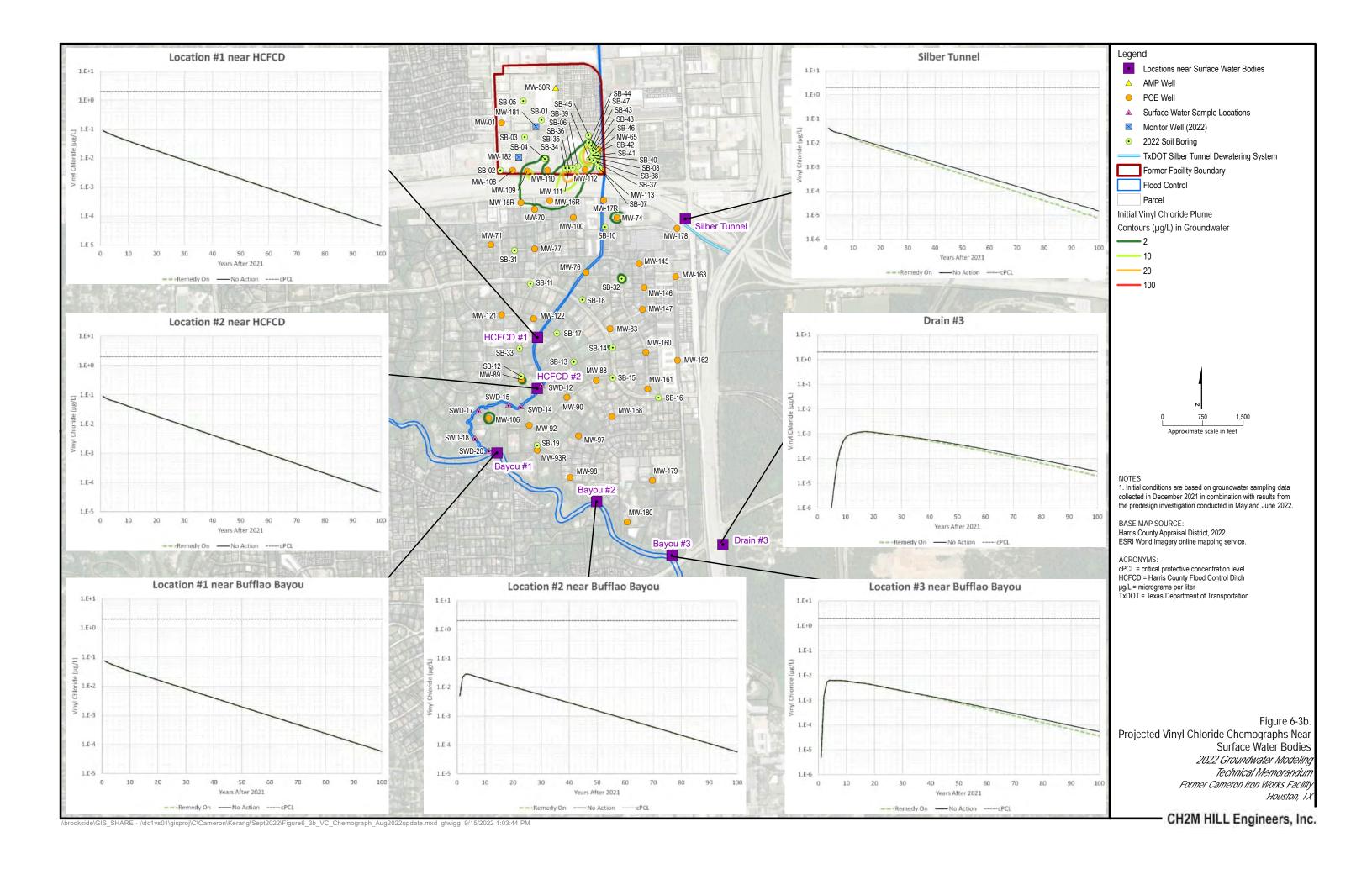


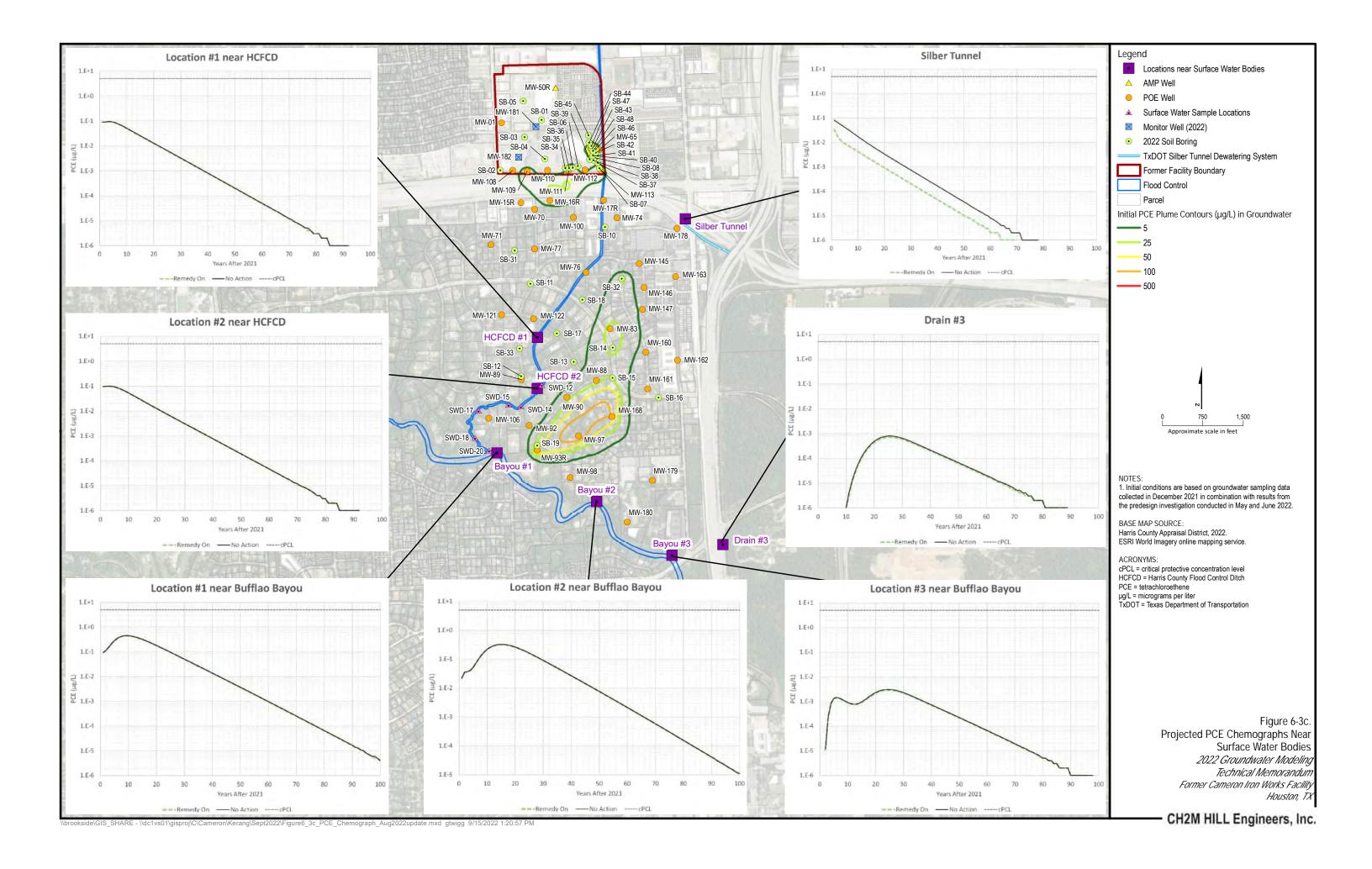


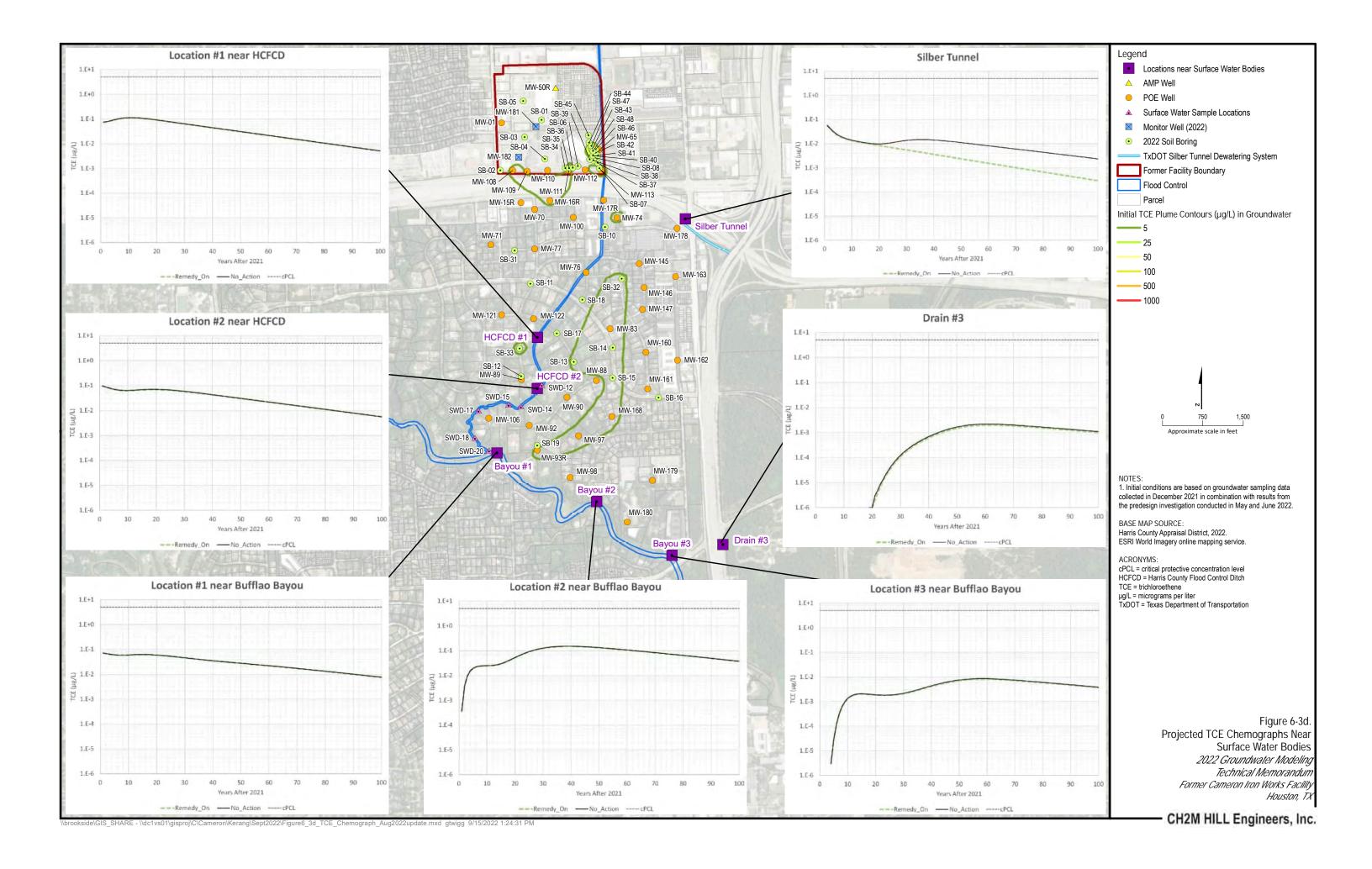




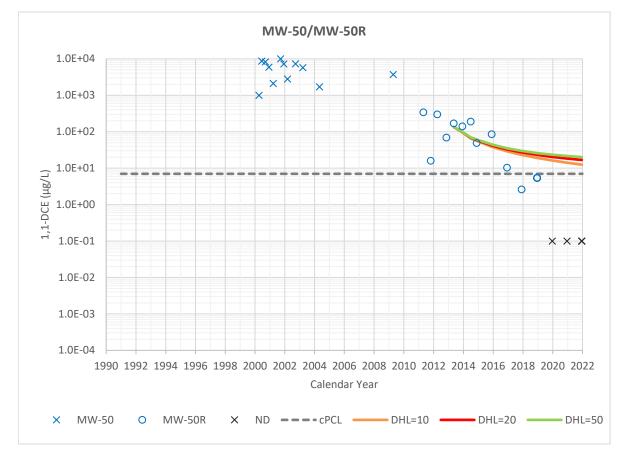

Figure 6-2.

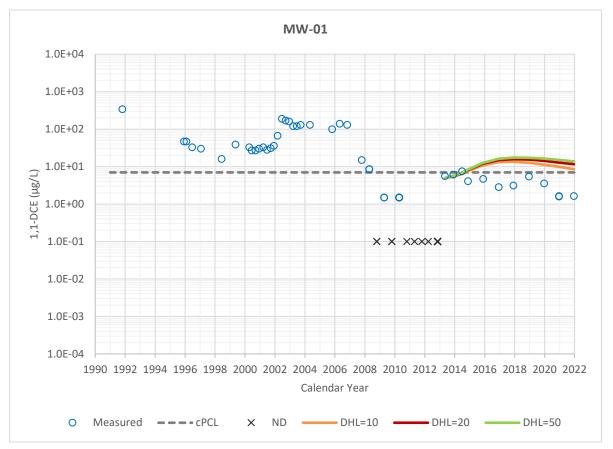

Projected Plume Areas Through Time

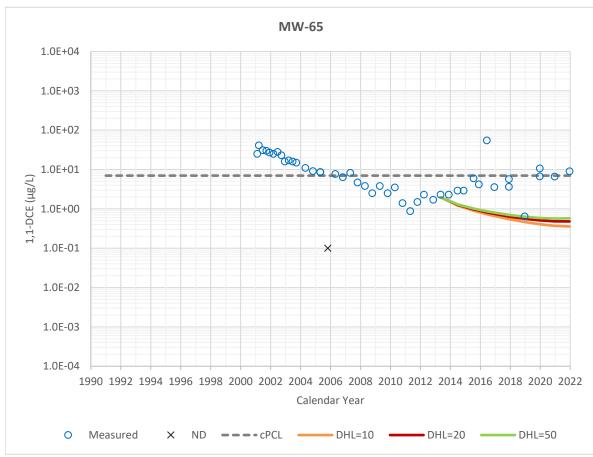

2022 Groundwater Modeling Technical Memorandum

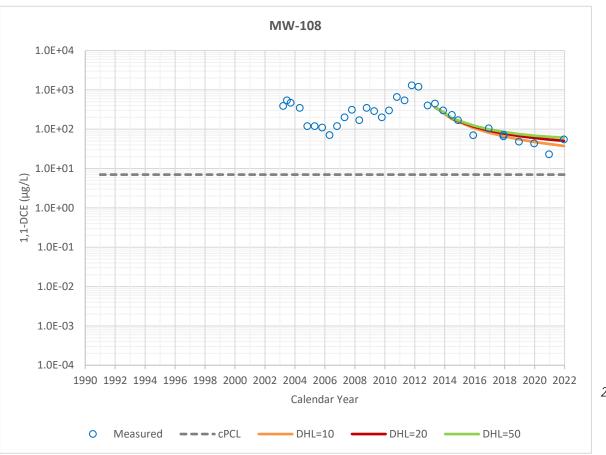

Former Cameron Iron Works Facility

Houston, Texas







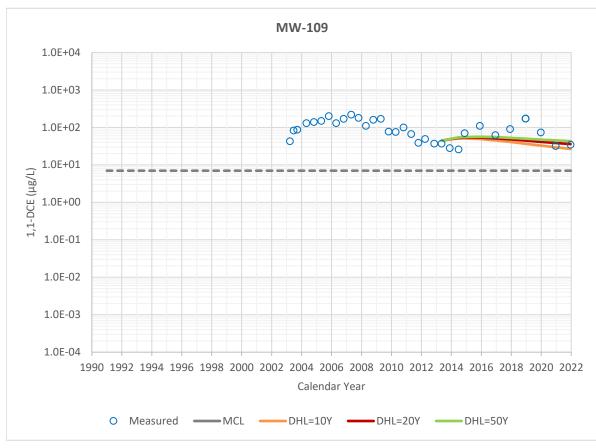


Attachment A-1 Modeled and Measured 1,1-DCE Chemographs

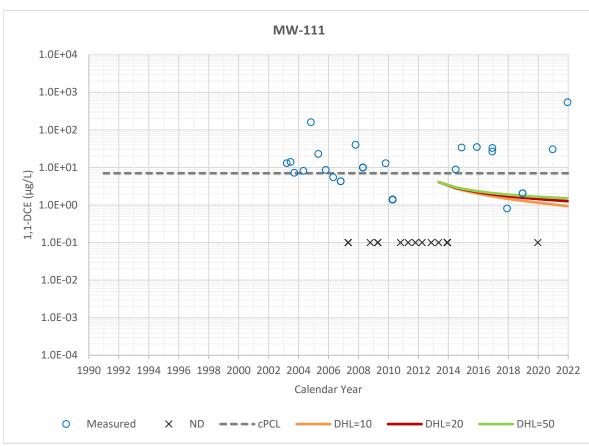
Notes:

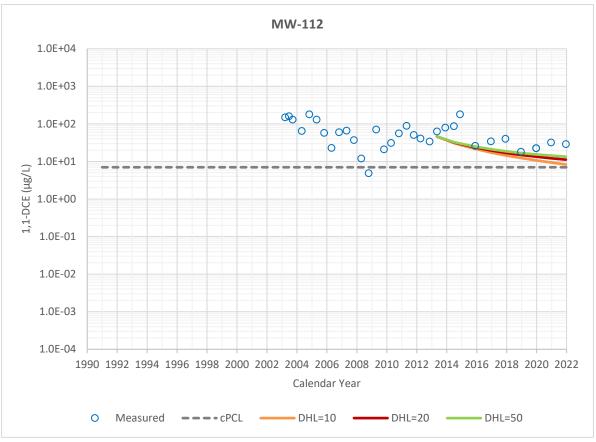
1,1-DCE = 1,1-dichloroethene

cPCL = critical protective concentration level


DHL = degradation half life in years

μg/L = microgram per liter


ND = not detected

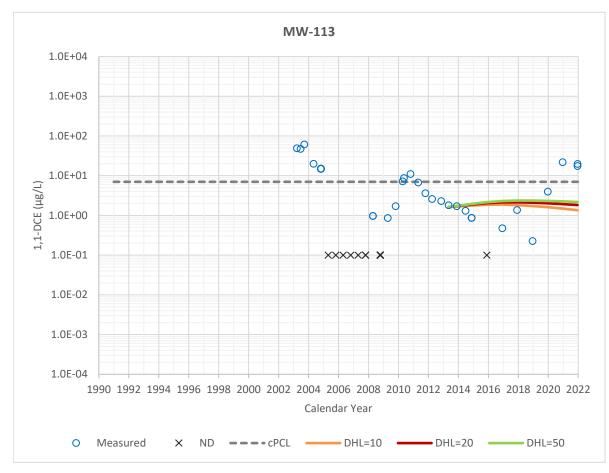

Attachment A-1.
Modeled and Measured
1,1-DCE Chemographs

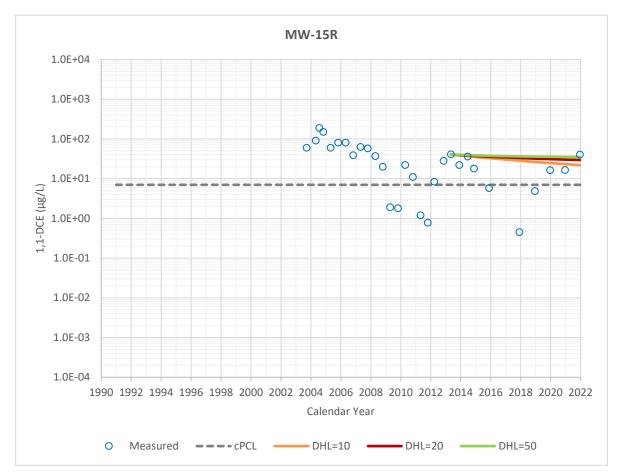
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

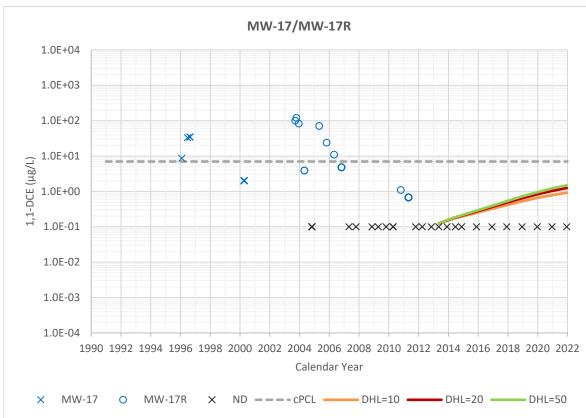
Notes:

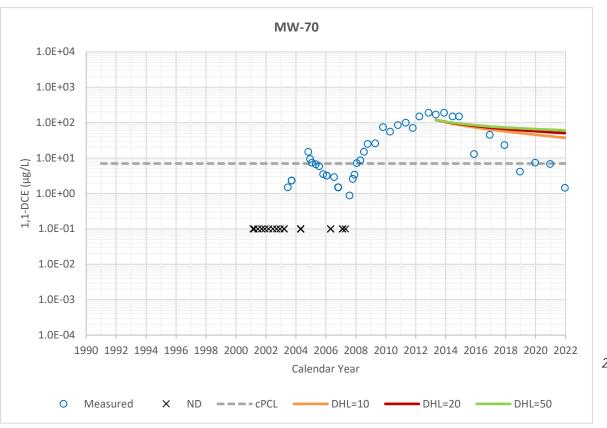
1,1-DCE = 1,1-dichloroethene

cPCL = critical protective concentration level


DHL = degradation half life in years


 μ g/L = microgram per liter


ND = not detected


Attachment A-1.

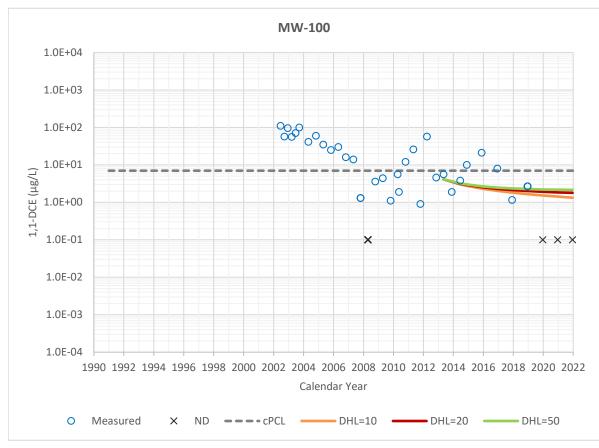
Modeled and Measured
1,1-DCE Chemographs
2022 Groundwater Modeling Technical Memorandum
Former Cameron Iron Works Facility
Houston, Texas

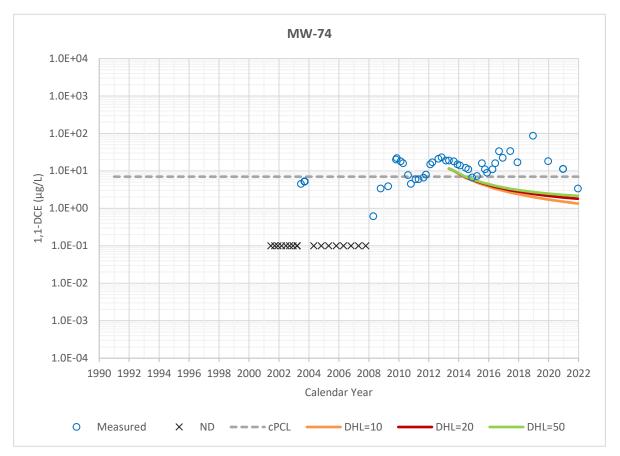
1,1-DCE = 1,1-dichloroethene

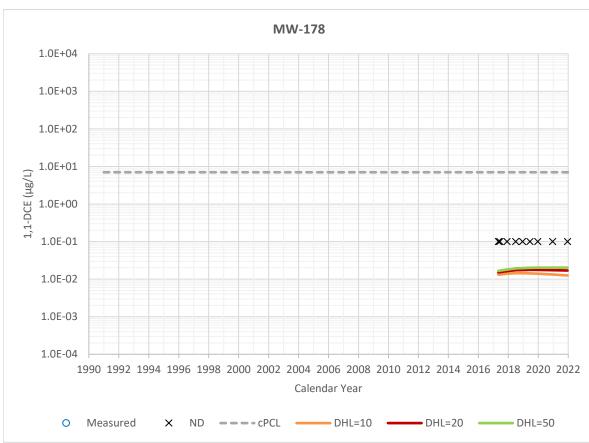
cPCL = critical protective concentration level

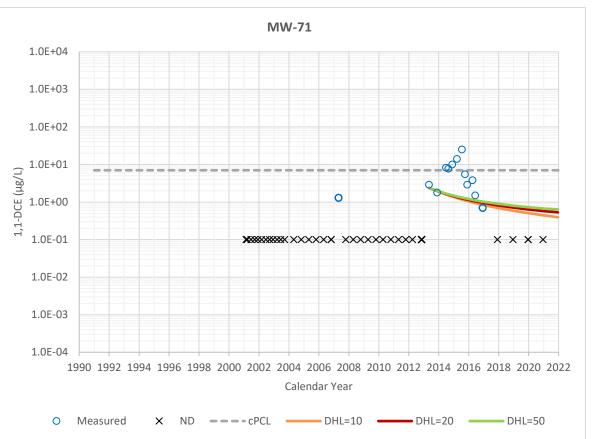
DHL = degradation half life in years

μg/L = microgram per liter


ND = not detected


Attachment A-1.

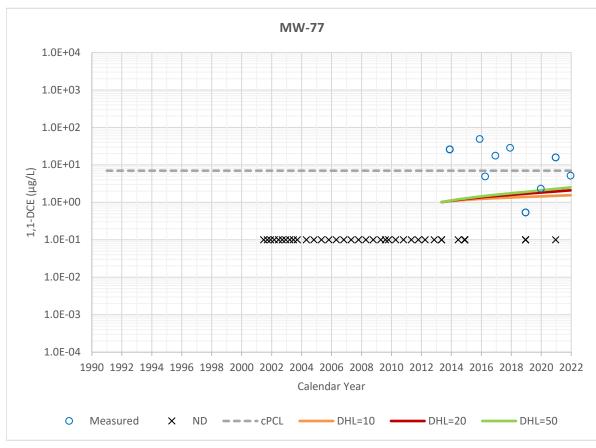

Modeled and Measured
1,1-DCE Chemographs
2022 Groundwater Modeling Technical Memorandum
Former Cameron Iron Works Facility

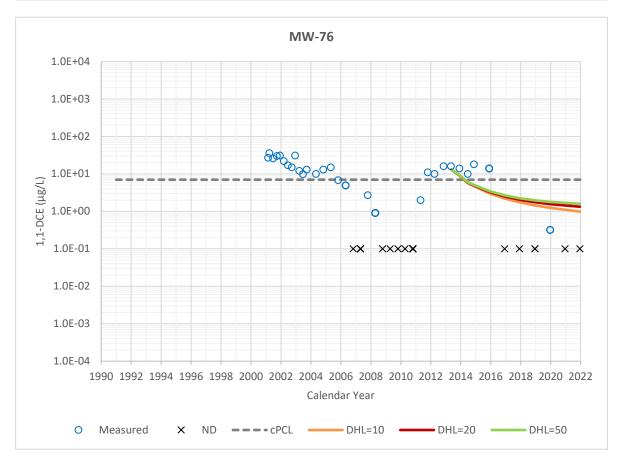

CH2M HILL Engineers, Inc.

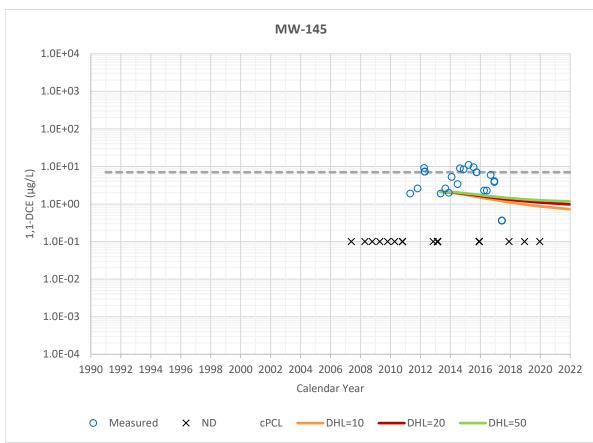
Houston, Texas

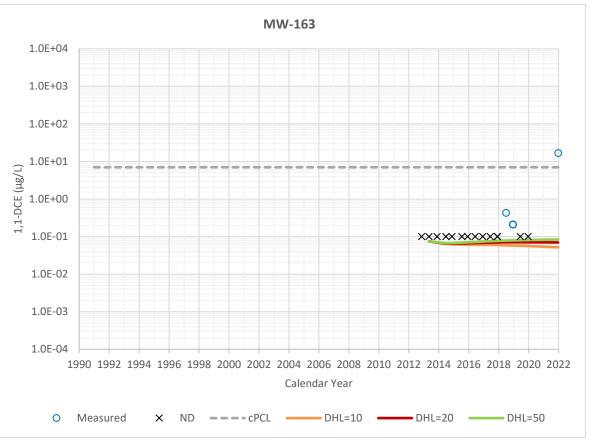
1,1-DCE = 1,1-dichloroethene

cPCL = critical protective concentration level


DHL = degradation half life in years


 μ g/L = microgram per liter

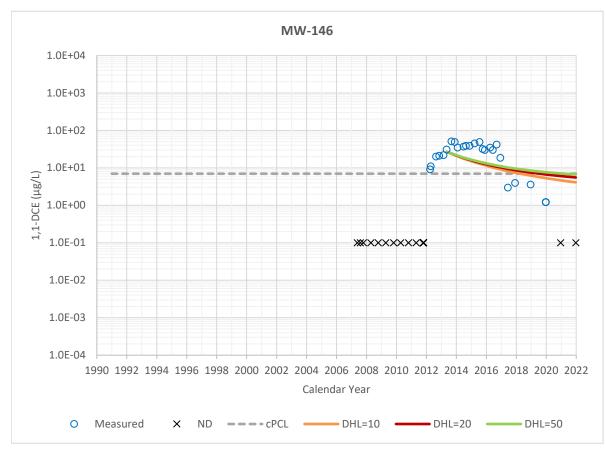

ND = not detected

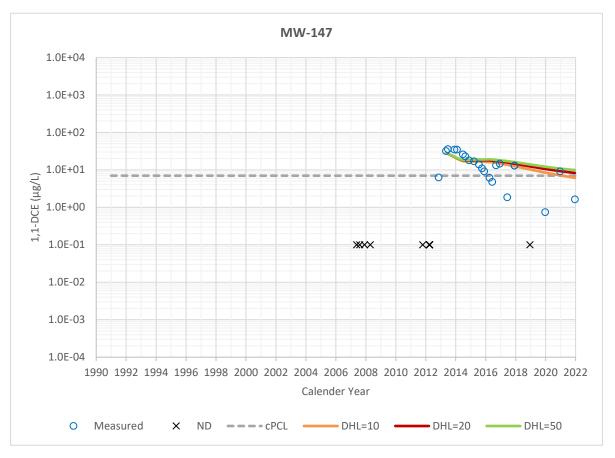

Attachment A-1.

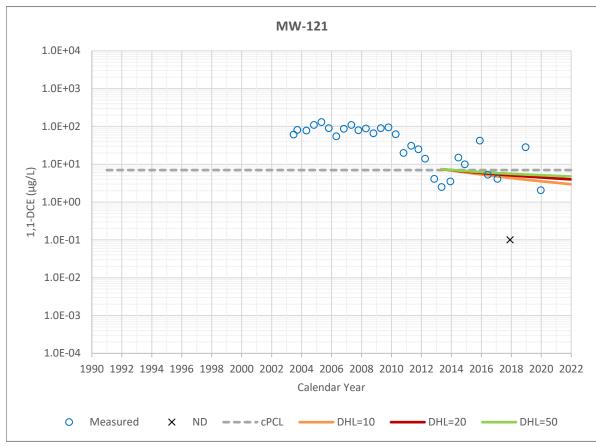
Modeled and Measured
1,1-DCE Chemographs
2022 Groundwater Modeling Technical Memorandum
Former Cameron Iron Works Facility
Houston, Texas
CH2M HILL Engineers, Inc.

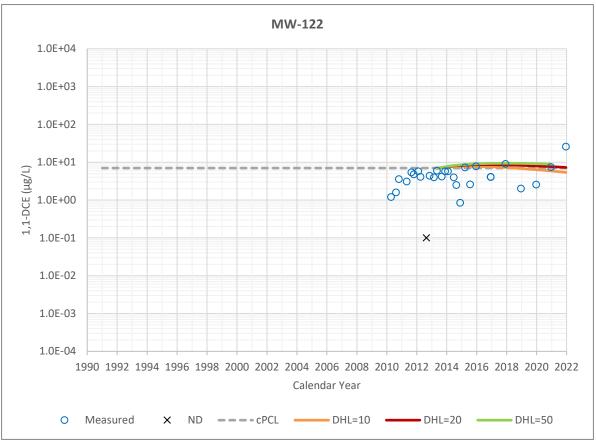
1,1-DCE = 1,1-dichloroethene

cPCL = critical protective concentration level


DHL = degradation half life in years


 μ g/L = microgram per liter


ND = not detected

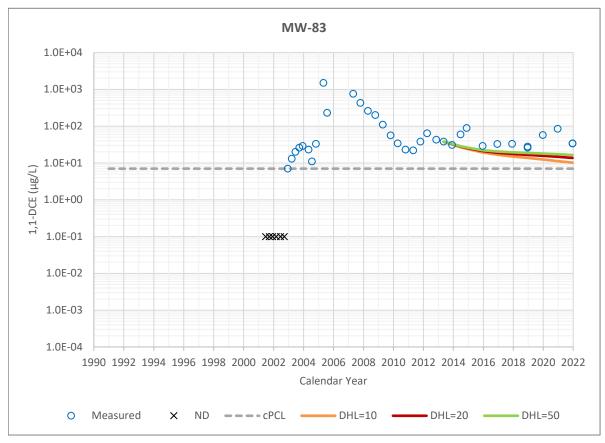

Attachment A-1.

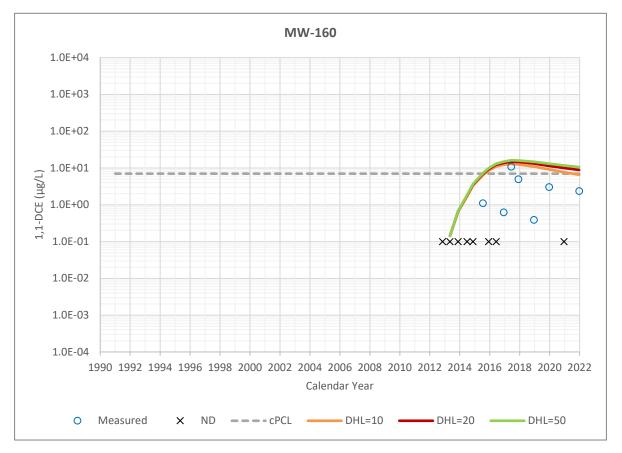
Modeled and Measured
1,1-DCE Chemographs
2022 Groundwater Modeling Technical Memorandum
Former Cameron Iron Works Facility
Houston, Texas
CH2M HILL Engineers, Inc.

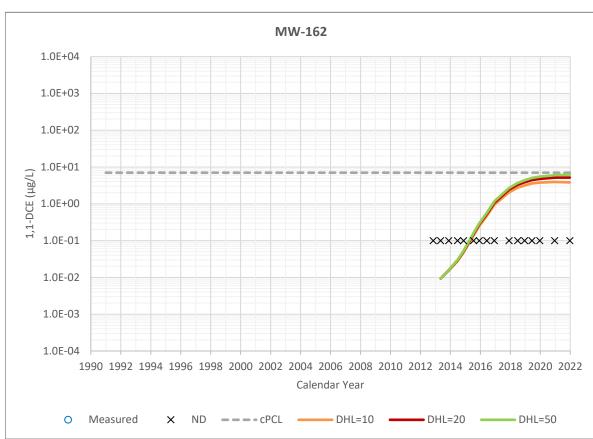
1,1-DCE = 1,1-dichloroethene

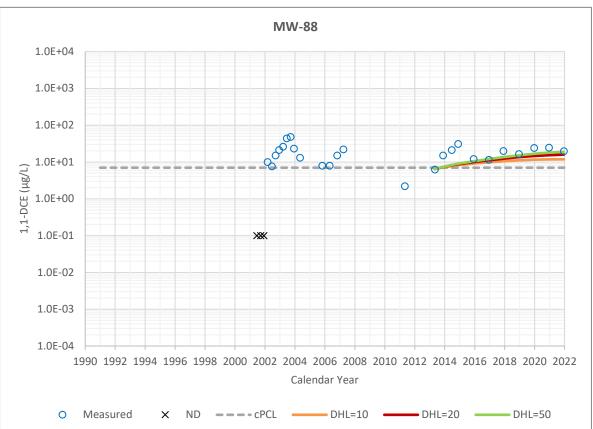
cPCL = critical protective concentration level

DHL = degradation half life in years


μg/L = microgram per liter


ND = not detected


Attachment A-1. Modeled and Measured


1,1-DCE Chemographs

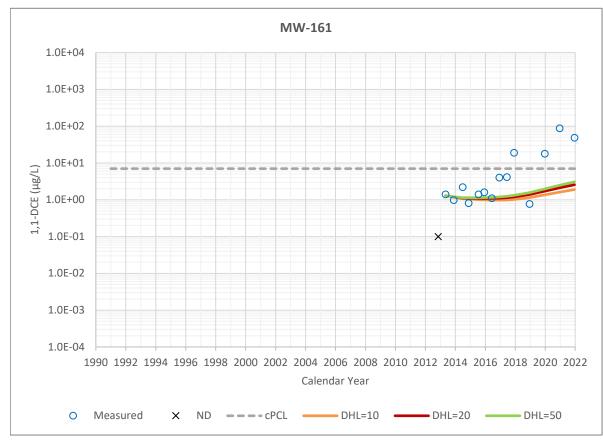
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

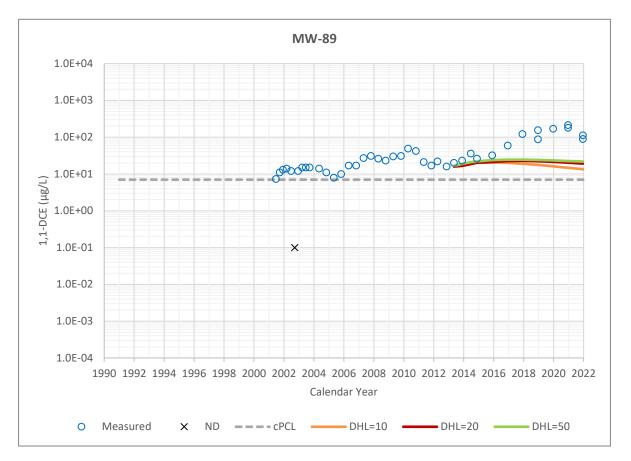
1,1-DCE = 1,1-dichloroethene

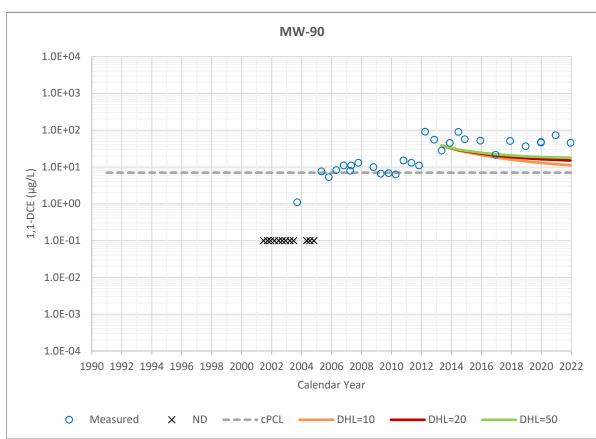
cPCL = critical protective concentration level

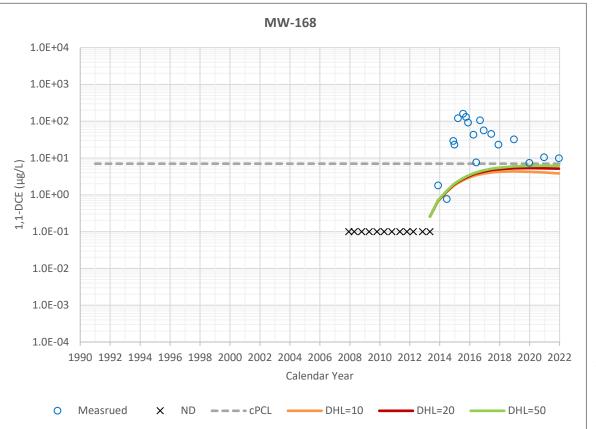
DHL = degradation half life in years

μg/L = microgram per liter


ND = not detected


Attachment A-1.

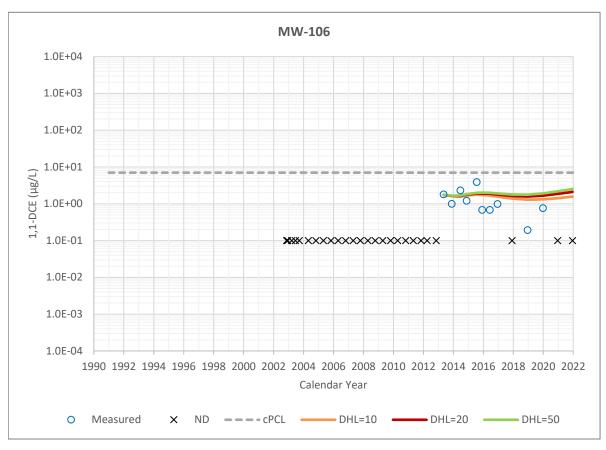

Modeled and Measured
1,1-DCE Chemographs
2022 Groundwater Modeling Technical Memorandum
Former Cameron Iron Works Facility

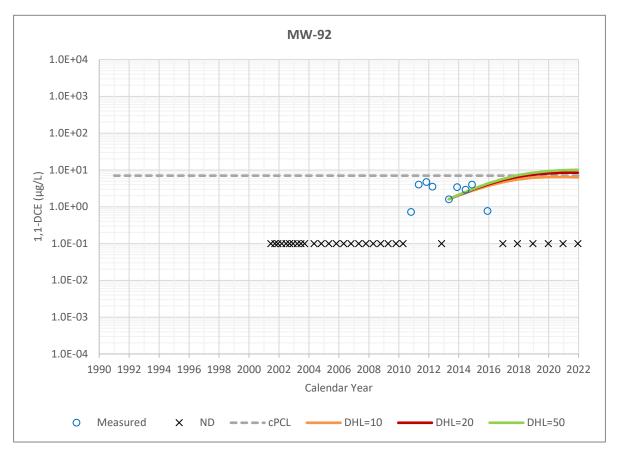

CH2M HILL Engineers, Inc.

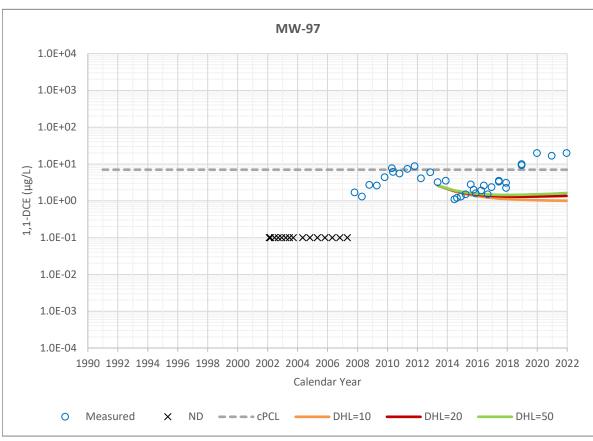
Houston, Texas

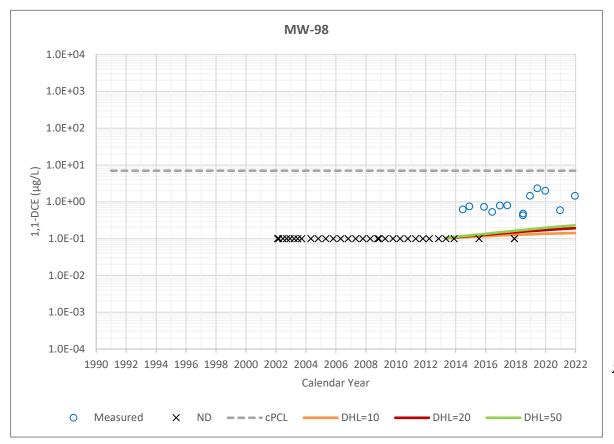
1,1-DCE = 1,1-dichloroethene

cPCL = critical protective concentration level


DHL = degradation half life in years


 μ g/L = microgram per liter


ND = not detected


Attachment A-1.
Modeled and Measured
1,1-DCE Chemographs

2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

1,1-DCE = 1,1-dichloroethene

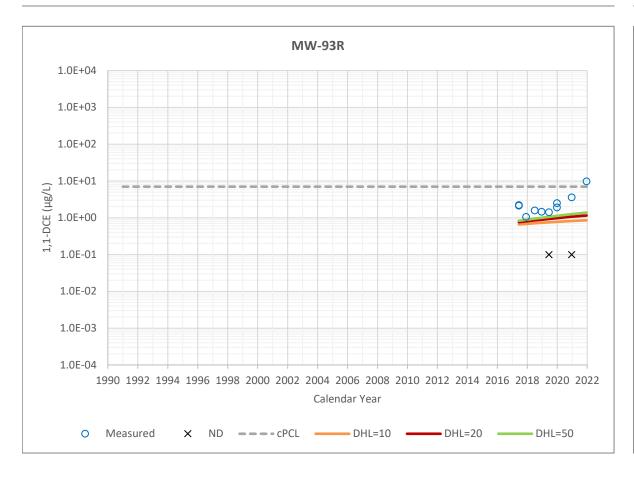
cPCL = critical protective concentration level

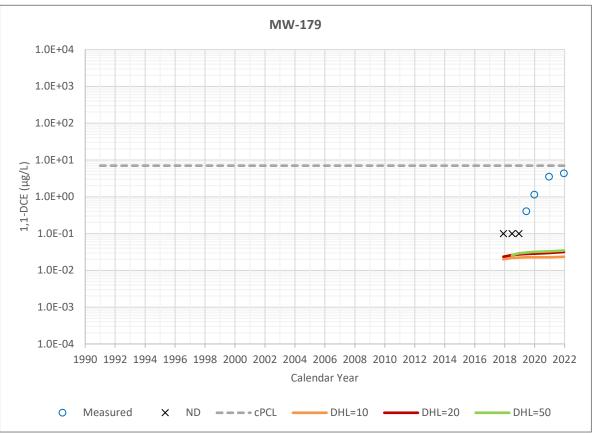
DHL = degradation half life in years

 μ g/L = microgram per liter

ND = not detected

Attachment A-1.


Modeled and Measured


1,1-DCE Chemographs

2022 Groundwater Modeling Technical Memorandum

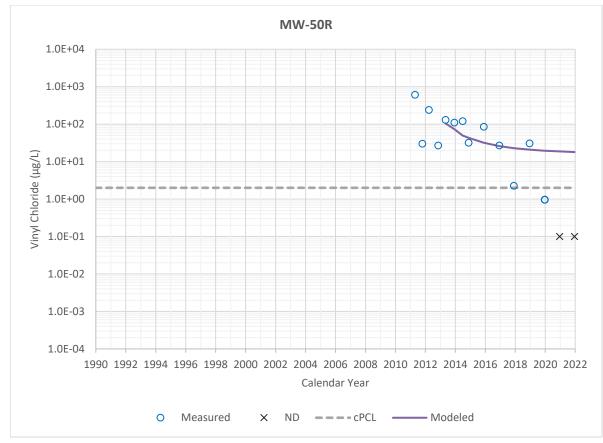
Houston, Texas CH2M HILL Engineers, Inc.

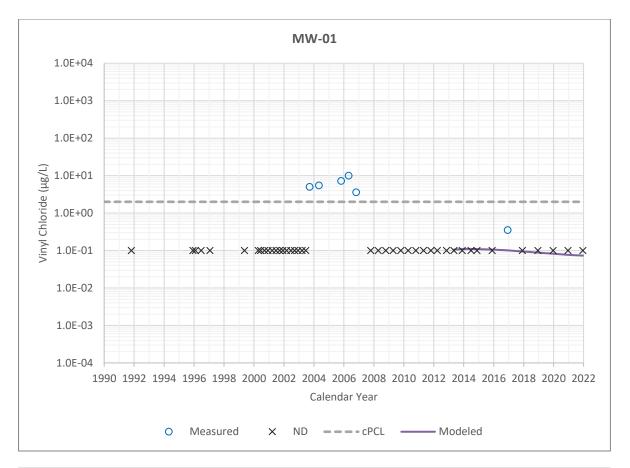
Former Cameron Iron Works Facility

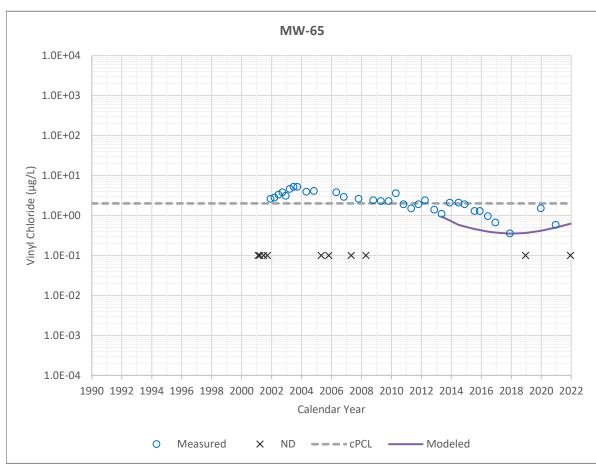
1,1-DCE = 1,1-dichloroethene

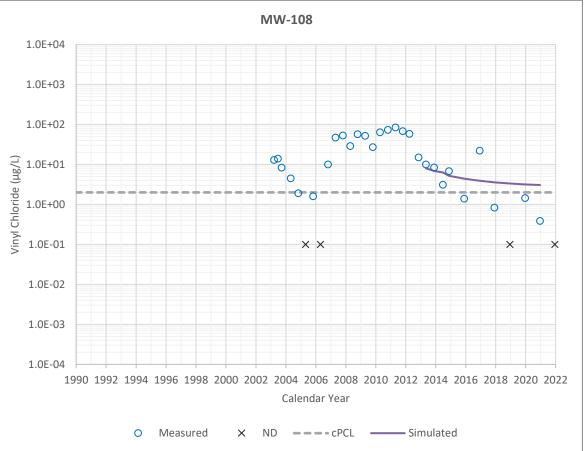
cPCL = critical protective concentration level

DHL = degradation half life in years


 μ g/L = microgram per liter

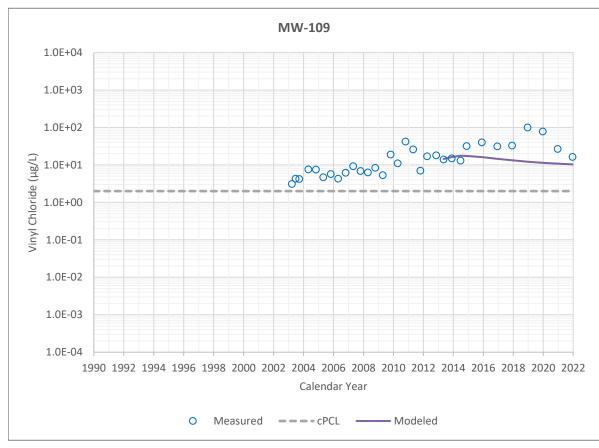

ND = not detected

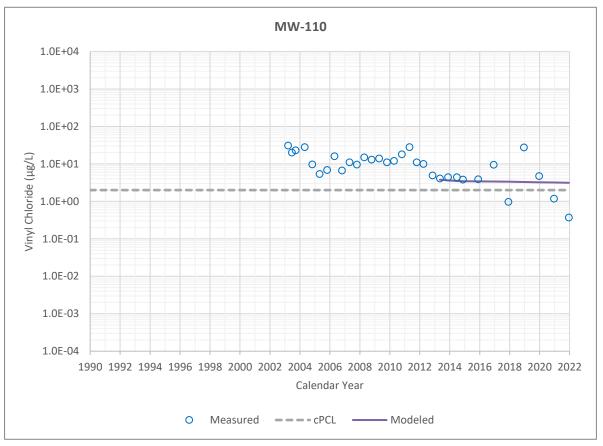

Attachment A-1.

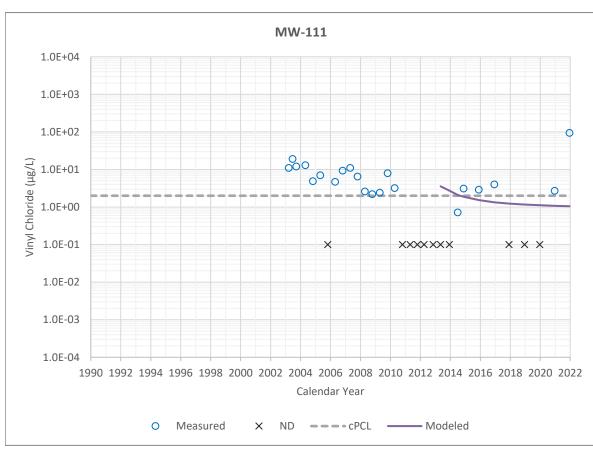

Modeled and Measured
1,1-DCE Chemographs
2022 Groundwater Modeling Technical Memorandum
Former Cameron Iron Works Facility
Houston, Texas

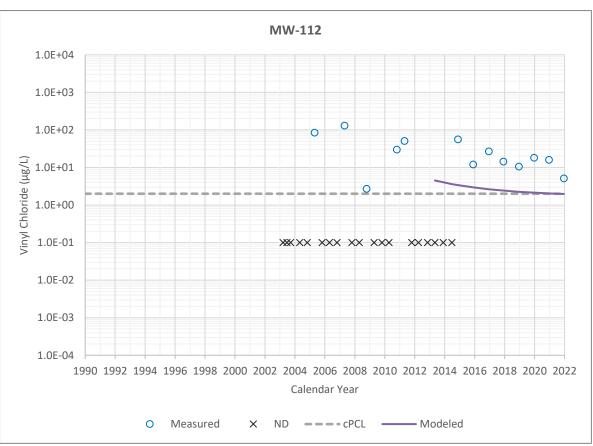
Attachment A-2 Modeled and Measured Vinyl Chloride Chemographs

cPCL = critical protective concentration level


DHL = degradation half life in years

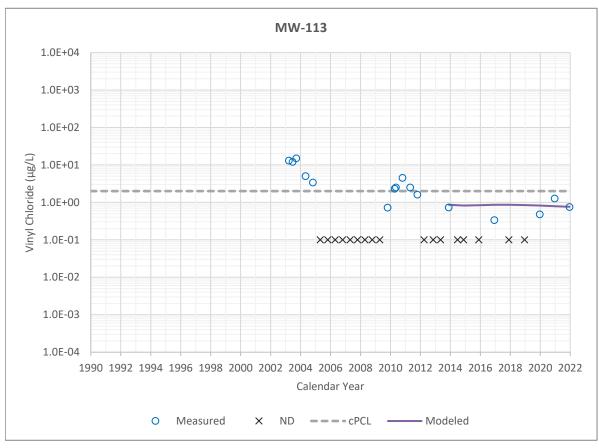

 μ g/L = microgram per liter

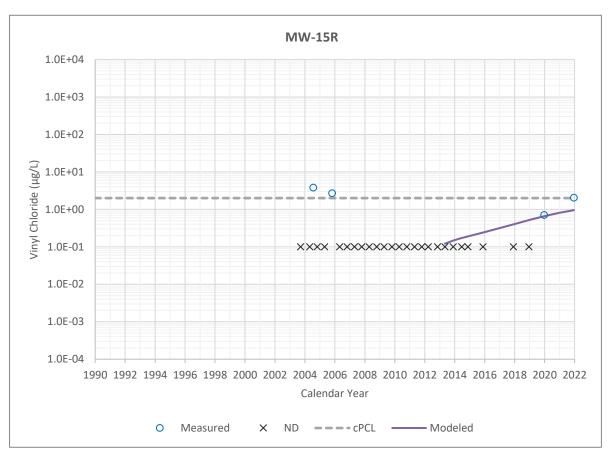

ND = not detected

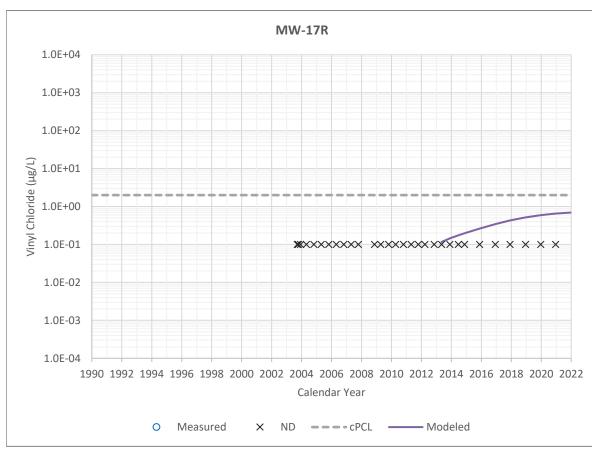

Attachment A-2. Modeled and Measured Vinyl Chloride Chemographs

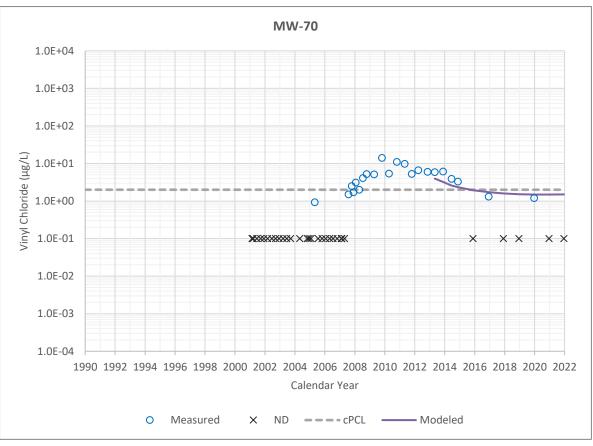
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

cPCL = critical protective concentration level


DHL = degradation half life in years

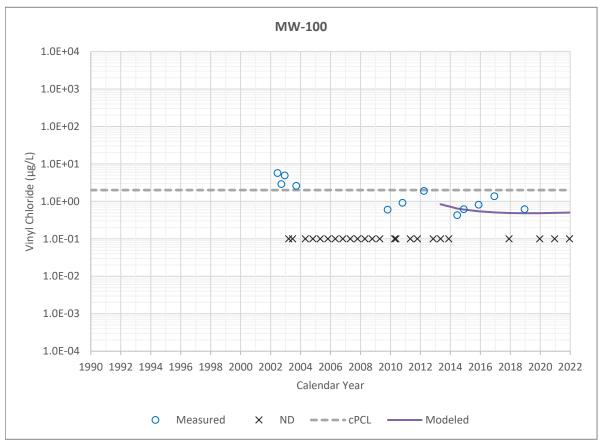

μg/L = microgram per liter

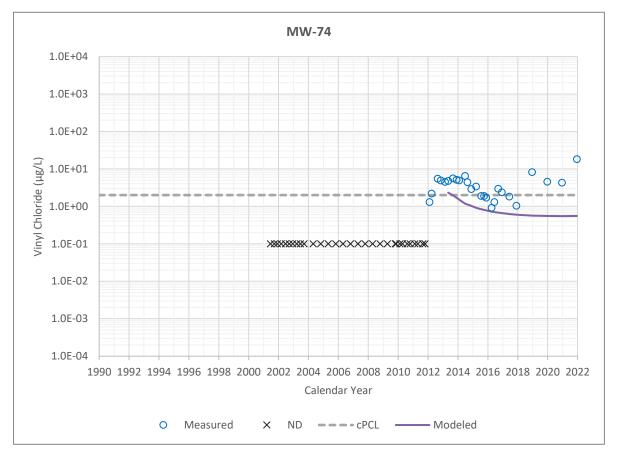

ND = not detected

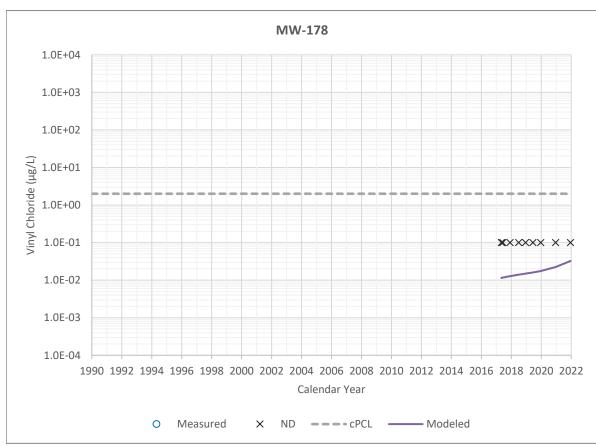

Attachment A-2. Modeled and Measured Vinyl Chloride Chemographs

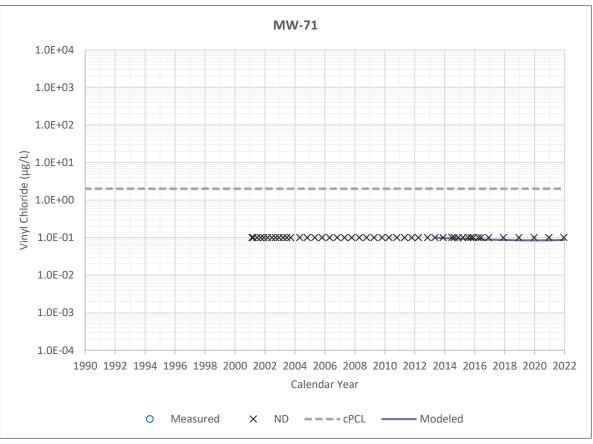
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

cPCL = critical protective concentration level


DHL = degradation half life in years

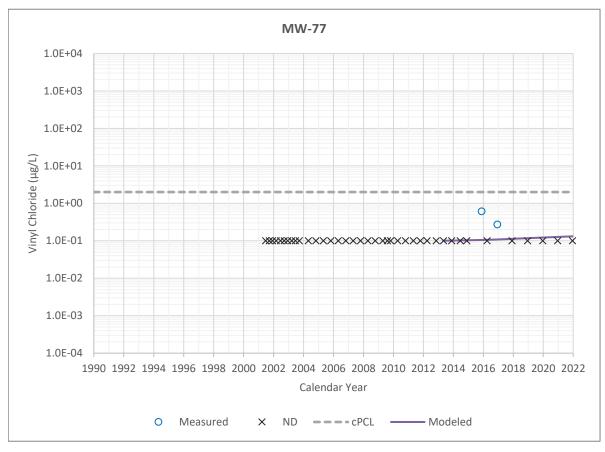

μg/L = microgram per liter

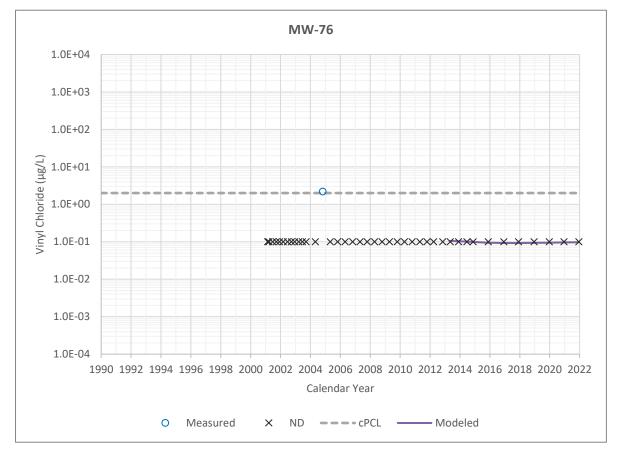

ND = not detected

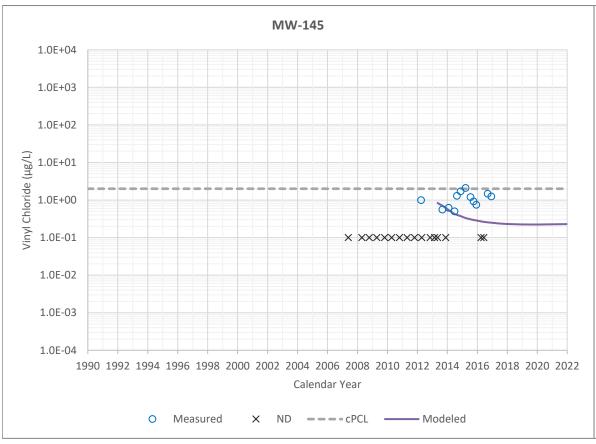

Attachment A-2. Modeled and Measured Vinyl Chloride Chemographs

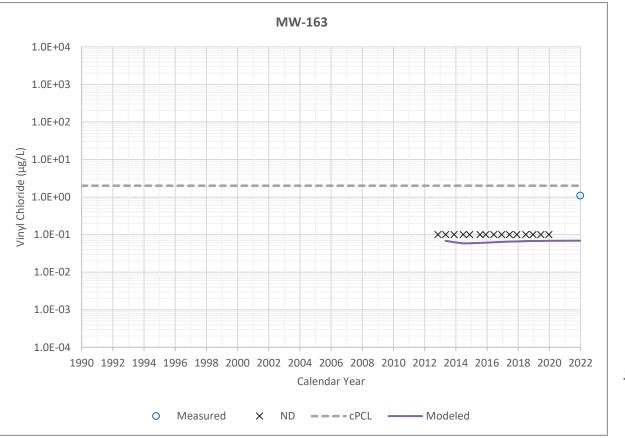
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

cPCL = critical protective concentration level


DHL = degradation half life in years

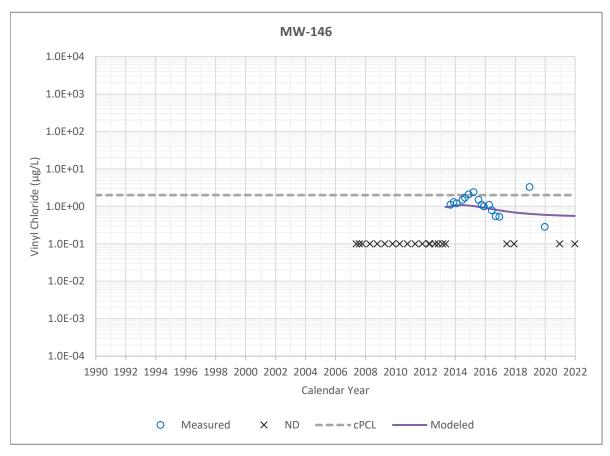

 μ g/L = microgram per liter

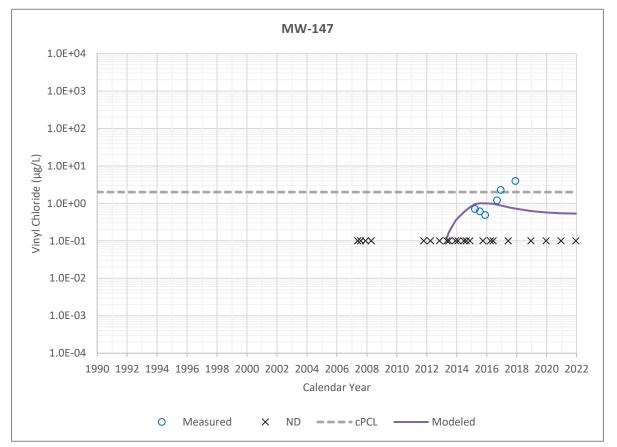

ND = not detected

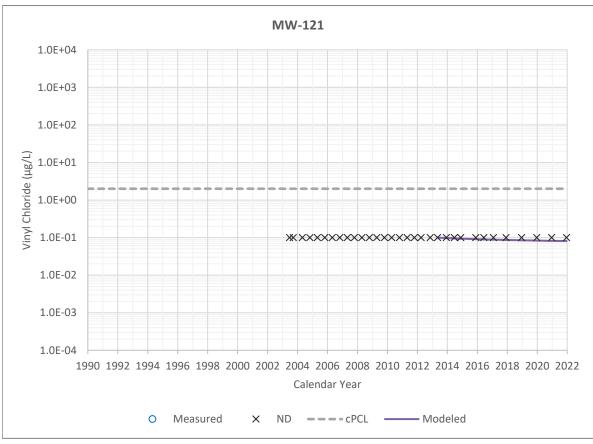

Attachment A-2. Modeled and Measured Vinyl Chloride Chemographs

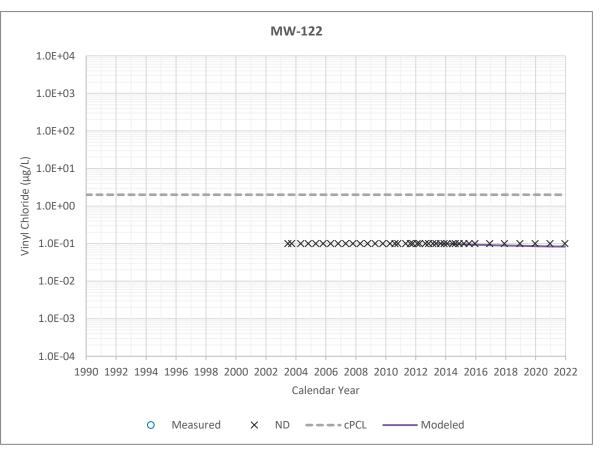
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

cPCL = critical protective concentration level


DHL = degradation half life in years


 μ g/L = microgram per liter


ND = not detected

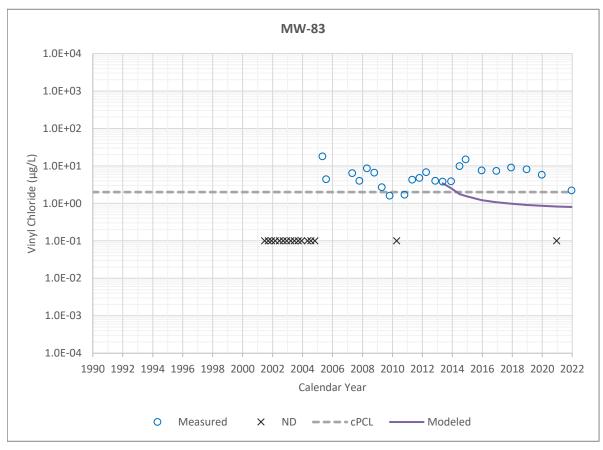

Attachment A-2. Modeled and Measured Vinyl Chloride Chemographs

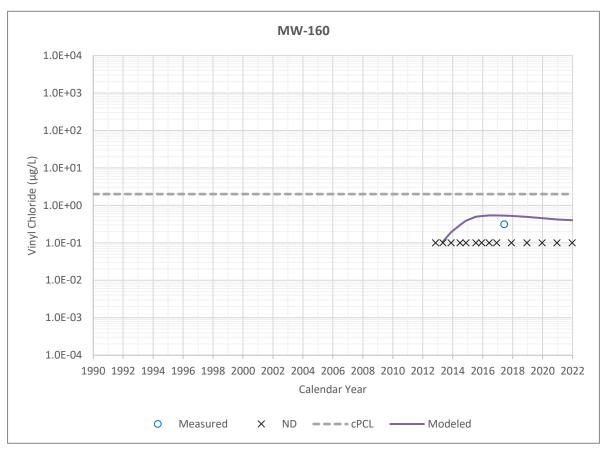
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

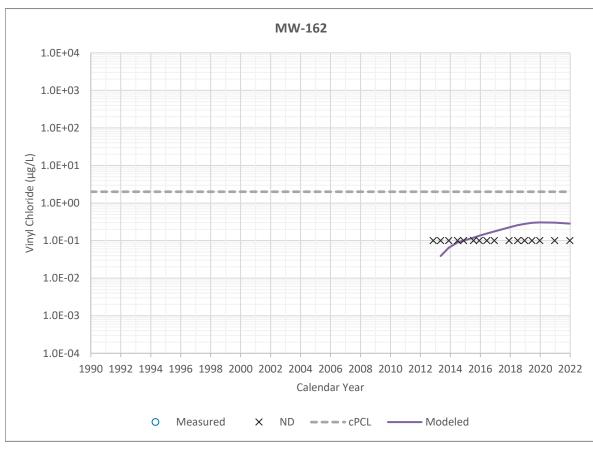
cPCL = critical protective concentration level

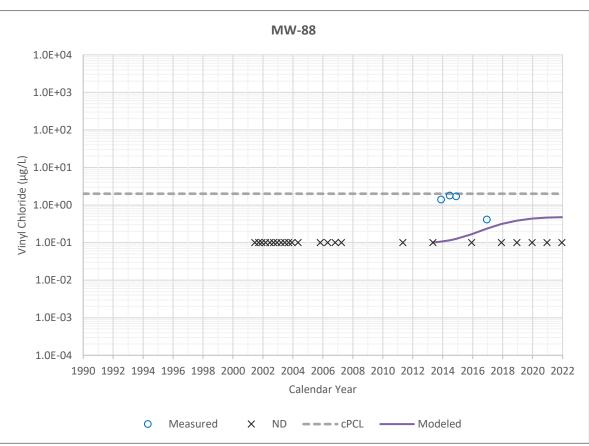
DHL = degradation half life in years

 μ g/L = microgram per liter


ND = not detected

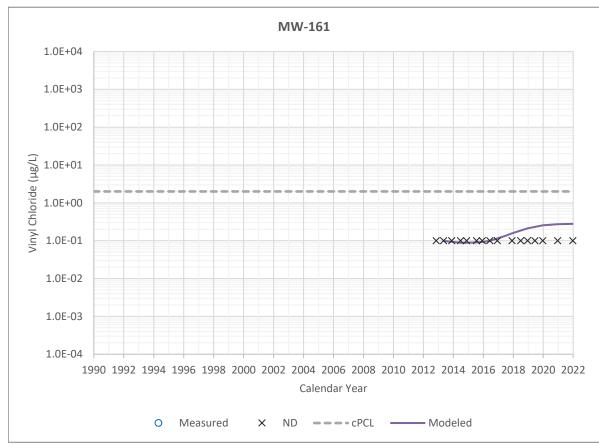

Attachment A-2.

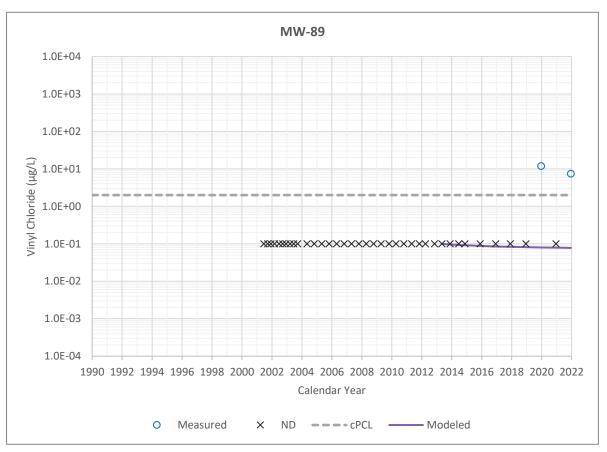

Modeled and Measured

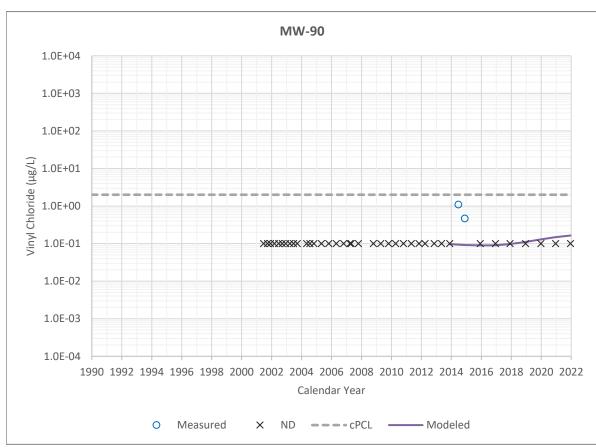

Vinyl Chloride Chemographs

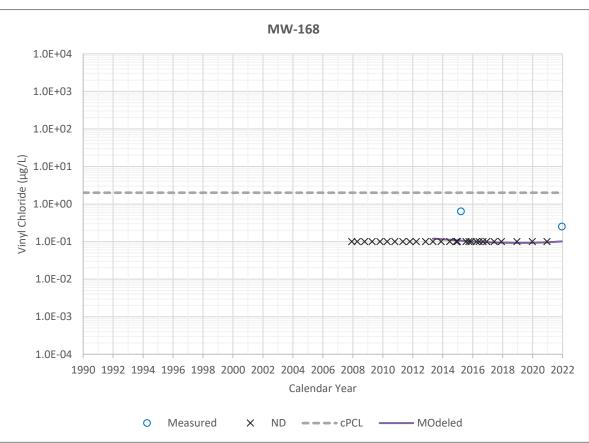
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

cPCL = critical protective concentration level


DHL = degradation half life in years

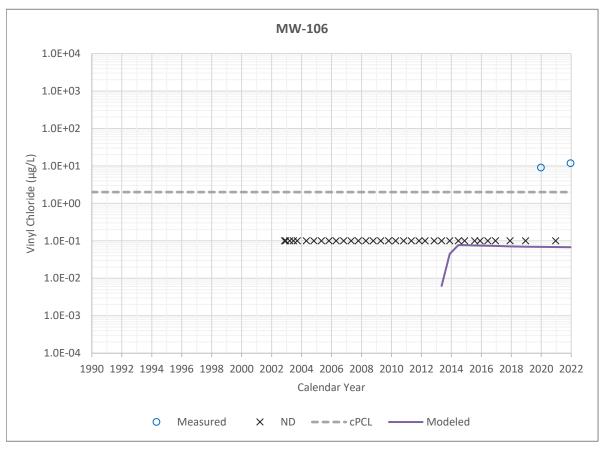

 μ g/L = microgram per liter

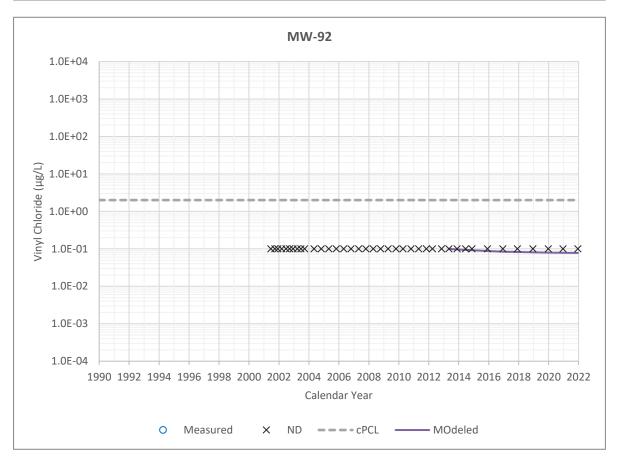

ND = not detected

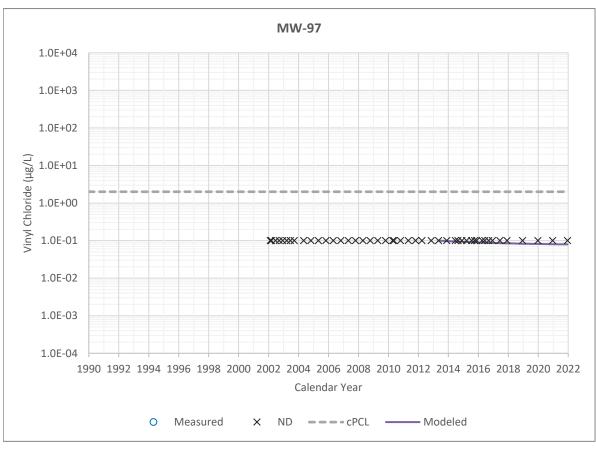

Attachment A-2. Modeled and Measured Vinyl Chloride Chemographs

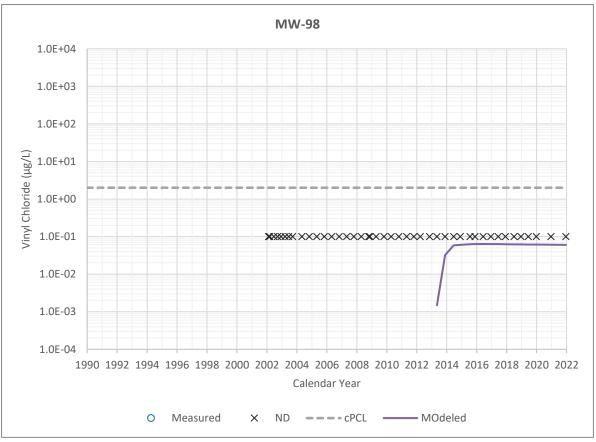
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

cPCL = critical protective concentration level


DHL = degradation half life in years

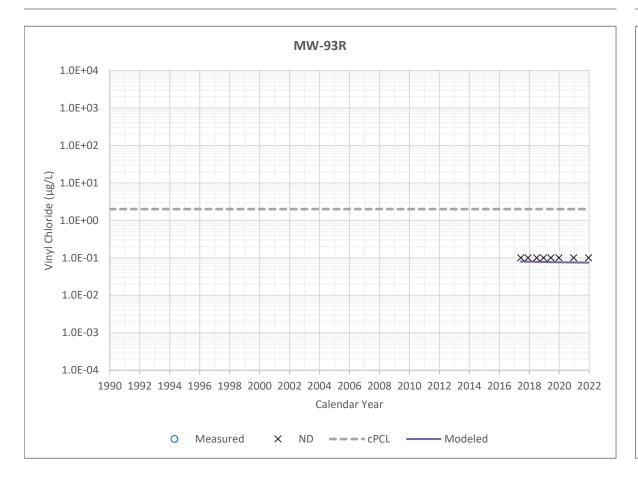

 μ g/L = microgram per liter

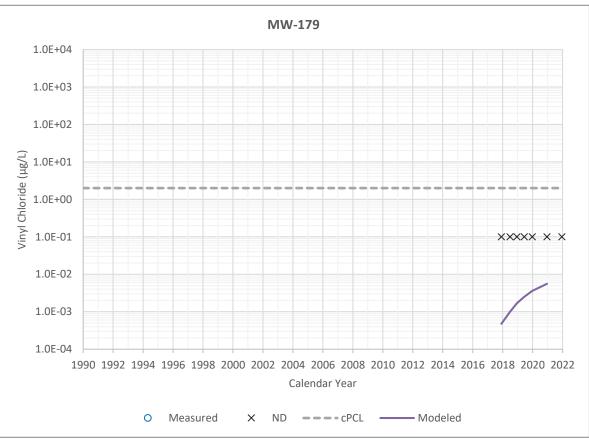

ND = not detected


Attachment A-2. Modeled and Measured Vinyl Chloride Chemographs

2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

cPCL = critical protective concentration level


DHL = degradation half life in years


 μ g/L = microgram per liter

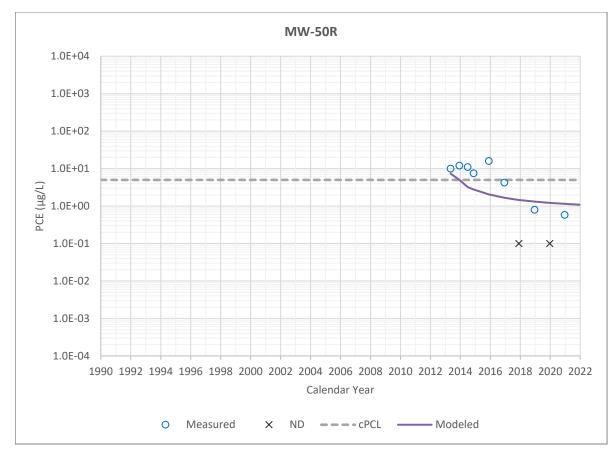
ND = not detected

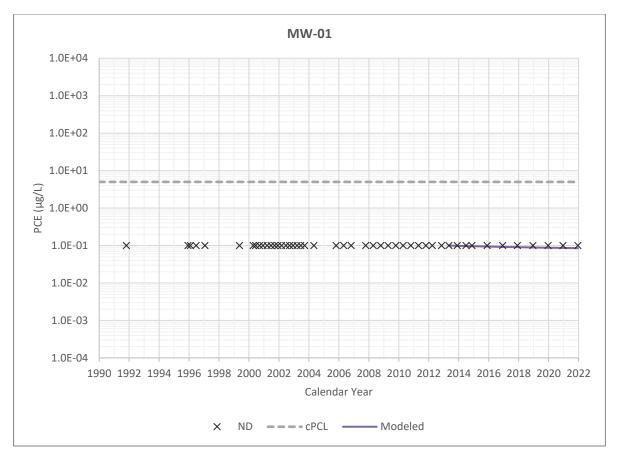
Attachment A-2. Modeled and Measured Vinyl Chloride Chemographs

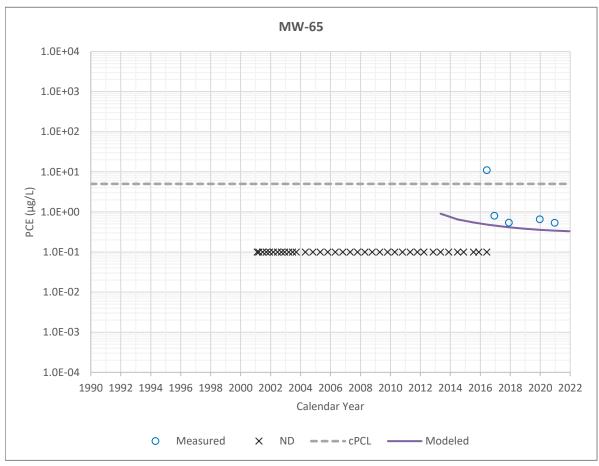
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

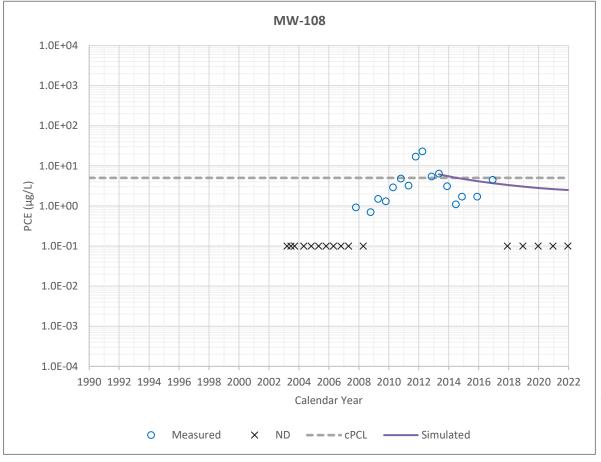
cPCL = critical protective concentration level

DHL = degradation half life in years


μg/L = microgram per liter


ND = not detected

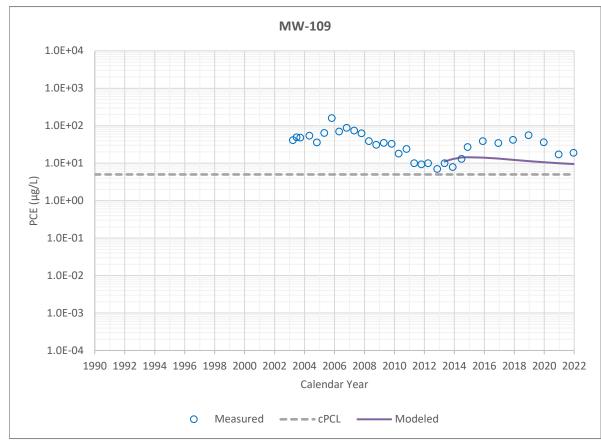

Attachment A-2. Modeled and Measured Vinyl Chloride Chemographs

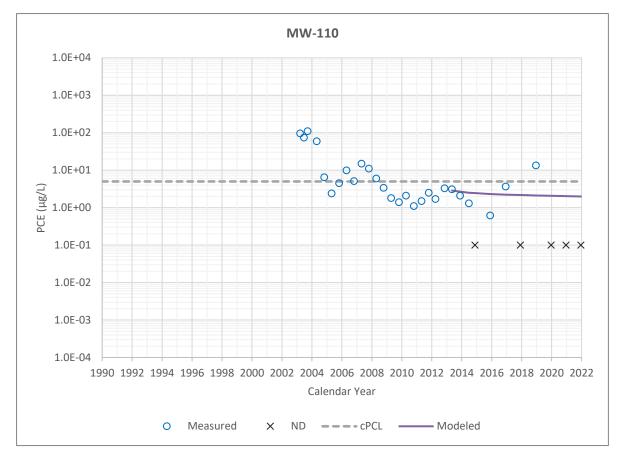

2022 Groundwater Modeling Technical Memorandum
Former Cameron Iron Works Facility
Houston, Texas

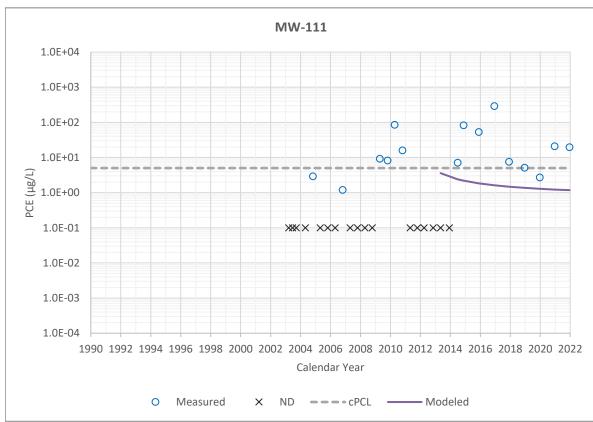
Attachment A-3 Modeled and Measured PCE Chemographs

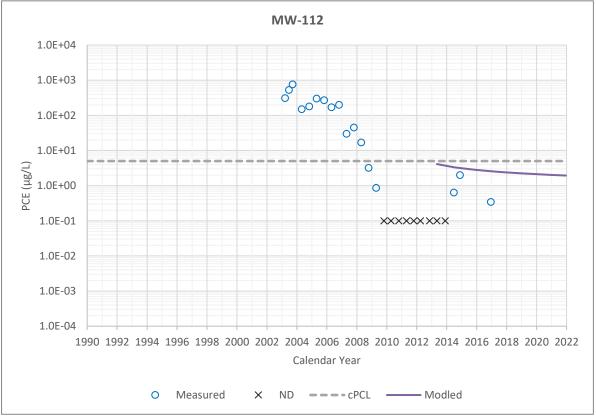
cPCL = critical protective concentration level

DHL = degradation half life in years


 μ g/L = microgram per liter


ND = not detected

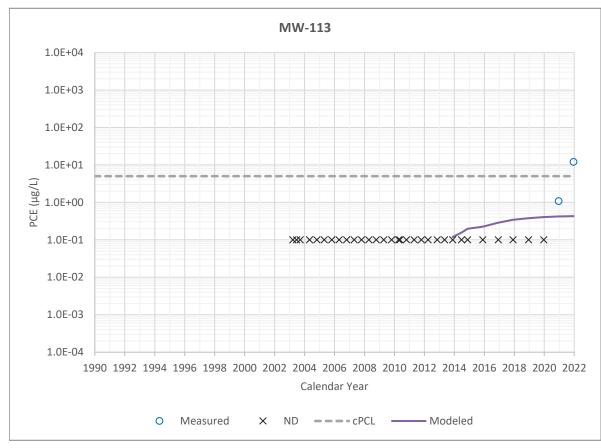

PCE = tetrachloroethene

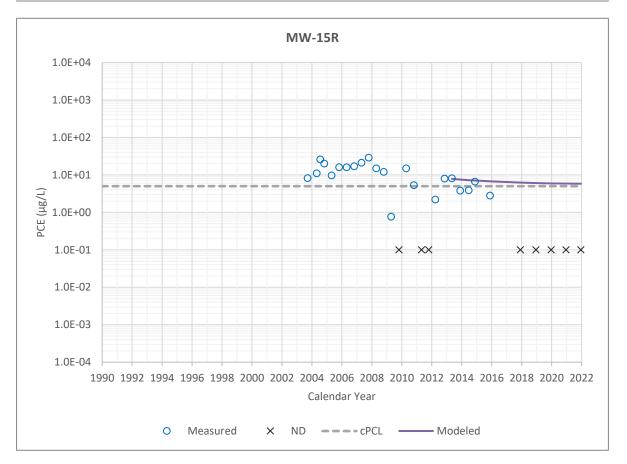

Attachment A-3. Modeled and Measured PCE Chemographs

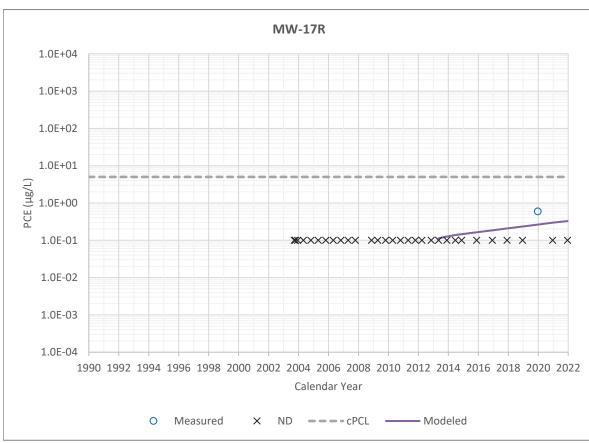
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

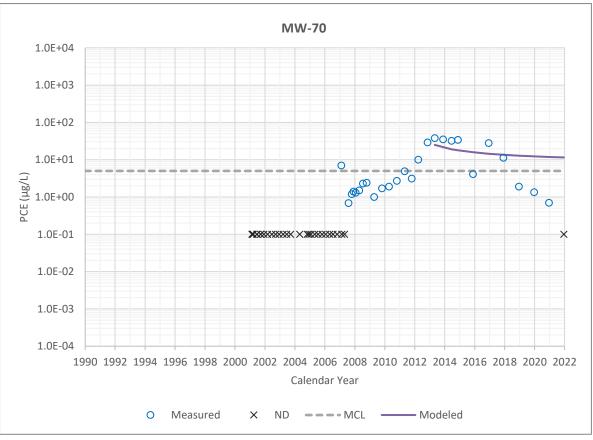
cPCL = critical protective concentration level

DHL = degradation half life in years


μg/L = microgram per liter


ND = not detected

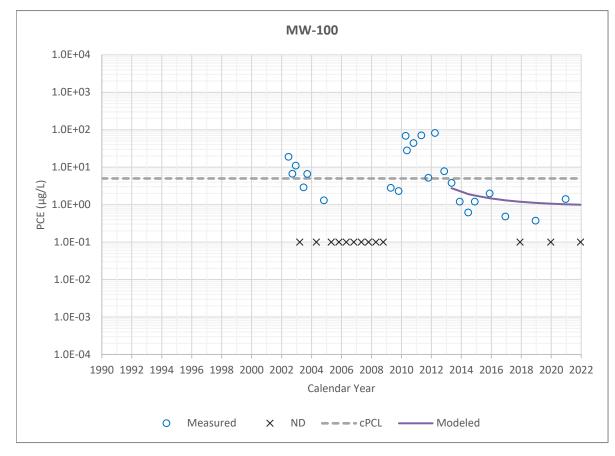

PCE = tetrachloroethene

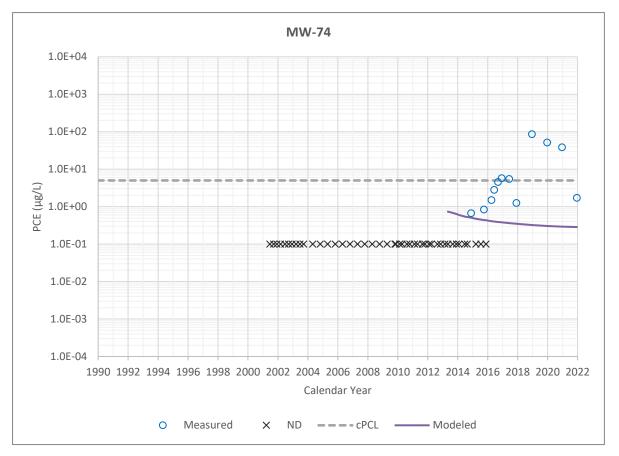

Attachment A-3. Modeled and Measured PCE Chemographs

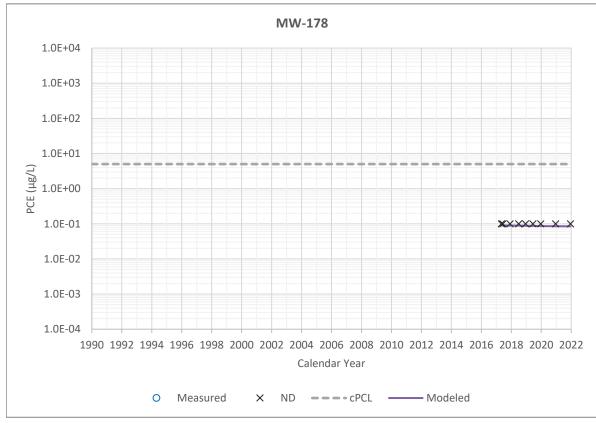
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

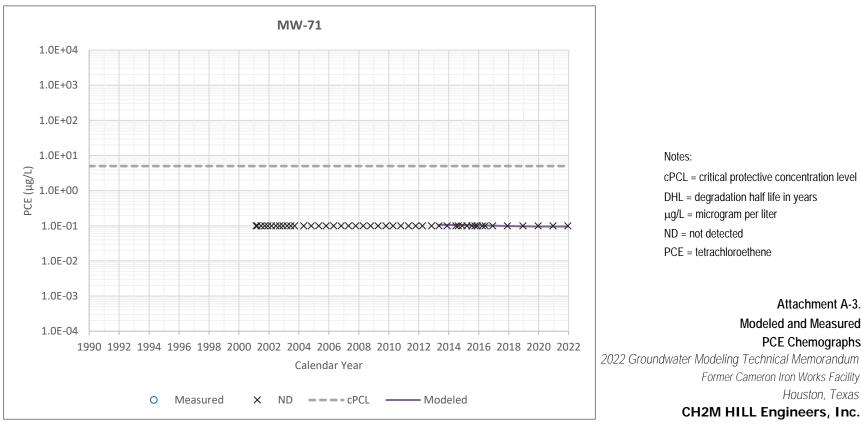
cPCL = critical protective concentration level

DHL = degradation half life in years


μg/L = microgram per liter


ND = not detected


 $\label{eq:pce} \mbox{PCE} = \mbox{tetrachloroethene}$


Attachment A-3.
Modeled and Measured
PCE Chemographs

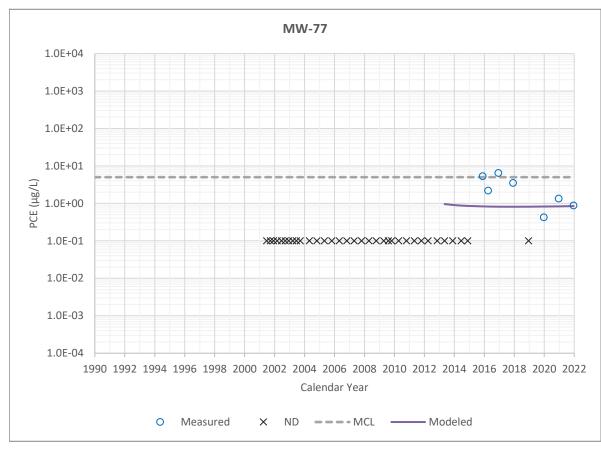
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

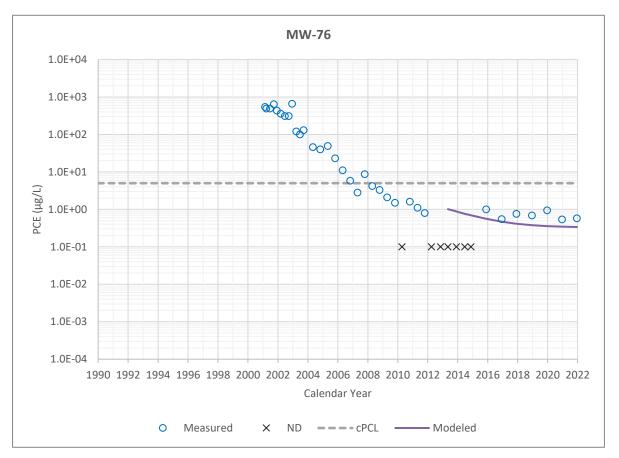
cPCL = critical protective concentration level

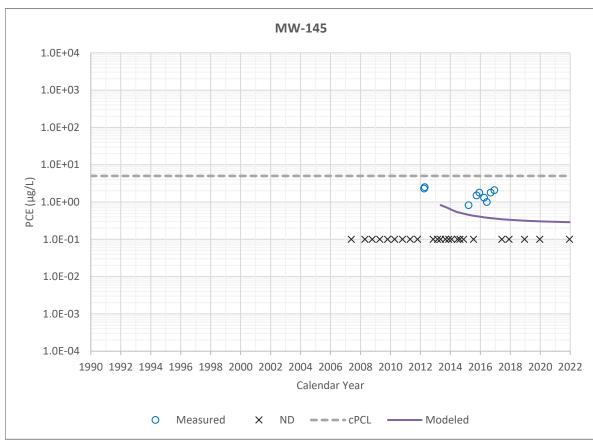
Attachment A-3. **Modeled and Measured**

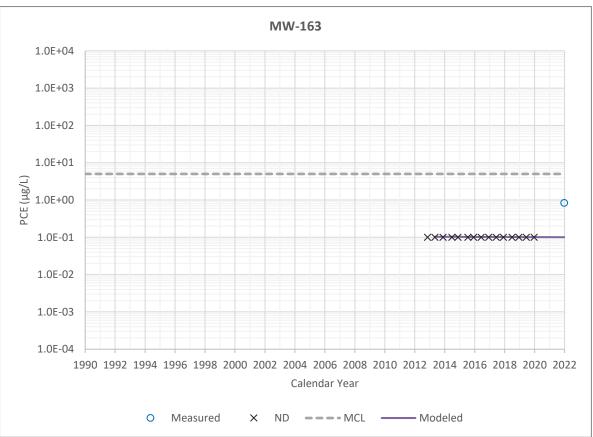
PCE Chemographs

Houston, Texas


Former Cameron Iron Works Facility


CH2M HILL Engineers, Inc.


DHL = degradation half life in years

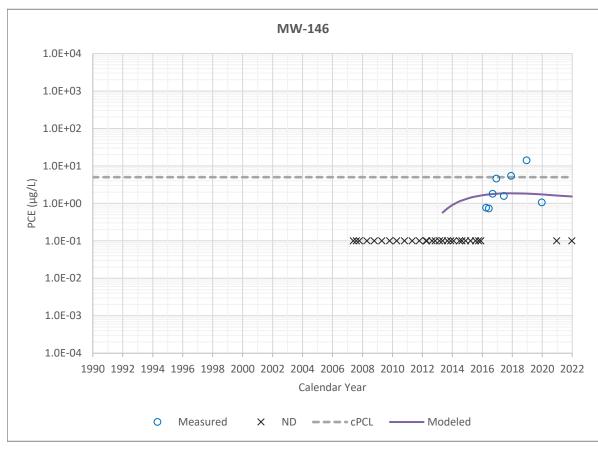

 μ g/L = microgram per liter

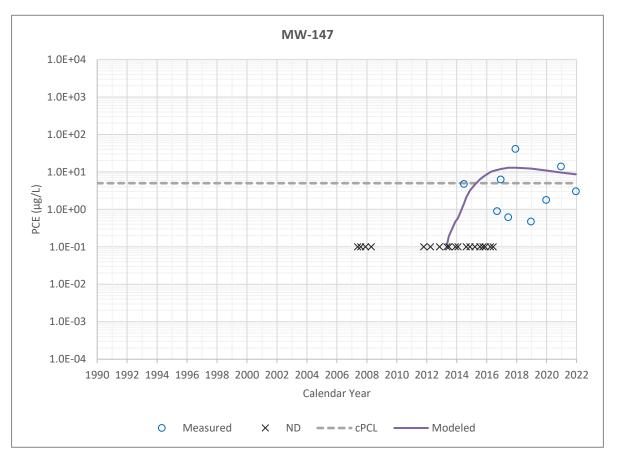
ND = not detected PCE = tetrachloroethene

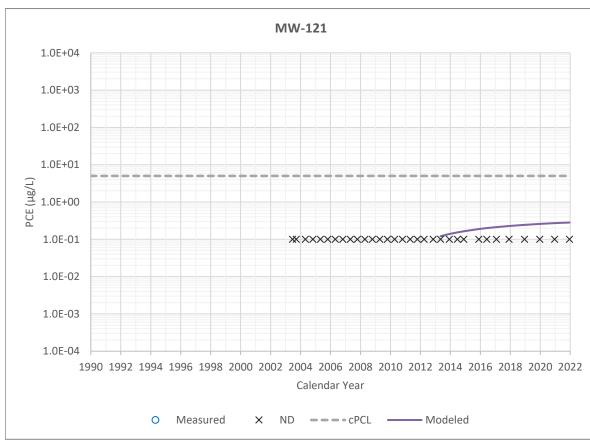
cPCL = critical protective concentration level

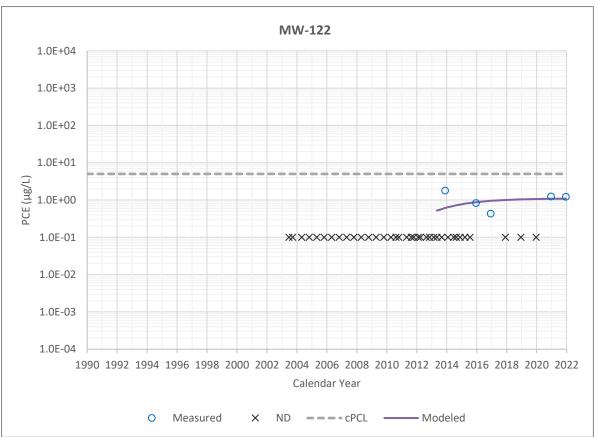
DHL = degradation half life in years

μg/L = microgram per liter


ND = not detected


PCE = tetrachloroethene

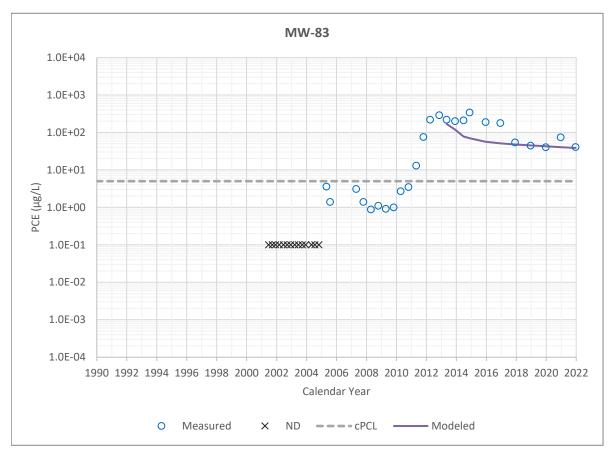

Attachment A-3.

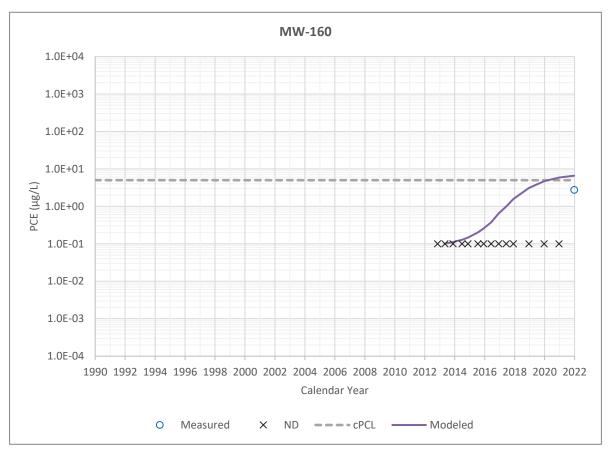

Modeled and Measured
PCE Chemographs

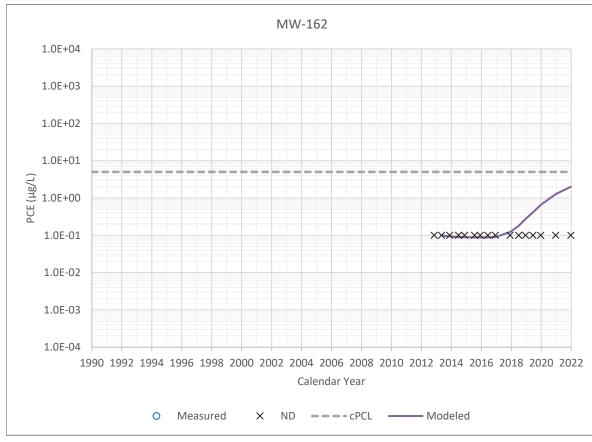
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

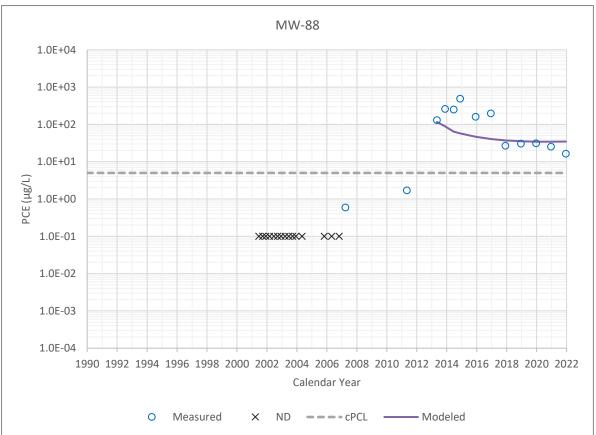
cPCL = critical protective concentration level

DHL = degradation half life in years


μg/L = microgram per liter


ND = not detected

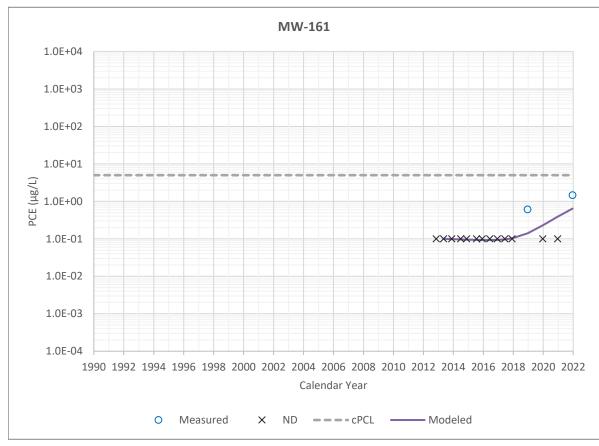

PCE = tetrachloroethene

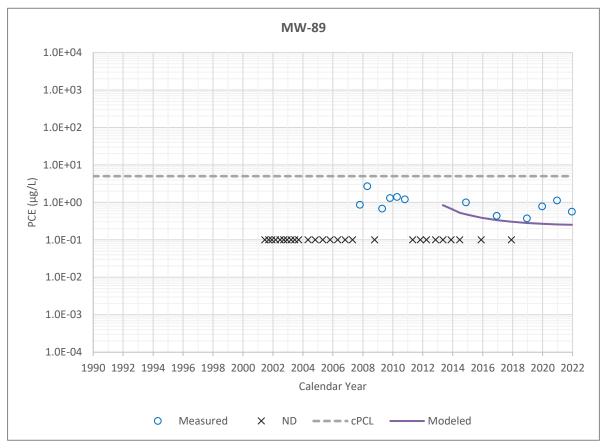

Attachment A-3.
Modeled and Measured
PCE Chemographs

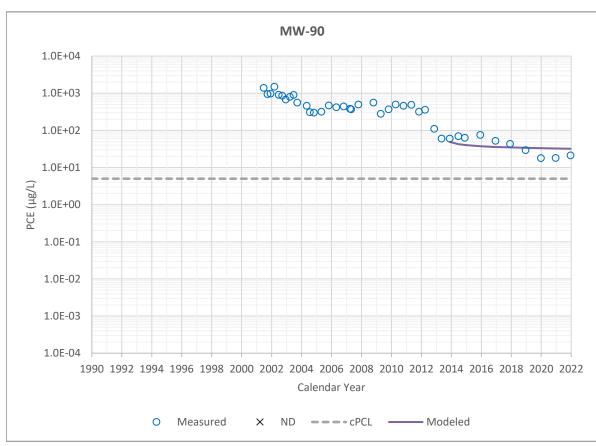
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

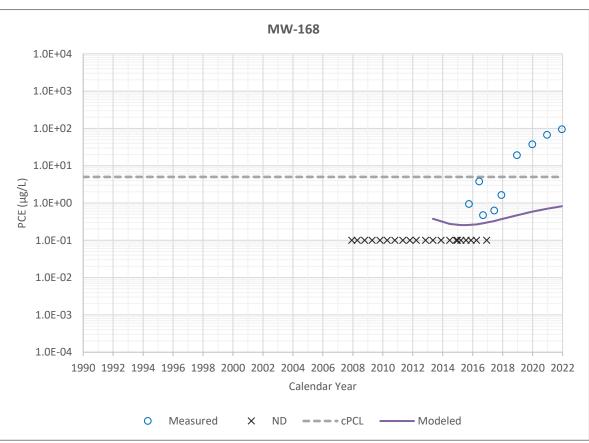
cPCL = critical protective concentration level

DHL = degradation half life in years


μg/L = microgram per liter


ND = not detected

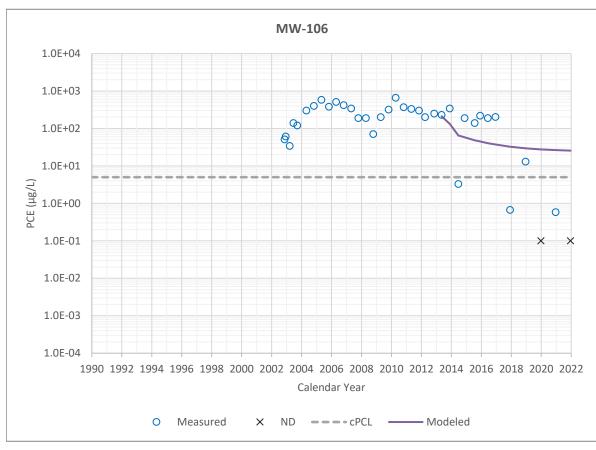

PCE = tetrachloroethene

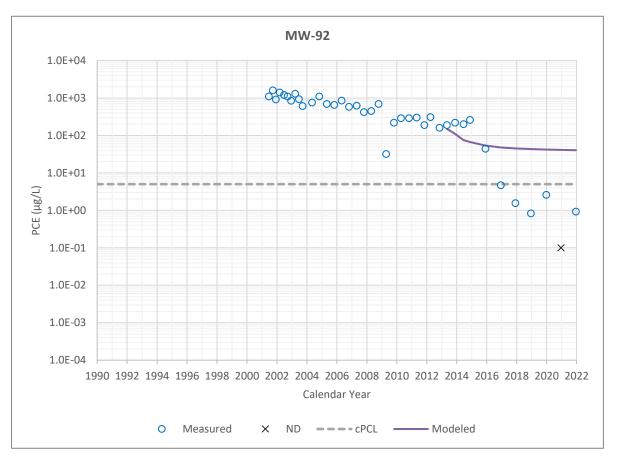

Attachment A-3. Modeled and Measured PCE Chemographs

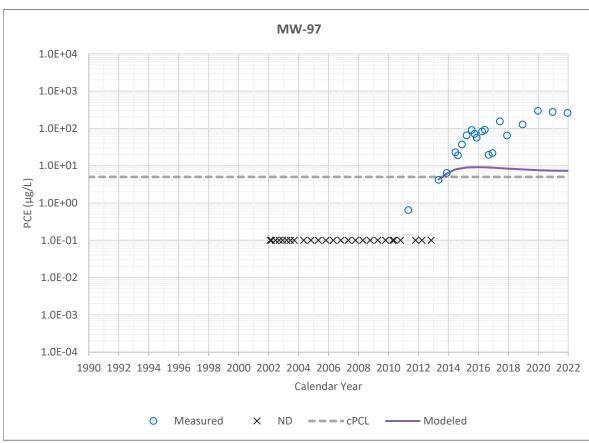
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

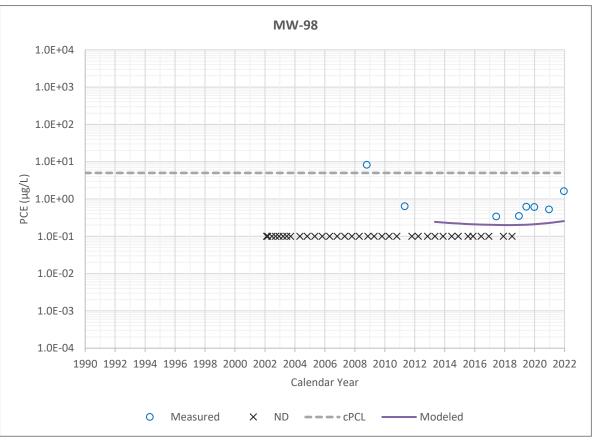
cPCL = critical protective concentration level

DHL = degradation half life in years


μg/L = microgram per liter


ND = not detected


PCE = tetrachloroethene


Attachment A-3. Modeled and Measured PCE Chemographs

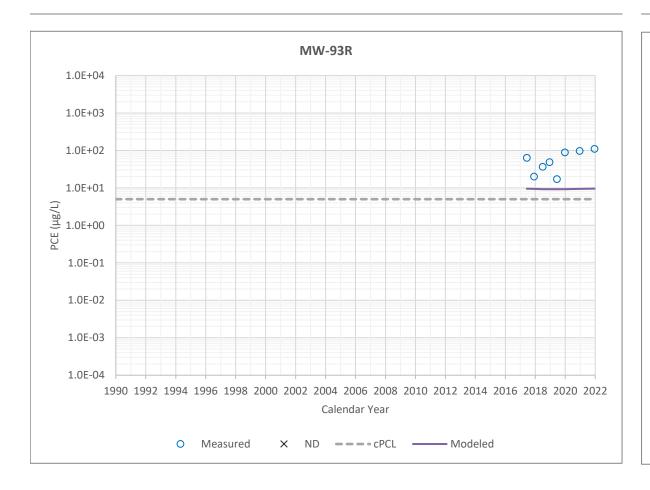
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

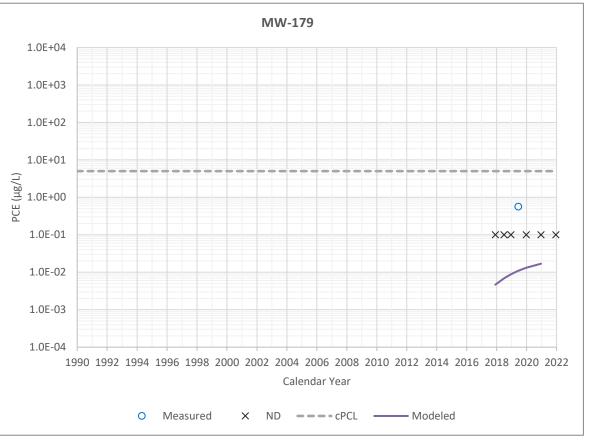
cPCL = critical protective concentration level

DHL = degradation half life in years

 μ g/L = microgram per liter

ND = not detected


PCE = tetrachloroethene


Attachment A-3.

Modeled and Measured

PCE Chemographs

2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

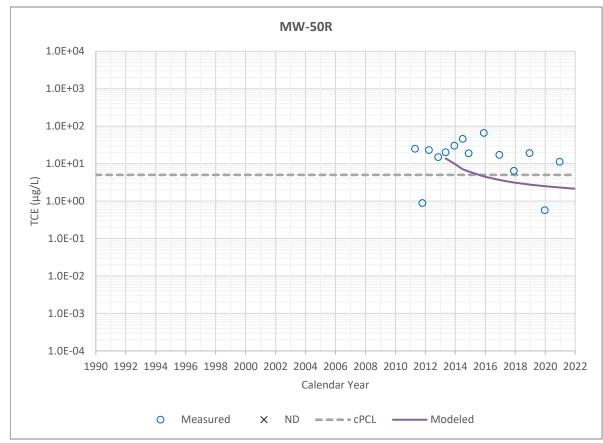
cPCL = critical protective concentration level

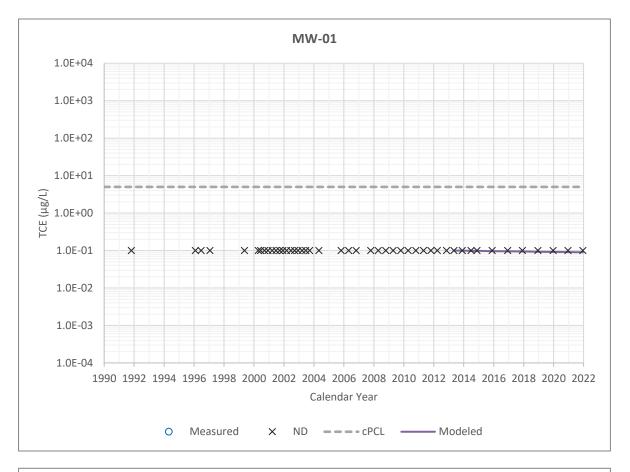
DHL = degradation half life in years

 μ g/L = microgram per liter

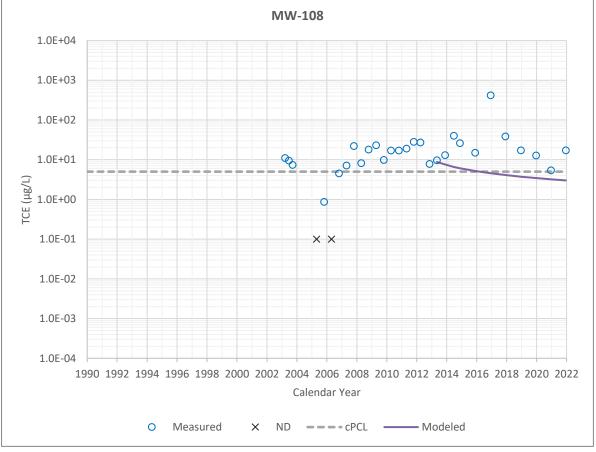
ND = not detected

PCE = tetrachloroethene


Attachment A-3.


Modeled and Measured

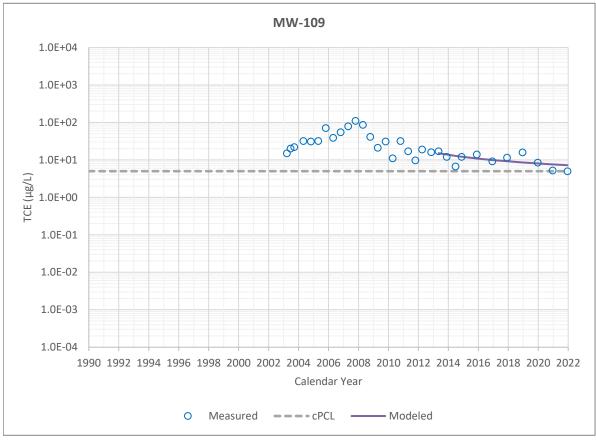

PCE Chemographs

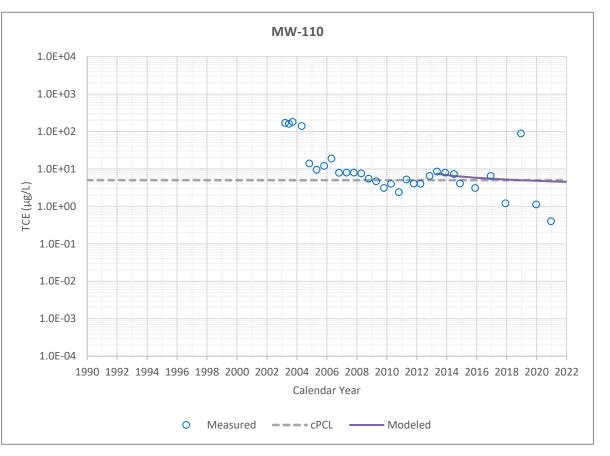

2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

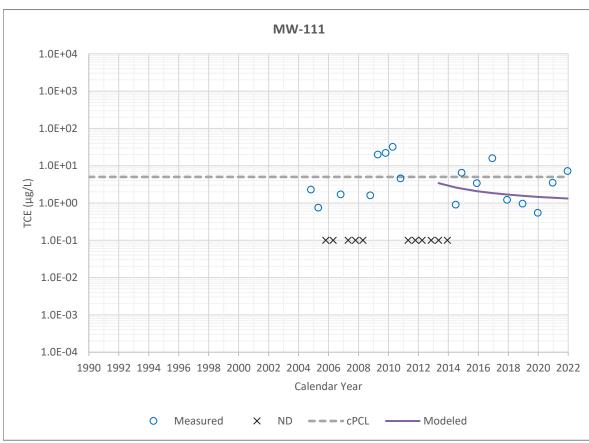
Attachment A-4 Modeled and Measured TCE Chemographs

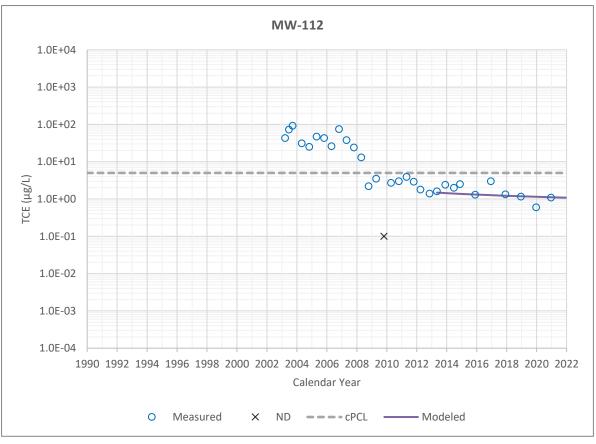
cPCL = critical protective concentration level

DHL = degradation half life in years


 μ g/L = microgram per liter


ND = not detected

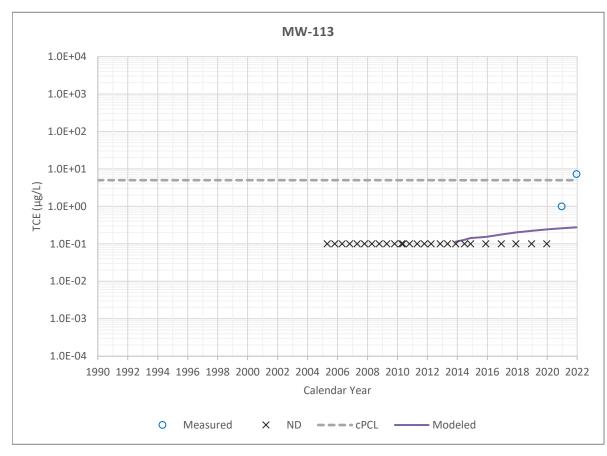

TCE = trichloroethene

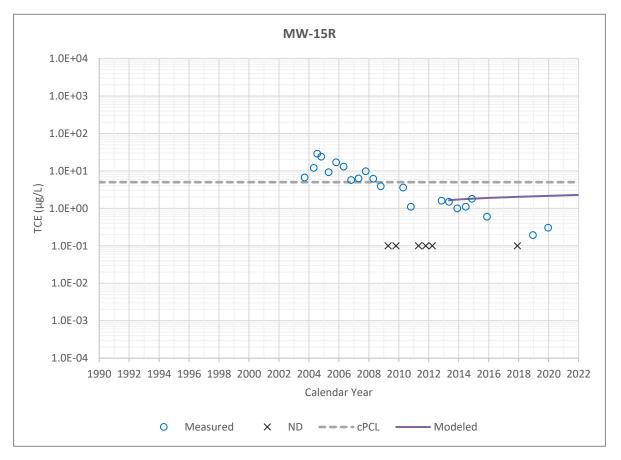

Attachment A-4. Modeled and Measured TCE Chemographs

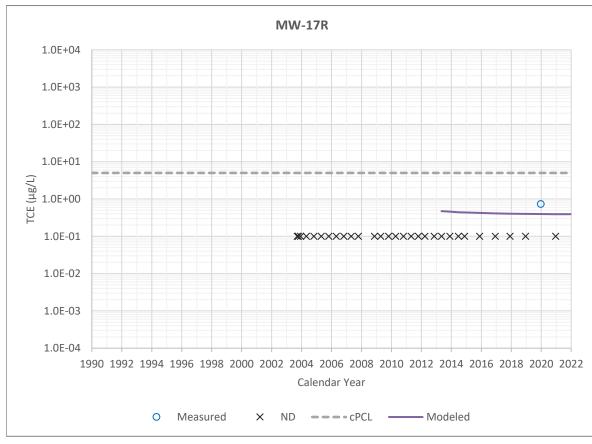
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

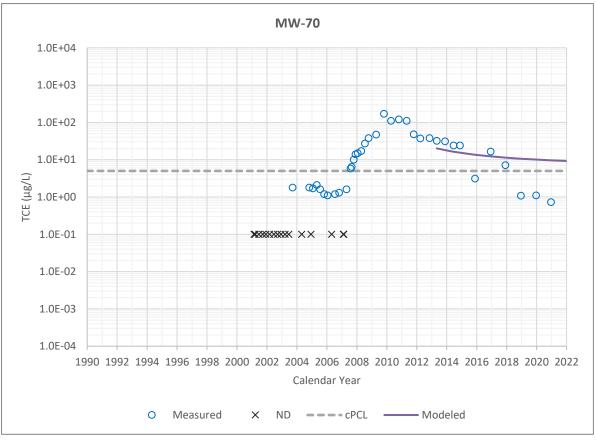
cPCL = critical protective concentration level

DHL = degradation half life in years


μg/L = microgram per liter


ND = not detected

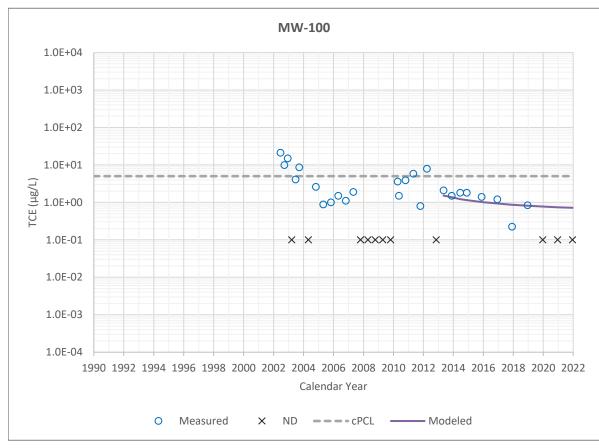

TCE = trichloroethene

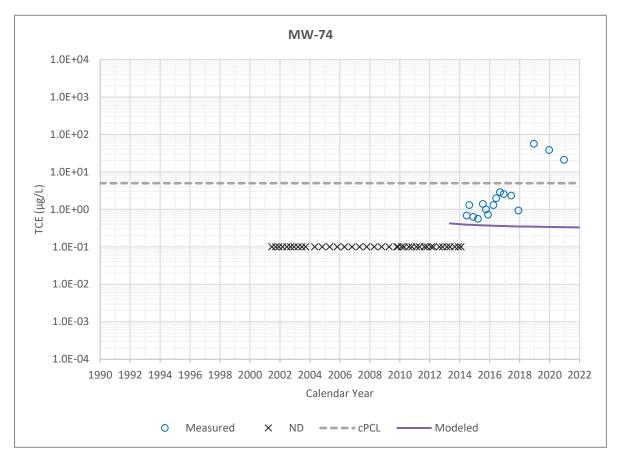

Attachment A-4.
Modeled and Measured
TCE Chemographs

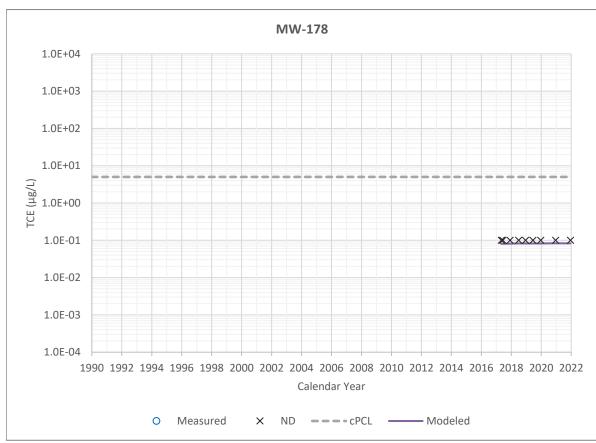
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

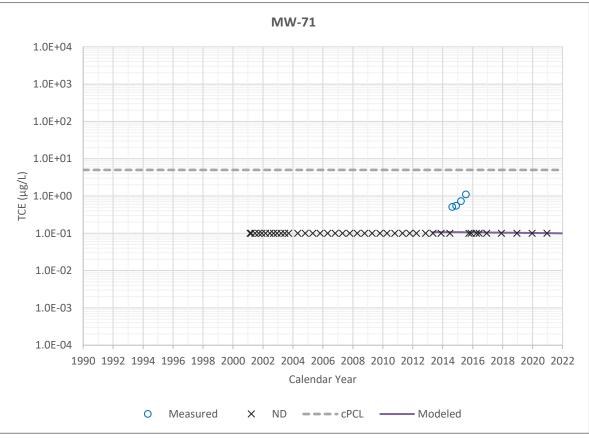
cPCL = critical protective concentration level

DHL = degradation half life in years


μg/L = microgram per liter


ND = not detected

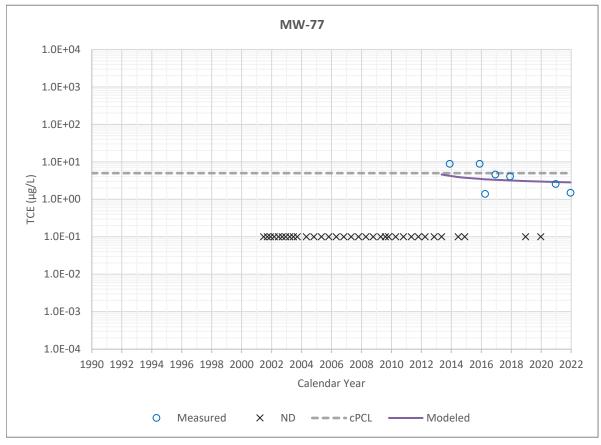

TCE = trichloroethene

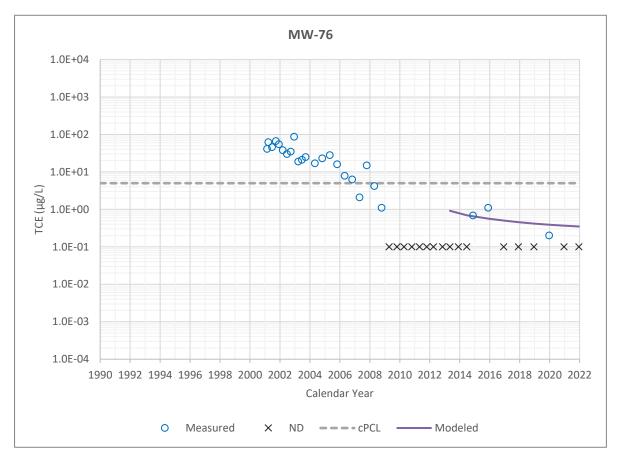

Attachment A-4.
Modeled and Measured
TCE Chemographs

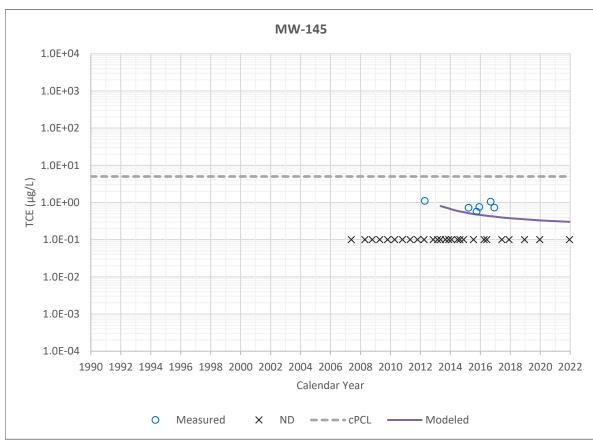
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

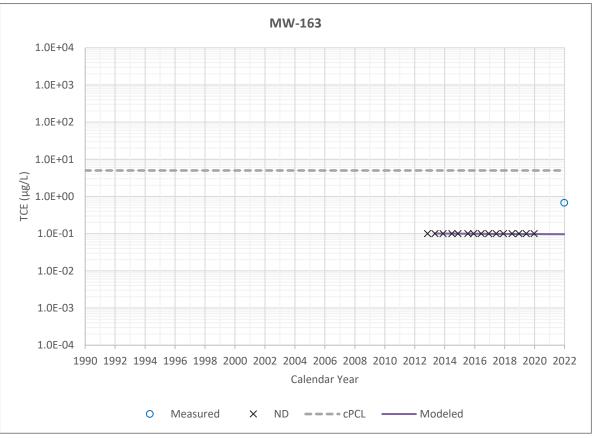
cPCL = critical protective concentration level

DHL = degradation half life in years


μg/L = microgram per liter


ND = not detected

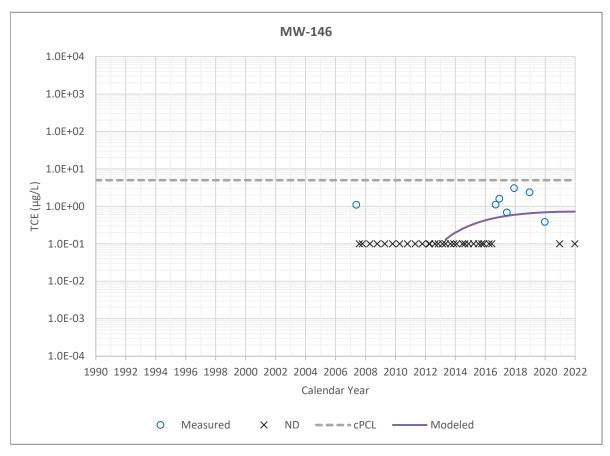

TCE = trichloroethene

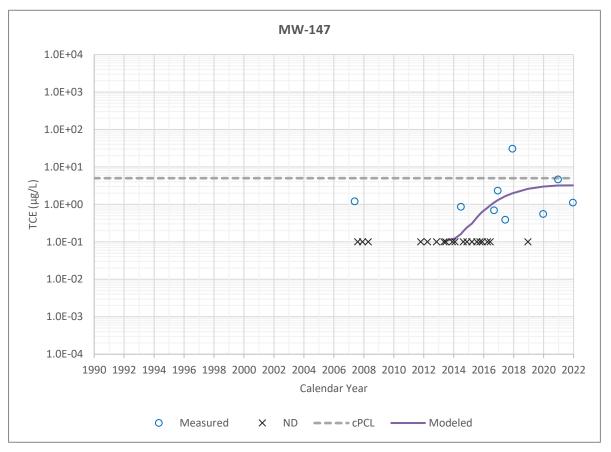

Attachment A-4.
Modeled and Measured
TCE Chemographs

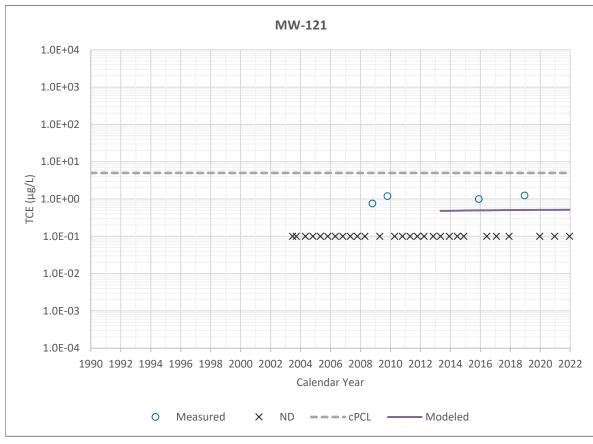
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

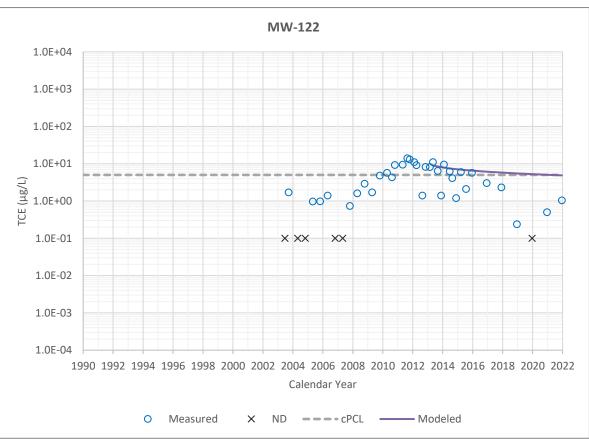
cPCL = critical protective concentration level

DHL = degradation half life in years


μg/L = microgram per liter


ND = not detected

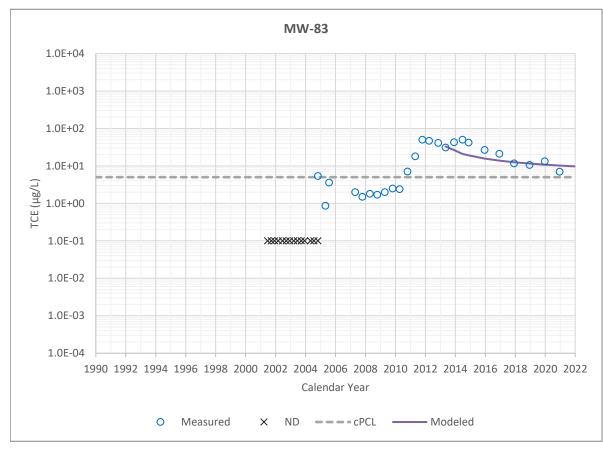

TCE = trichloroethene

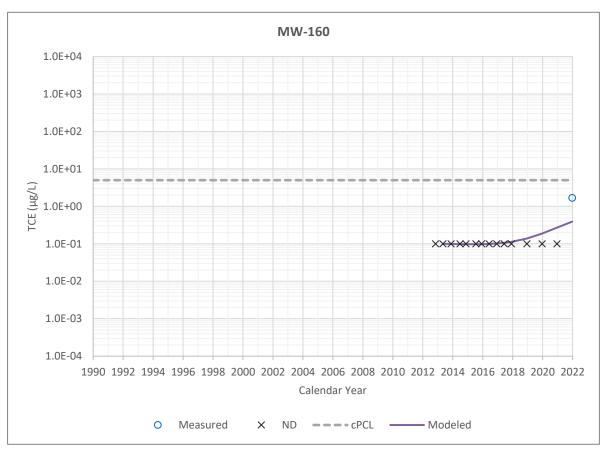

Attachment A-4.
Modeled and Measured
TCE Chemographs

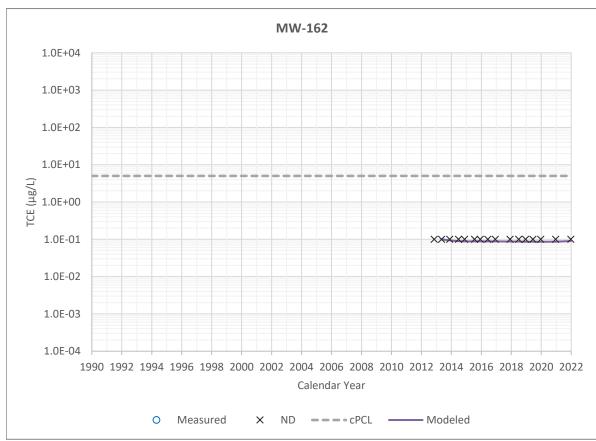
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

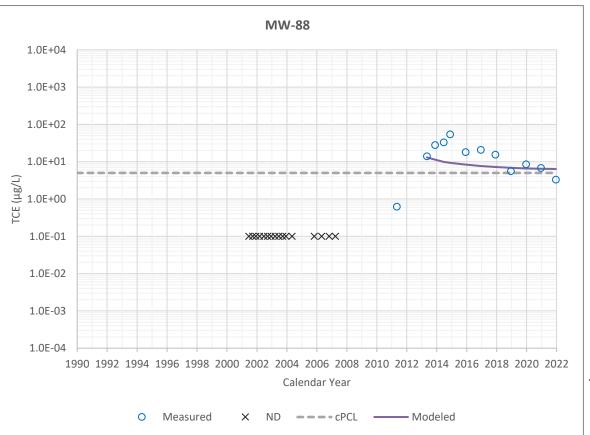
cPCL = critical protective concentration level

DHL = degradation half life in years


 μ g/L = microgram per liter


ND = not detected

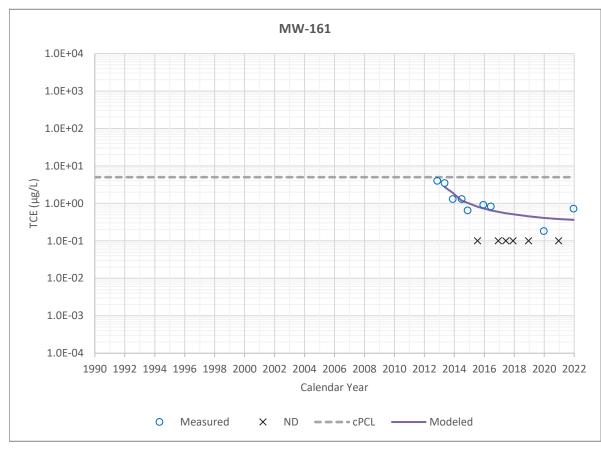

TCE = trichloroethene

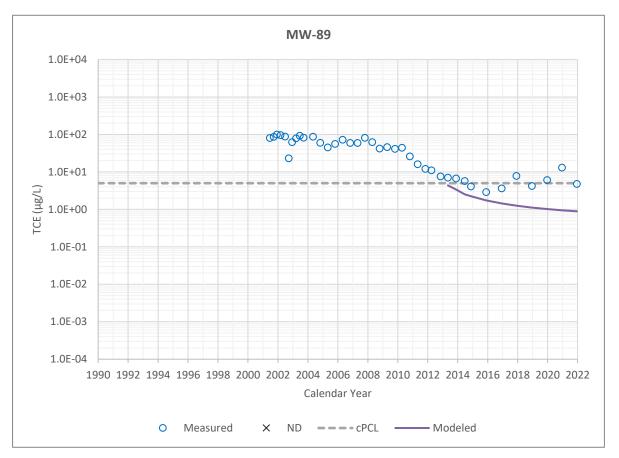

Attachment A-4.
Modeled and Measured
TCE Chemographs

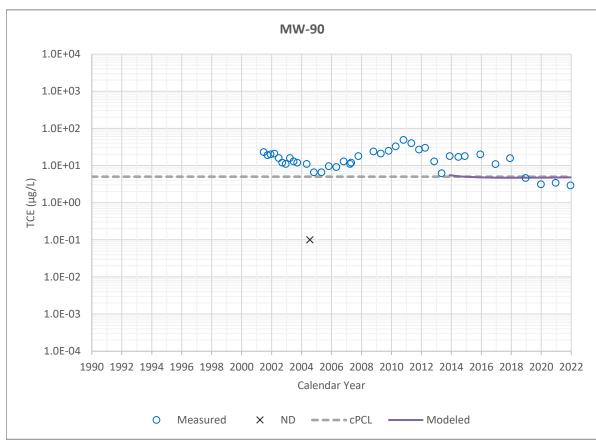
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

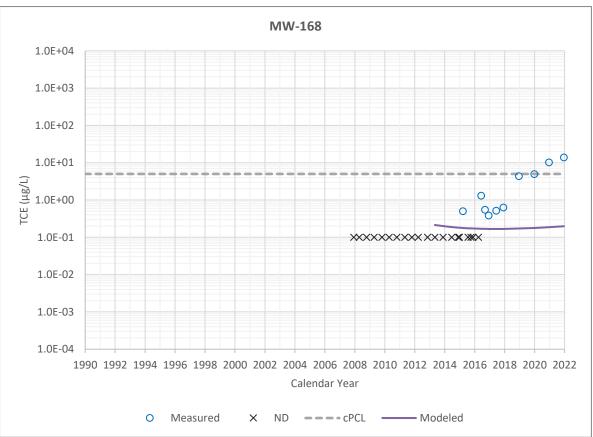
cPCL = critical protective concentration level

DHL = degradation half life in years


μg/L = microgram per liter


ND = not detected

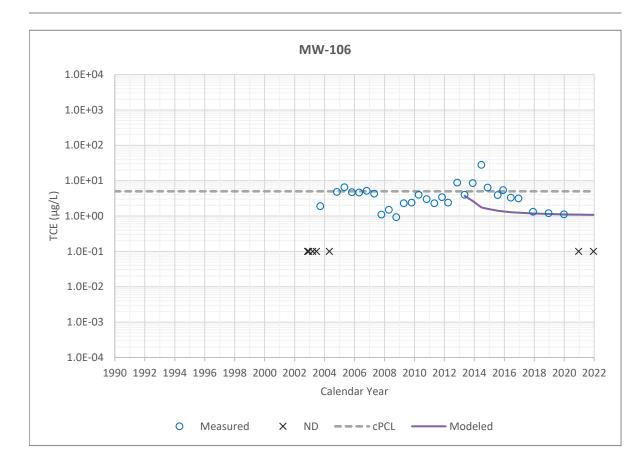

TCE = trichloroethene

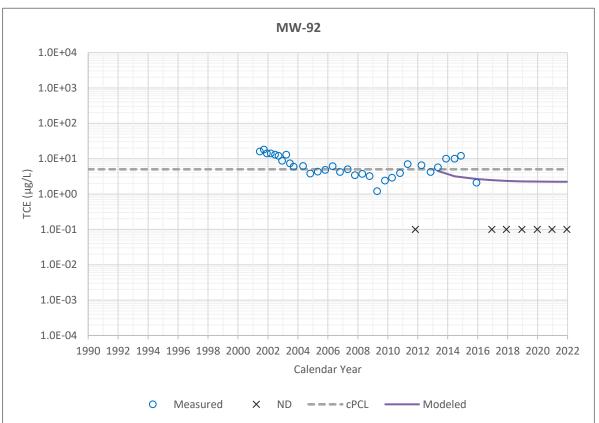

Attachment A-4.
Modeled and Measured
TCE Chemographs

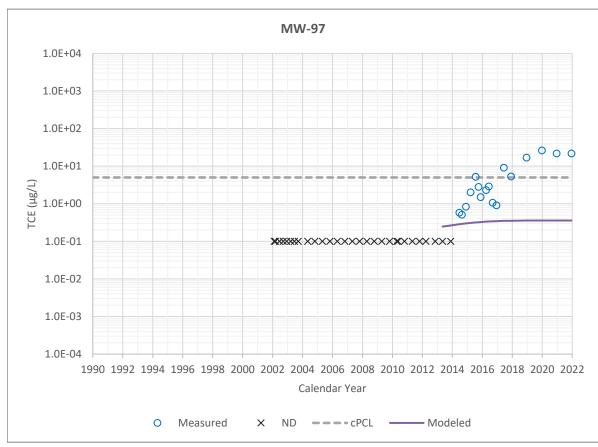
2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

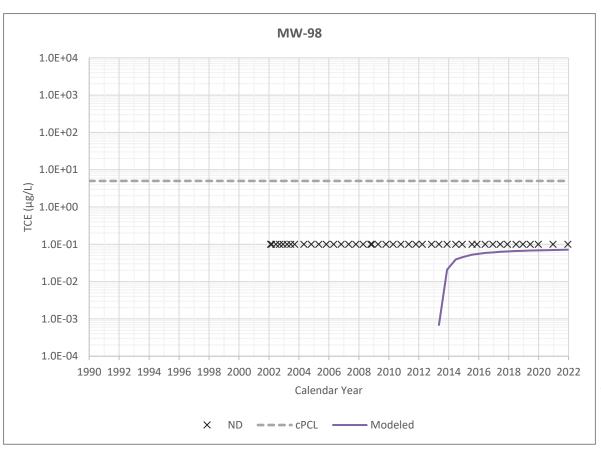
cPCL = critical protective concentration level

DHL = degradation half life in years


μg/L = microgram per liter


ND = not detected

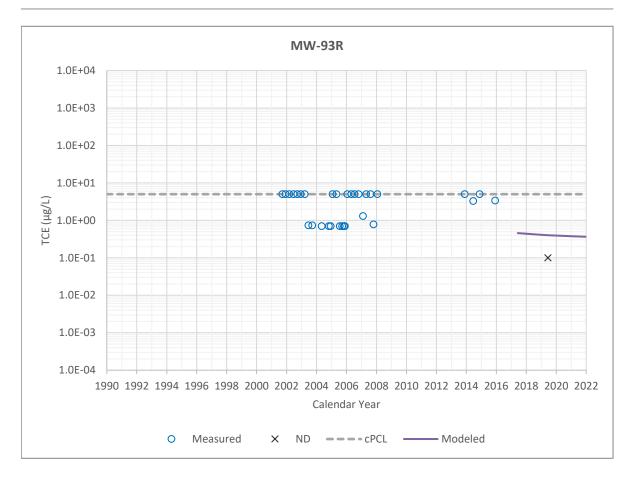

TCE = trichloroethene

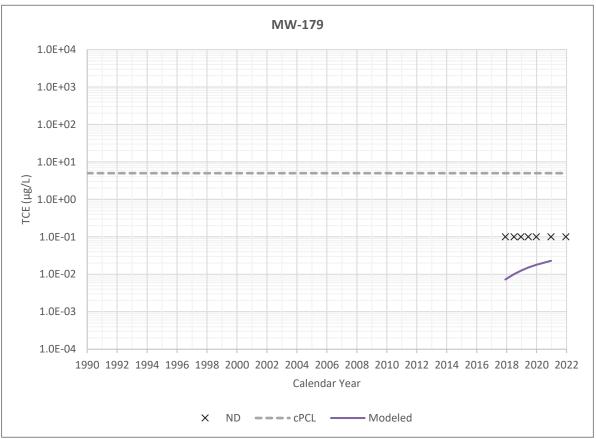

Attachment A-4.
Modeled and Measured
TCE Chemographs

2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

cPCL = critical protective concentration level

DHL = degradation half life in years


 μ g/L = microgram per liter


ND = not detected

TCE = trichloroethene

Attachment A-4.
Modeled and Measured
TCE Chemographs

2022 Groundwater Modeling Technical Memorandum Former Cameron Iron Works Facility Houston, Texas

cPCL = critical protective concentration level

DHL = degradation half life in years

 μ g/L = microgram per liter

ND = not detected

TCE = trichloroethene

Attachment A-4.

Modeled and Measured

TCE Chemographs

2022 Groundwater Modeling Technical Memorandum
Former Cameron Iron Works Facility

Houston, Texas

Appendix 4 Proposed Institutional Controls

VCP Phased Conditional Certificate of Completion – 35.7-acre Land

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Voluntary Cleanup Program Phased Conditional Certificate of Completion

The Phased Conditional Certificate of Completion (Certificate) applies to the tract of land described in Exhibit "A", attached hereto and incorporated herein by reference. The continued effectiveness of this Certificate is dependent upon compliance with the conditions set forth in Exhibit "B", attached hereto and incorporated herein by reference. If there is not satisfactory compliance with these conditions, this Certificate is voidable by the Texas Commission of Environmental Quality (TCEQ). This Certificate shall be a covenant that runs with the land.

Commission of Environmen	tal Quality (TCEQ). This Cer	rtificate shall be a covenant that runs with the land.	
As provided in Section 361.0	609 of the Texas Health and	Safety Code:	
I,, Director of	the Remediation Division, T	CEQ, certify as follows:	
	ve been implemented for VCI hat the tract is acceptable fo	P No. 221 as of September 29, 2022 for the tract of la r residential land use.	ınd
		of Response Actions (Exhibit "D"), attached hereto of information maintained in TCEQ files.	and
	vided the applicant or future	ion from liability described in §361.610 of the Texas owners are satisfactorily achieving and maintaining	; the
		application to the Voluntary Cleanup Program was no of the Texas Health and Safety Code; and	ot a
		ture operators and lenders) who on the date of issuan tions 361.271 or 361.275(g) of the Texas Health and	
		at the TCEQ Central File Room in Building E, Roor oluntary Cleanup Program No. 221:	n
	Executed this the	day of	
STATE OF TEXAS TRAVIS COUNTY		Director, Remediation Division	
they acknowledged to me that	at they executed the same for	,, personally appeared [name], of the Texas Commission on lose name is subscribed to the foregoing instrument, at the purposes and in the capacity therein expressed. This the day of,	and
		N. D. D. L. C. J.	

Notary Public in and for the State of Texas

Exhibit A Property Legal Description and Metes and Bounds Survey Map

 $^{^1}$ Note: The Exhibit A property legal description and metes and bounds survey map will be replaced after TCEQ approval of the institutional control language and boundary.

EXHIBIT "A"

A tract of land containing 35.69 acres (1,554,656 square feet), more or less, being out of part of Restricted Reserve "A", in Block One (1), of IH-10 AT SILBER ROAD, SONE (1), an addition to the City of Houston, Harris County, Texas, according to the dedication thereof recorded under Film Code No. 354058, of the Map Reconocounty, Texas; said tract being more particularly described by metes and bo "A", attached hereto and incorporated herein for all purposes.

EXHIBIT 'A"

All of that certain 35.69 acres of land, out of the residue of the 40.059 acre tract described in the deed from PLC Houston Complex, L.P. to ORIX PLC Houston Venture, recorded under File No. T797879, in the Official Public Records of Real Property of Harris County, Texas, and out of Restricted Reserve "A", of IH-10 AT SILBER ROAD, SECTION ONE, according to the plat thereof recorded under Film Code No. 354058, in the Map Records of Harris County, Texas, and more particularly described by metes and bounds as follows: (All bearings based on record bearings of the west line of said IH-10 AT SILBER ROAD, SECTION ONE)

BEGINNING at a drill hole found for the northwest corner of said Restricted Reserve "A", common to the northwest corner of said 40.059 acre tract, the southwest corner of Restricted Reserve "B", of said IH-10 AT SILBER ROAD, SECTION ONE, and the northwest corner and POINT OF BEGINNING of the herein described tract, in the east right-of-way line of Silber Road (60' R.O.W.);

THENCE North 88° 44' 27" East – 1987.13', along the north line of said 40.059 acre tract, common to the north line of said Restricted Reserve "A", the south line of said Restricted Reserve "B", and the south line of the 45.6290 acre tract described in the deed from Cooper Cameron Corporation to Silber Road Reserve, L.P., recorded under File No. W270870, in the Official Public Records of Real Property of Harris County, Texas, to a 5/8" iron rod found for the northeast corner of said 40.059 acre tract, common to the northeast corner of said Restricted Reserve "A", and the southeast corner of said 45.6290 acre tract, in the west line of the 12.4163 acre tract described in the deed from PMI Industries, Inc. to Awty High School, recorded under File No. F694096, in the Official Public Records of Real Property of Harris County, Texas, at 268.83' passing a 5/8" iron rod found for the southeast corner of said Restricted Reserve "B", common to the southwest corner of said 45.6290 acre tract;

THENCE South 02° 29' 07" East — 816.60', along the east line of said 40.059 acre tract, common to the east line of said Restricted Reserve "A", the west line of said 12.4163 acre tract, and the west line of the 2.5942 acre tract described in the deed from E & K Holdings, Inc. to 7502 Old Katy Road Company, recorded under File No. V873922, in the Official Public Records of Real Property of Harris County, Texas, to a 5/8" iron rod set for the southeast corner of the herein described tract, in the north right-of-way line of Interstate Highway 10 (width varies), common to the north line of the 4.378 acre tract described in the deed from ORIX PLC Houston Venture to State of Texas, recorded under File No. W327357, in the Official Public Records of Real Property of Harris County, Texas, common to a point on a curve to the left, having a central angle of 05° 47' 26", a radius of 2889.79', and from which point the center of the circle of said curve bears South 05° 20' 35" West;

THENCE along said curve to the left, along said common line, in a westerly direction, an arc distance of 292.06', to a 5/8" iron rod set for the end of curve;

EXHIBIT "A"

THENCE South 89° 33' 09" West - 771.44', continuing along said common line, to a 5/8" iron rod set for an angle corner of the herein described tract, common to an angle corner of aforesaid 4.378 acre tract;

THENCE North 85° 54' 13" West -- 151.51', continuing along said common line, to a 5/8" iron rod set for a point on a curve to the left, having a central angle of 01° 02' 55", a radius of 17380.15', and from which point the center of the circle of said curve bears South 00° 26' 49" East;

THENCE along said curve to the left, continuing along said common line, in a westerly direction, an arc distance of 318.07', to an "X" cut in concrete for the end of curve;

THENCE North 87° 10' 15" West – 150.54', continuing along said common line, to an "X" cut in concrete for a point on a curve to the left, having a central angle of 00° 25' 35", a radius of 17392.15', and from which point the center of the circle of said curve bears South 01° 59' 24" East;

THENCE along said curve to the left, continuing along said common line, in a westerly direction, an arc length of 129.41', to an "X" cut in concrete for the end of curve;

THENCE South 87° 35' 01" West – 132.67', continuing along said common line, to 5/8" iron rod set for the east end of the northeast right-of-way cutback line at the intersection of aforesaid Interstate Highway 10 and aforesaid Silber Road (width varies);

THENCE North 47° 24' 02" West – 41.27', along said northeast right-of-way cutback line, to a 5/8" iron rod set for the north end of said cutback, in the east right-of-way line of said Silber Road, common to a point on a curve to the left, having a central angle of 09° 50' 31", a radius of 510.00', and from which point the center of the circle of said curve bears South 87° 09' 12" West;

THENCE along said curve to the left, along the east right-of-way line of said Silber Road, common to an east line of aforesaid 4.378 acre tract, in a northerly direction, an arc distance of 87.60', to a 5/8" iron rod set for the Point of Reverse Curvature of a curve to the right, having a central angle of 06° 18' 40", and a radius of 490.00';

THENCE along said curve to the right, continuing along said common line, in a northerly direction, an arc distance of 53.97', to a 5/8" iron rod set for the end of curve;

THENCE North 06° 22' 39" West - 35.73', continuing along said common line, to the north corner of said 4.378 acre tract, in the west line of aforesaid Restricted Reserve "A";

THENCE North 02° 18' 02" West - 560.54', continuing along the east right-of-way line of aforesaid Silber Road, common to the west line of said Restricted Reserve "A", to the POINT OF BEGINNING of the herein described tract and containing 35.69 acres of land.

RECORDER'S MEMORANDUM:
At the time of recordation, this instrument was found to be inadequate for the best photographic reproduction because of illegibility, carbon or photo copy, discolored paper, etc. All blockouts additions and changes were present at the time the instrument was filed and recorded.

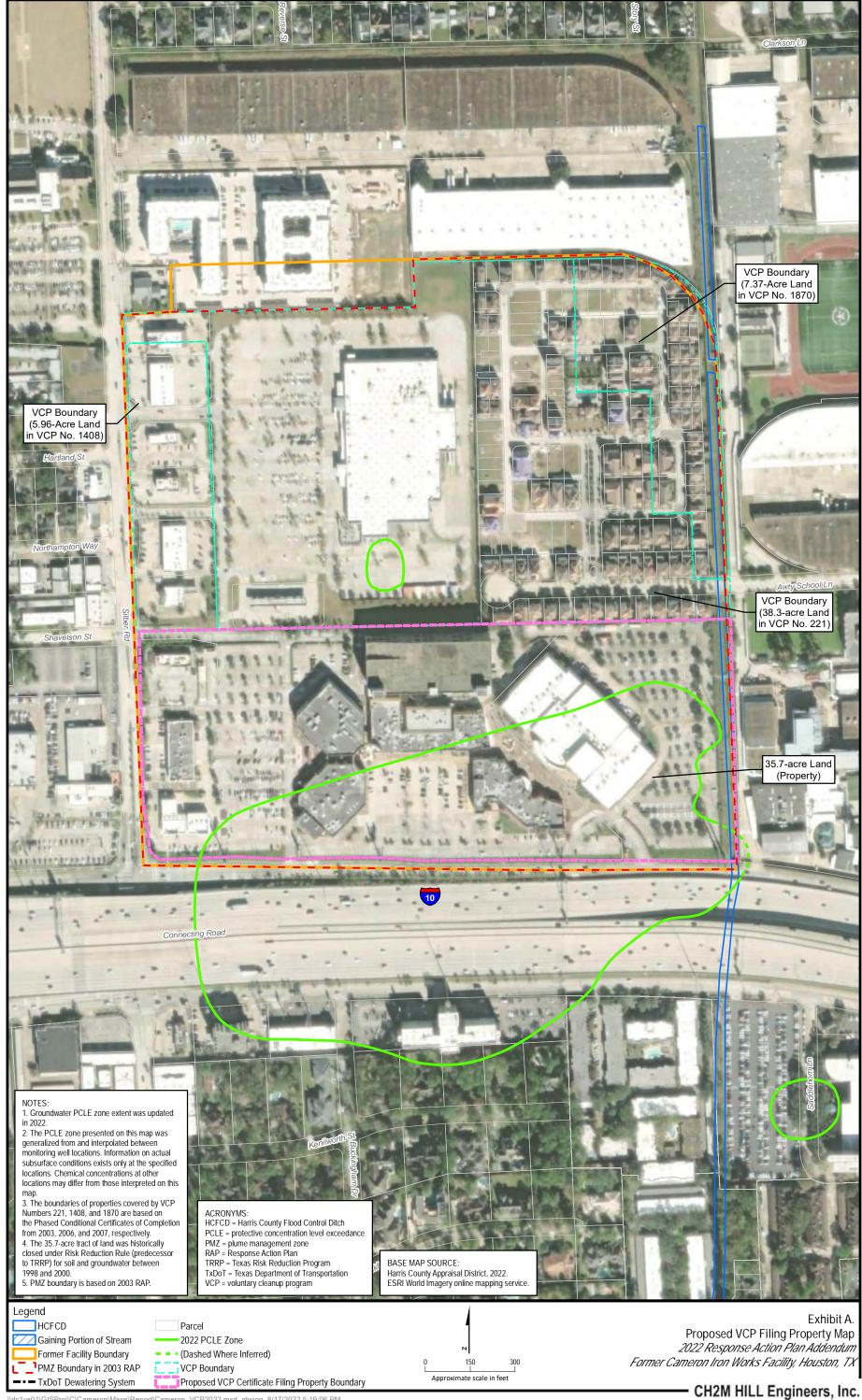


Exhibit B Conditions for Certification

EXHIBIT B Conditions for Certification VCP No. 221

The following conditions apply to the tract of land described in Exhibit A (Site) and to all off-site areas where contamination has migrated from the Cooper Cameron Iron Works Silber Road Facility.

Site Conditions

- 1. Perform any necessary groundwater response action and any necessary groundwater monitoring, at the tract of land described in Exhibit "A" to meet the requirements of Remedy Standard B pursuant to 30 Texas Administrative Code (TAC) 350.33, relating to a plume management zone (PMZ). Site activities should be conducted according to the Response Action Plan (RAP) dated August 28, 2003, RAP Addendum dated September 29, 2022, or subsequently approved reports or other TCEQ written correspondence. Where TCEQ correspondence and other reports conflict, TCEQ correspondence prevails over the reports.
- 2. No groundwater well, other than monitoring wells, may be installed in the affected shallow water-bearing zone for any residential or non-residential use, with the exception of pumping or extraction wells and/or remediation injection wells in order to achieve remedial goals. In addition, groundwater wells completed in the underlying formation should be completed in such a manner to prevent downward migration of contaminants from the shallow water-bearing zone.
- 3. Groundwater shall not be used for residential, agricultural, recreational, industrial or commercial purposes unless authorized by the TCEQ.

Off-Site Conditions

- 4. Perform any necessary remedial action or groundwater monitoring for all off-site contamination or other contamination outside the PMZ, to meet the requirements of Remedy Standard A pursuant to 30 TAC 350.32 in a reasonable time frame in accordance with the schedule in the Voluntary Cleanup Agreement pursuant to 30 TAC 333.10(a).
- 5. Notify property owners or easement holders/franchisees pursuant to 30 TAC 350.55 when groundwater sampling data confirms chemicals of concern above the Tier 1 human health protective concentration levels on any off-site property.

General Conditions

- 6. The Certificate, including Exhibits "A", "B" and "C", shall be disclosed to the next subsequent owner prior to transfer of control of the Site or any part of the Site. Any such failure to disclose shall only affect that portion of the Site for which the disclosure is not accomplished.
- 7. The Certificate must be properly recorded in the land records of Harris County.
- 8. TCEQ oversight costs for review of any work plans or reports necessary to implement the conditions of the Certificate shall be paid in a timely manner.
- 9. The Texas Risk Reduction Program rules pursuant to 30 TAC 350 (or any subsequently applicable similar rules), must be complied with in addressing the Site and off-site areas.

Exhibit C Restrictive Covenant

EXHIBIT C Restrictive Covenant VCP No. 221

HCL Marqe LLC (Owner), is the owner of the tract of land described in Exhibit "A" to this certificate that pertains to (Site), VCP No. 221, located at 1000 Silber Road, Houston, Texas. In consideration of the Response Actions by Cameron International Corporation (Cameron; a Schlumberger Company) (VCP Applicant) and issuance of this Conditional Certificate of Completion, the Owner has agreed to place the restrictions listed below on the Site at the areas described in the attached exhibit(s) and in favor of the Texas Commission on Environmental Quality (TCEQ) and the State of Texas. This Restrictive Covenant is filed to provide information concerning certain environmental conditions and use limitations.

Portions of the groundwater of the Property contain certain identified chemicals of concern causing those portions of the Property to be considered an Affected Property as that term is defined in the TRRP. The portion considered to be Affected Property is described as follows:

The Affected Property is affected by releases of chemicals of concern from historical operations at the former Cameron facility (Exhibit A). Shallow groundwater underneath the Affected Property is affected by tetrachloroethene (PCE), trichloroethene (TCE), 1,1-dichloroethene (1,1-DCE), cis-1,2-dichloroethene (cis 1,2-DCE), 1,2-dichloroethane (1,2-DCA), and vinyl chloride (VC). The concentrations of these chemicals of concern exceed the TCEQ-approved groundwater protective concentration levels for residential land use.

This Restrictive Covenant is required for the following reasons:

Plume Management Zone

The Affected Property is subject to the TRRP requirements for properties with an area overlying a TCEQ-approved plume management zone. A plume management zone is defined as an area of groundwater containing concentrations of chemicals of concern exceeding the TCEQ-approved protective concentration levels, plus any additional area allowed by the TCEQ in accordance with 30 TAC §350.33(f)(4). A plume management zone was established so that the chemicals of concern in the groundwater are managed such that human exposure is prevented and other groundwater resources are protected. The Exhibit A provides the location and extent of the plume management zone.

As of the date of this Restrictive Covenant, the record owner of fee title to the Property is HCLC (Owner), with an address of _______. In consideration of the Response Actions by Cameron International Corporation (Responder), approval of the Response Action Plan, and other good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, the Owner has agreed to place the following restrictions on the Property in favor of TCEQ and the State of Texas, to-wit:

- 1. Exposure to the groundwater underlying the Affected Property for any purpose is prohibited until such time when all the chemicals of concern no longer exceed their respective protective concentration levels. Any modification of this restrictive covenant is prohibited without the prior approval of TCEO.
- 2. The restrictions shall be a covenant running with the land.

TCEQ Mail: TCEQ - MC 199 Central Records P O Box 13087 12100 Park 35 Circle, Building E Austin, Texas 78711-3087 Austin, Texas 78753 TCEQ Program and Identifier No.: VCP No. 221 This Restrictive Covenant may be rendered of no further force or effect only by a release executed by the TCEQ or its successor agencies and filed in the same Real Property Records as those in which this Restrictive Covenant is filed. Executed this ______ day of ______, ____. [OWNER] By: **HCL Marge LLC** Name: Title: Executed this day of , . . [RESPONDER] By: Cameron International Corporation Name: _____ Title: _____ Accepted as Third-Party Beneficiary this _____ day of _____, ____. By: Texas Commission on Environmental Quality Name: _____ Title: _____ STATE OF TEXAS (_____) COUNTY BEFORE ME, on this the ______day of ______, personally appeared ______, of [owner] ______, known

to me to be the person whose name is subscribed to the foregoing instrument, and they acknowledged

to me that they executed the same for the purposes and consideration therein expressed.

For additional information, contact:

GIVEN UNDER MY HAND AND SEAL OF	F OFFICE, this the,		
	Notary Public in and for the State of Texas,		
	County of		
	My Commission Expires:		
STATE OF TEXAS			
() COUNTY			
company] Schlumberger Technology Corpora	day of,, personally appeared, of [responder ation, known to me to be the person whose name is ney acknowledged to me that they executed the same for seed.		
GIVEN UNDER MY HAND AND SEAL OI	F OFFICE, this the day of, Notary Public in and for the State of Texas,		
	County of		
	My Commission Expires:		
STATE OF TEXAS			
() COUNTY			
, [title]	, personally appeared [name], of the Texas Commission on		
	e person whose name is subscribed to the foregoing t they executed the same for the purposes and in the		
GIVEN UNDER MY HAND AND SEAL OI	F OFFICE, this the day of,		
	Notary Public in and for the State of Texas,		
	County of		
	My Commission Expires:		

Exhibit D
Affidavit of Implementation of
Response Actions

EXHIBIT D Affidavit of Implementation of Response Actions VCP No. 221

BEFORE ME, the undersigned authority, on this day personally appeared, <u>Dawn Greening</u>, an authorized representative of <u>Cameron International Corporation (Cameron; a Schlumberger Company)</u> (Applicant), known to me personally to be the person whose name is subscribed below who being by me first duly sworn, upon their oath, stated as follows:

I am over the age of 18 and legally competent to make this affidavit. I have personal knowledge of the facts stated herein.

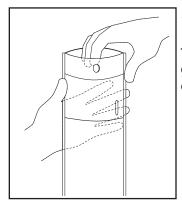
Cameron (Applicant), has implemented response actions pursuant to Chapter 361, Subchapter S, Texas Health and Safety Code, at the tract of land described in Exhibit "A" to this certificate that pertains to the Cooper Cameron Iron Works -Silber Road Facility (Site), VCP No. 221 located at 1000 Silber Road, Houston, Harris County, Texas. The Site was owned by Cooper Cameron Corporation at the time the application to participate in the Voluntary Cleanup Program was filed. The Applicant has submitted and received approval from the Texas Commission on Environmental Quality (TCEQ) Voluntary Cleanup Section on all plans and reports required by the Voluntary Cleanup Agreement for onsite contamination including meeting Texas Risk Reduction Program Tier I Residential Protective Concentration Levels for dermal contact, inhalation of particulates and vapors and soil ingestion necessary for receipt of a Phased Conditional Certificate of Completion (Certificate) for the tract of land in Exhibit "A". The plans and reports were prepared using a prudent degree of inquiry of the Site consistent with accepted industry standards to identify all hazardous substances, waste and contaminated media of regulatory concern.

The response actions for the Site have achieved response action levels acceptable for residential land use as determined by the standards of TCEQ. The response action will eliminate or reduce to the maximum extent practicable, substantial present or future risk to public health and safety and the environment from releases and threatened releases of hazardous substances and/or contaminants at or from the Site. The Applicant has not acquired this Certificate by fraud, misrepresentation or knowing failure to disclose material information.

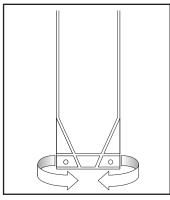
The preceding is true and correct to the best of my knowledge and belief.

	<u>Applicant</u>
	(Signature)
	(Printed Name) Dawn Greening
	(Title)
STATE OF TEXAS	
() COUNTY	
SUBSCRIBED AND SWORN before witness my hand and seal of office.	me on this the day of, to which
	Notary Public in and for the State of Texas

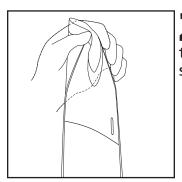
Appendix 6 Sampling Procedures

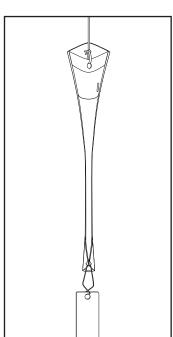


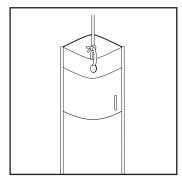
Introduction


The HydraSleeve groundwater sampler can be used to collect a representative sample for most physical and chemical parameters without purging the well. It collects a whole water sample from a user-defined interval (typically within the well screen), without mixing fluid from other intervals. One or more HydraSleeves are placed within the screened interval of the monitoring well, and a period of time is allocated for the well to re-equilibrate. Hours to months later, the sealed HydraSleeve can be activated for sample collection. When activated, HydraSleeve collects a sample with no drawdown and minimal agitation or displacement of the water column. Once the sampler is full, the one-way reed valve collapses, preventing mixing of extraneous, non-representative fluid during recovery.

Assembly


Assembling the HydraSleeve is simple, and can be done by one person in the field, taking only a minute or two.


Remove
HydraSleeve
from package and
grasp top to "pop"
open.


Fold the two holes at bottom of HydraSleeve together and attach weight

2 Squeeze side fins together at top to bend reinforcing strips outward.

5 Sampler is ready to insert into the well.

Attach line to hole at top of HydraSleeve.

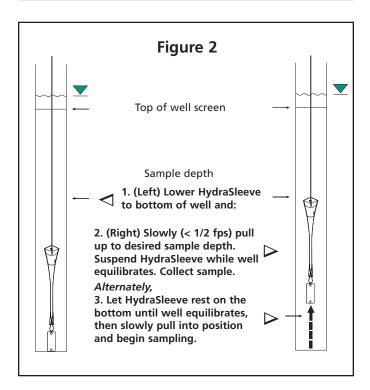
Placing the HydraSleeve(s)

To collect a representative groundwater sample without purging, the well must be allowed time to re-equilibrate after placement of the sampler. When any device is lowered into a well, some mixing of the water column occurs. The diameter of the device and its shape greatly affect the degree of mixing. The flat cross-section of the empty HydraSleeve minimizes the disturbance to the water column as the sampler is lowered into position, reducing the time needed for the well to return to equilibrium.

There are three basic methods for holding a HydraSleeve in position as the well equilibrates.

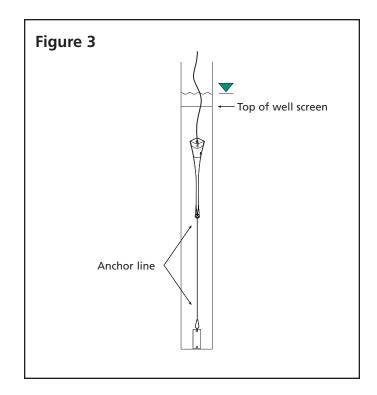
TOP DOWN DEPLOYMENT (Figure 1)

Measure the correct amount of suspension line needed to "hang" the top of the HydraSleeve(s) at the desired sampling depth (in most cases, this will be at the bottom of the sampling zone). The upper end of the tether can be connected to the well cap to suspend the HydraSleeve at the correct depth until activated for sampling.


Note: For deep settings, it may be difficult to accurately measure long segments of suspension line in the field. Factory prepared, custom suspension line and attachment points can be provided.

Suspend HydraSleeve at correct depth from top of well by accurately measuring the tether length.

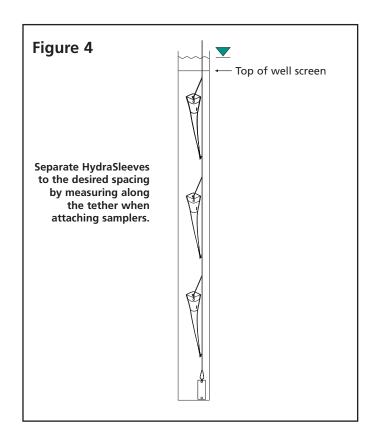
BOTTOM DEPLOYMENT (Figure 2)


Sound the well to determine the exact depth. Lower the weighted HydraSleeve into the well and let it touch the bottom. Very slowly (less than 1/2 foot per second) raise the sampler to the point where the check valve is at the depth the sample is to be collected. Attach the suspension line to the top of the well to suspend it at this depth. (It is often easier to measure a few feet from the bottom of the well up to the sample point, than it is to measure many feet from the top of the well down.)

Alternately, the sampler can be left on the bottom until the well re-equilibrates. For sampling, it can be very slowly pulled (< 1/2 fps) to sampling depth, then activated (see "Sample Collection," p. 6) to collect the sample, and retrieved to the surface.

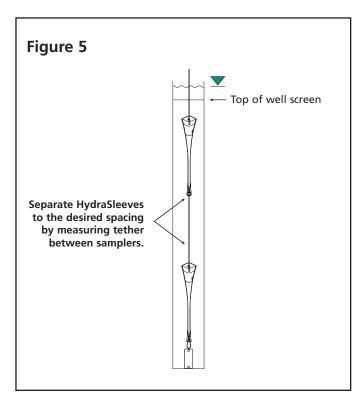
BOTTOM ANCHOR (Figure 3)

Determine the exact depth of the well. Calculate the distance from the bottom of the well to the desired sampling depth. Attach an appropriate length anchor line between the weight and the bottom of the sampler and lower the assembly until the weight rests on the bottom of the well, allowing the top of the sampler to float at the correct sampling depth.



Multiple Interval Deployment

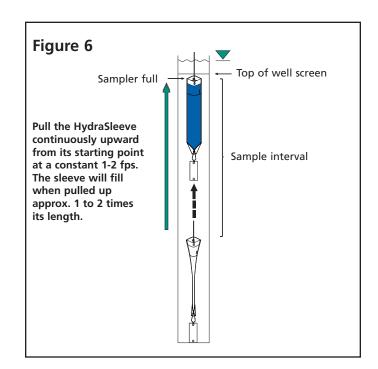
There are two basic methods for placing multiple HydraSleeves in a well to collect samples from different levels simultaneously.


ATTACHED TO A SINGLE TETHER (Figure 4)

To use 3 or more samplers simultaneously, we recommend attaching them all to a tether for support to prevent the sampling string from pulling apart. The weight is attached to a single length of suspension line and allowed to rest on the bottom of the well. The top and bottom of each HydraSleeve are attached to the tether at the desired sample intervals. Cable tie or stainless steel clips (supplied) work well for attaching the HydraSleeves to the line. Simply push one end of the clip between strands of the rope at the desired point before attaching the clip to the HydraSleeve.

ATTACHED END TO END (Figure 5)

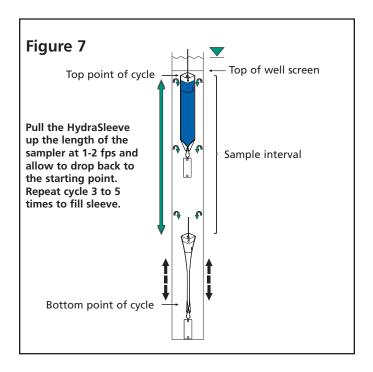
To place 2 or 3 stacked HydraSleeves for vertical profiling, use one of the methods described above to locate the bottom sampler. Attach the bottom of the top sampler to the top of the following HydraSleeve(s) with a carefully measured length of suspension cable. Connect the weight to the bottom sampler. Note: if many HydraSleeves are attached to a tether, more weight may be required than with a single sampler.


Sample Collection

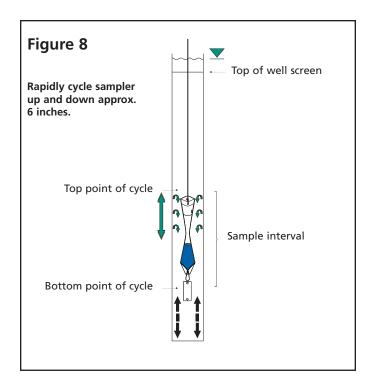
The HydraSleeve must move upward at a rate of one foot per second or faster (about the speed a bailer is usually pulled upward) for water to pass through the check valve into the sample sleeve. The total upward distance the check valve must travel to fill the sample sleeve is about 1 to 2 times the length of the sampler. For example, a 24-inch HydraSleeve needs a total upward movement of 24 to no more than 48 inches to fill. The upward motion can be accomplished using one long continuous pull, several short strokes, or any combination that moves the check valve the required distance in the open position. A special technique is used for sampling low-yield wells.

CONTINUOUS PULL (Figure 6)

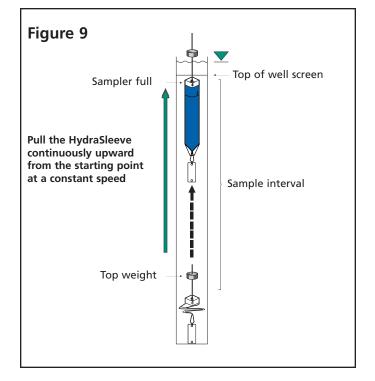
Pull the HydraSleeve continuously upward from its starting point at a constant 1 to 2 feet per second until full. This method usually provides the least turbid samples and is analogous to coring the water column from the bottom up.


Note: When using this method, the screen interval should be long enough so the sampler fills before exiting the top of the screen.

SHORT STROKES (Figure 7)


Pull the sampler upward at about 1 to 2 feet per second for the length of the sampler and let it drop back to the starting point. Repeat the cycle 3 to 5 times.

This method provides a shorter sampling interval than the continuous pull method (above), and usually reduces the turbidity levels of the sample below that of numerous rapid, short cycles (below). The sample comes from between the top of the cycle and the bottom of the sampler at its lowest point.


RAPID, SHORT CYCLES (Figure 8)

Cycle the HydraSleeve up and down using rapid, short strokes (6-inch cycle at a minimum of 1 cycle per second) 5 to 8 times. This method provides the shortest sampling interval. Dye studies have shown that when using this method the sample flows into the check valve from along the length of the sampler and immediately above the check valve. The sample interval is from the bottom the sampler at its lowest point in the cycle to the top of the check valve at the peak of the cycle.

SAMPLING LOW-YIELD WELLS (Figure 9)

HydraSleeve provides the best available technology for sampling low yield wells. When pulled upward after the well re-equilibrates, the HydraSleeve will collect a water core from the top of the sampler to about its own length above that point. The sample is collected with no drawdown in the well and minimal sample agitation. An optional top weight can be attached to compress the sampler in the bottom of the well if needed for an extremely short water column. With a top weight, the check valve is pushed down to within a foot of the bottom of the well.

Sample Discharge

The best way to remove a sample from the HydraSleeve with the least amount of aeration and agitation is with the short plastic discharge tube (included).

First, squeeze the full sampler just below the top to expel water resting above the flexible check valve. (Photo 1, top left)

Then, push the pointed discharge tube through the outer polyethylene sleeve about 3-4 inches below the white reinforcing strips. (Photo 2, middle left)

Discharge the sample into the desired container. (Photo 3, bottom left)

Raising and lowering the bottom of the sampler or pinching the sample sleeve just below the discharge tube will control the flow of the sample. The sample sleeve can also be squeezed, forcing fluid up through the discharge tube, similar to squeezing a tube of toothpaste. With a little practice, and using a flat surface to set the sample containers on, HydraSleeve sampling becomes a one-person operation.

1680 Hickory Loop, Suite B • Las Cruces, NM 88005 Phone: 1.800.996.2225 • 1.505.523.5799 • Fax: 1.505.523.0789 www.geoinsightonline.com • KentCordry@aol.com

HYDRASleeve

Simple by Design US Patent No. 6,481,300; No. 6,837,120 others pending

Standard Operating Procedure: Sampling Ground Water with a HydraSleeve

This Guide should be used in addition to field manuals appropriate to sampling device (i.e., HydraSleeve or Super Sleeve).

Find the appropriate field manual on the HydraSleeve website at http://www.hydrasleeve.com.

For more information about the HydraSleeve, or if you have questions, contact: GeoInsight, 2007 Glass Road, Las Cruces, NM 88005, 1-800-996-2225, info@hydrasleeve.com.

Copyright, GeoInsight.

Table of Contents

Introduction	1
Applications of the HydraSleeve	1
Description of the HydraSleeve	3
Selecting the HydraSleeve Size to Meet Site-Specific Sampling Objectives	4
HydraSleeve Deployment	5
Information Required Before Deploying a HydraSleeve	5
HydraSleeve Placement	6
Procedures for Sampling with the HydraSleeve	8
Measurement of Field Indicator Parameters	11
Alternate Deployment Strategies	11
Post-Sampling Activities	14
References	15

Introduction

The HydraSleeve is classified as a no-purge (passive) grab sampling device, meaning that it is used to collect ground-water samples directly from the screened interval of a well without having to purge the well prior to sample collection. When it is used as described in this Standard Operating Procedure (SOP), the HydraSleeve causes no drawdown in the well (until the sample is withdrawn from the water column) and only minimal disturbance of the water column, because it has a very thin cross section and it displaces very little water (<100 ml) during deployment in the well. The HydraSleeve collects a sample from within the screen only, and it excludes water from any other part of the water column in the well through the use of a self-sealing check valve at the top of the sampler. It is a single-use (disposable) sampler that is not intended for reuse, so there are no decontamination requirements for the sampler itself.

The use of no-purge sampling as a means of collecting representative ground-water samples depends on the natural movement of ground water (under ambient hydraulic head) from the formation adjacent to the well screen through the screen. Robin and Gillham (1987) demonstrated the existence of a dynamic equilibrium between the water in a formation and the water in a well screen installed in that formation, which results in formation-quality water being available in the well screen for sampling at all times. No-purge sampling devices like the HydraSleeve collect this formation-quality water as the sample, under undisturbed (non-pumping) natural flow conditions. Samples collected in this manner generally provide more conservative (i.e., higher concentration) values than samples collected using well-volume purging, and values equivalent to samples collected using low-flow purging and sampling (Parsons, 2005).

Applications of the HydraSleeve

The HydraSleeve can be used to collect representative samples of ground water for all analytes (volatile organic compounds [VOCs], semi-volatile organic compounds [SVOCs], common metals, trace metals, major cations and anions, dissolved gases, total dissolved solids, radionuclides, pesticides, PCBs, explosive compounds, and all other analytical parameters). Designs are available to collect samples from wells from 1" inside diameter and larger. The HydraSleeve can collect samples from wells of any yield, but it is especially well-suited to collecting samples from low-yield wells, where other sampling methods can't be used reliably because their use results in dewatering of the well screen and alteration of sample chemistry (McAlary and Barker, 1987).

The HydraSleeve can collect samples from wells of any depth, and it can be used for single-event sampling or long-term ground-water monitoring programs. Because of its thin cross section and flexible construction, it can be used in narrow, constricted or damaged wells where rigid sampling devices may not fit. Using multiple HydraSleeves deployed in series along a single suspension line or tether, it is also possible to conduct in-well vertical profiling in wells in which contaminant concentrations are thought to be stratified.

As with all groundwater sampling devices, HydraSleeves should not be used to collect ground-water samples from wells in which separate (non-aqueous) phase hydrocarbons (i.e., gasoline, diesel fuel or jet fuel) are present because of the possibility of incorporating some of the separate-phase hydrocarbon into the sample.

Description of the HydraSleeve

The HydraSleeve (Figure 1) consists of the following basic components:

- A suspension line or tether (A.), attached to the spring clip or directly to the top of the sleeve to deploy the device into and recover the device from the well. Tethers with depth indicators marked in 1-foot intervals are available from the manufacturer.
- A long, flexible, 4-mil thick lay-flat polyethylene sample sleeve (C.) sealed at the bottom (this is the sample chamber), which comes in different sizes, as discussed below with a self-sealing reed-type flexible polyethylene check valve built into the top of the sleeve (B.) to prevent water from entering or exiting the sampler except during sample acquisition.
- A reusable stainless-steel weight with clip (D.), which is attached to the bottom of the sleeve to carry it down the well to its intended depth in the water column. Bottom weights available from the manufacturer are 0.75" OD and are available in three sizes: 5 oz. (2.5" long); 8 oz. (4" long); and 16 oz. (8" long). In lieu of a bottom weight, an optional top weight may be attached to the top of the HydraSleeve to carry it to depth and to compress it at the bottom of the well (not shown in Figure 1);
- A discharge tube that is used to puncture the HydraSleeve after it is recovered from the well so the sample can be decanted into sample bottles (not shown).
- Just above the self-sealing check valve at the top of the sleeve are two holes which provide attachment points for the spring clip and/or suspension line or tether. At the bottom of the sample sleeve are two holes which provide attachment points for the weight clip and weight.

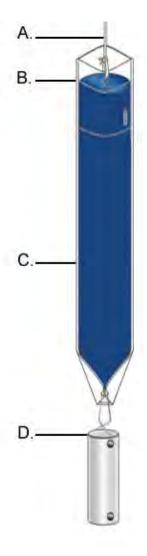


Figure 1. HydraSleeve components.

Note: The sample sleeve and the discharge tube are designed for one-time use and are disposable. The spring clip, weight and weight clip may be reused after thorough cleaning. Suspension cord is generally disposed after one use although, if it is dedicated to the well, it may be reused at the discretion of the sampling personnel.

Selecting the HydraSleeve Size to Meet Site-Specific Sampling Objectives

It is important to understand that each HydraSleeve is able to collect a finite volume of sample because, after the HydraSleeve is deployed, you only get one chance to collect an undisturbed sample. Thus, the volume of sample required to meet your site-specific sampling and analytical requirements will dictate the size of HydraSleeve you need to meet these requirements.

The volume of sample collected by the HydraSleeve varies with the diameter and length of the HydraSleeve. Dimensions and volumes of available HydraSleeve models are detailed in Table 1.

Table 1. Dimensions and volumes of HydraSleeve models.

Diameter	Volume	Length	Lay-Flat Width	Filled Dia.
2-Inch HydraSleeves				
Standard 625-ml HydraSleeve	625 ml	< 30"	2.5"	1.4"
Standard 1-Liter HydraSleeve 1-Liter HydraSleeve SS	1 Liter	38"	3"	1.9"
	1 Liter	36"	3"	1.9"
2-Liter HydraSleeve SS	2 Liters	60"	3"	1.9"
4-Inch HydraSleeves				
Standard 1.6-Liter HydraSleeve Custom 2-Liter HydraSleeve	1.6 Liters	30"	3.8"	2.3"
	2 Liters	36"	4"	2.7"

HydraSleeves can be custom-fabricated by the manufacturer in varying diameters and lengths to meet specific volume requirements. HydraSleeves can also be deployed in series (i.e., multiple HydraSleeves attached to one tether) to collect additional sample to meet specific volume requirements, as described below.

If you have questions regarding the availability of sufficient volume of sample to satisfy laboratory requirements for analysis, it is recommended that you contact the laboratory to discuss the minimum volumes needed for each suite of analytes. Laboratories often require only 10% to 25% of the volume they specify to complete analysis for specific suites of analytes, so they can often work with much smaller sample volumes that can easily be supplied by a HydraSleeve.

HydraSleeve Deployment

Information Required Before Deploying a HydraSleeve

Before installing a HydraSleeve in any well, you will need to know the following:

- The inside diameter of the well
- The length of the well screen
- The water level in the well
- The position of the well screen in the well
- The total depth of the well

The inside diameter of the well is used to determine the appropriate HydraSleeve diameter for use in the well. The other information is used to determine the proper placement of the HydraSleeve in the well to collect a representative sample from the screen (see HydraSleeve Placement, below), and to determine the appropriate length of tether to attach to the HydraSleeve to deploy it at the appropriate position in the well.

Most of this information (with the exception of the water level) should be available from the well log; if not, it will have to be collected by some other means. The inside diameter of the well can be measured at the top of the well casing, and the total depth of the well can be measured by sounding the bottom of the well with a weighted tape. The position and length of the well screen may have to be determined using a down-hole camera if a well log is not available. The water level in the well can be measured using any commonly available water-level gauge.

HydraSleeve Placement

The HydraSleeve is designed to collect a sample directly from the well screen, and it fills by pulling it up through the screen a distance equivalent to 1 to 1.5 times its length. This upward motion causes the top check valve to open, which allows the device to fill. To optimize sample recovery, it is recommended that the HydraSleeve be placed in the well so that the bottom weight rests on the bottom of the well and the top of the HydraSleeve is as close to the bottom of the well screen as possible. This should allow the sampler to fill before the top of the device reaches the top of the screen as it is pulled up through the water column, and ensure that only water from the screen is collected as the sample. In short-screen wells, or wells with a short water column, it may be necessary to use a top-weight on the HydraSleeve to compress it in the bottom of the well so that, when it is recovered, it has room to fill before it reaches the top of the screen.

Example 2" ID PVC well, 50' total depth, 10' screen at the bottom of the well, with water level above the screen (the entire screen contains water). Correct Placement (figure 2): Using a standard HydraSleeve for a 2" well (2.6" flat width/1.5" filled OD x 30" long, 650 ml volume), deploy the sampler so the weight (an 8 oz., 4"-long weight with a 2"-long clip) rests at the bottom of the well. The top of the sleeve is thus set at about 36" above the bottom of the well. When the sampler is recovered, it will be pulled upward approximately 30" to 45" HydraSleeve has filled with before it is filled; therefore, it is full (and the top water from well screen and check valve closes) at approximately 66" (5 ½ feet) check valve has closed to 81" (6 3/4 feet) above the bottom of the well, Full which is well before the sampler reaches the top of the screen. In this example, only water from the Sample Interval screen is collected as a sample. Empty

Figure 2. Correct placement of HydraSleeve.

Incorrect Placement (figure 3): If the well screen in this example was only 5' long, and the HydraSleeve was placed as above, it would not fill before the top of the device reached the top of the well screen, so the sample would include water from above the screen, which may not have the same chemistry. The solution? Deploy the HydraSleeve with a top weight, so that it is collapsed to within 6" to Stagnant casing water in upper 9" of the bottom of the well. When the portion of HydraSleeve HydraSleeve is recovered, it will fill within 39" Full $(3\frac{1}{4} \text{ feet})$ to 54" $(4\frac{1}{2} \text{ feet})$ above the bottom of the well, or just before the sampler reaches the top of the screen, so it collects only water from Sample Interval the screen as the sample. **Empty** Figure 3. Incorrect placement of HydraSleeve.

This example illustrates one of many types of HydraSleeve placements. More complex placements are discussed in a later section.

Procedures for Sampling with the HydraSleeve

Collecting a ground-water sample with a HydraSleeve is a simple one-person operation.

Note: Before deploying the HydraSleeve in the well, collect the depth-to-water measurement that you will use to determine the preferred position of the HydraSleeve in the well. This measurement may also be used with measurements from other wells to create a ground-water contour map. If necessary, also measure the depth to the bottom of the well to verify actual well depth to confirm your decision on placement of the HydraSleeve in the water column.

Measure the correct amount of tether needed to suspend the HydraSleeve in the well so that the weight will rest on the bottom of the well (or at your preferred position in the well). Make sure to account for the need to leave a few feet of tether at the top of the well to allow recovery of the sleeve

Note: Always wear sterile gloves when handling and discharging the HydraSleeve.

I. Assembling the HydraSleeve

- 1. Remove the HydraSleeve from its packaging, unfold it, and hold it by its top.
- 2. Crimp the top of the HydraSleeve by folding the hard polyethylene reinforcing strips at the holes.
- 3. Attach the spring clip to the holes to ensure that the top will remain open until the sampler is retrieved.
- 4. Attach the tether to the spring clip by tying a knot in the tether.

Note: Alternatively, attach the tether to one (NOT both) of the holes at the top of the Hydrasleeve by tying a knot in the tether.

- 5. Fold the flaps with the two holes at the bottom of the HydraSleeve together and slide the weight clip through the holes.
- 6. Attach a weight to the bottom of the weight clip to ensure that the HydraSleeve will descend to the bottom of the well.

II. Deploying the HydraSleeve

1. Using the tether, carefully lower the HydraSleeve to the bottom of the well, or to your preferred depth in the water column

During installation, hydrostatic pressure in the water column will keep the self-sealing check valve at the top of the HydraSleeve closed, and ensure that it retains its flat, empty profile for an indefinite period prior to recovery.

Note: Make sure that it is not pulled upward at any time during its descent. If the HydraSleeve is pulled upward at a rate greater than 0.5'/second at any time prior to recovery, the top check valve will open and water will enter the HydraSleeve prematurely.

2. Secure the tether at the top of the well by placing the well cap on the top of the well casing and over the tether.

Note: Alternatively, you can tie the tether to a hook on the bottom of the well cap (you will need to leave a few inches of slack in the line to avoid pulling the sampler up as the cap is removed at the next sampling event).

III. Equilibrating the Well

The equilibration time is the time it takes for conditions in the water column (primarily flow dynamics and contaminant distribution) to restabilize after vertical mixing occurs (caused by installation of a sampling device in the well).

• Situation: The HydraSleeve is deployed for the first time or for only one time in a well

The HydraSleeve is very thin in cross section and displaces very little water (<100 ml) during deployment so, unlike most other sampling devices, it does not disturb the water column to the point at which long equilibration times are necessary to ensure recovery of a representative sample.

In most cases, the HydraSleeve can be recovered immediately (with no equilibration time) or within a few hours. In regulatory jurisdictions that impose specific requirements for equilibration times prior to recovery of no-purge sampling devices, these requirements should be followed.

• Situation: The HydraSleeve is being deployed for recovery during a future sampling event

In periodic (i.e., quarterly or semi-annual) sampling programs, the sampler for the current sampling event can be recovered and a new sampler (for the next sampling event)

deployed immediately thereafter, so the new sampler remains in the well until the next sampling event.

Thus, a long equilibration time is ensured and, at the next sampling event, the sampler can be recovered immediately. This means that separate mobilizations, to deploy and then to recover the sampler, are not required. HydraSleeves can be left in a well for an indefinite period of time without concern.

IV. HydraSleeve Recovery and Sample Collection

- 1. Hold on to the tether while removing the well cap.
- 2. Secure the tether at the top of the well while maintaining tension on the tether (but without pulling the tether upwards)
- 3. Measure the water level in the well.
- 4. In one smooth motion, pull the tether up between 30" to 45" (36" to 54" for the longer HydraSleeve) at a rate of about 1' per second (or faster).

The motion will open the top check valve and allow the HydraSleeve to fill (it should fill in about 1 to 1.5 times the length of the HydraSleeve). This is analogous to coring the water column in the well from the bottom up.

When the HydraSleeve is full, the top check valve will close. You should begin to feel the weight of the HydraSleeve on the tether and it will begin to displace water. The closed check valve prevents loss of sample and entry of water from zones above the well screen as the HydraSleeve is recovered.

- 5. Continue pulling the tether upward until the HydraSleeve is at the top of the well.
- 6. Decant and discard the small volume of water trapped in the Hydrasleeve above the check valve by turning the sleeve over.

V. Sample Collection

Note: Sample collection should be done immediately after the HydraSleeve has been brought to the surface to preserve sample integrity.

- 1. Remove the discharge tube from its sleeve.
- 2. Hold the HydraSleeve at the check valve.
- 3. Puncture the HydraSleeve just below the check valve with the pointed end of the discharge tube
- 4. Discharge water from the HydraSleeve into your sample containers.

Control the discharge from the HydraSleeve by either raising the bottom of the sleeve, by squeezing it like a tube of toothpaste, or both.

5. Continue filling sample containers until all are full.

Measurement of Field Indicator Parameters

Field indicator parameter measurement is generally done during well purging and sampling to confirm when parameters are stable and sampling can begin. Because no-purge sampling does not require purging, field indicator parameter measurement is not necessary for the purpose of confirming when purging is complete.

If field indicator parameter measurement is required to meet a specific non-purging regulatory requirement, it can be done by taking measurements from water within a HydraSleeve that is not used for collecting a sample to submit for laboratory analysis (i.e., a second HydraSleeve installed in conjunction with the primary sample collection HydraSleeve [see Multiple Sampler Deployment below]).

Alternate Deployment Strategies

Deployment in Wells with Limited Water Columns

For wells in which only a limited water column exists to be sampled, the HydraSleeve can be deployed with an optional top weight instead of a bottom weight, which collapses the HydraSleeve to a very short (approximately 6" to 9") length, and allows the HydraSleeve to fill in a water column only 36" to 45" in height.

Multiple Sampler Deployment

Multiple sampler deployment in a single well screen can accomplish two purposes:

- It can collect additional sample volume to satisfy site or laboratory-specific sample volume requirements.
- It can accommodate the need for collecting field indicator parameter measurements.
- It can be used to collect samples from multiple intervals in the screen to allow identification of possible contaminant stratification.

It is possible to use up to 3 standard 30" HydraSleeves deployed in series along a single tether to collect samples from a 10' long well screen without collecting water from the interval above the screen.

The samplers must be attached to the tether at both the top and bottom of the sleeve. Attach the tether at the top with a stainless-steel clip (available from the manufacturer). Attach the tether at the bottom using a cable tie. The samplers must be attached as follows (figure 4):

- The first (attached to the tether as described above, with the weight at the bottom) at the bottom of the screen
- The second attached immediately above the first
- The third (attached the same as the second) immediately above the second

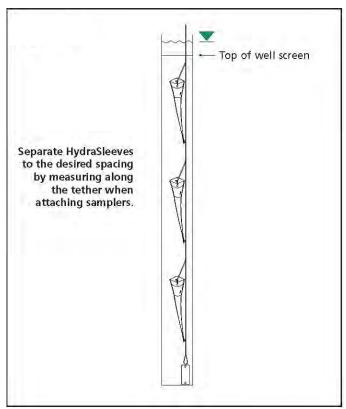


Figure 4. Multiple HydraSleeve deployment.

Alternately, the first sampler can be attached to the tether as described above, a second attached to the bottom of the first using a short length of tether (in place of the weight), and the third attached to the bottom of the second in the same manner, with the weight attached to the bottom of the third sampler (figure 5).

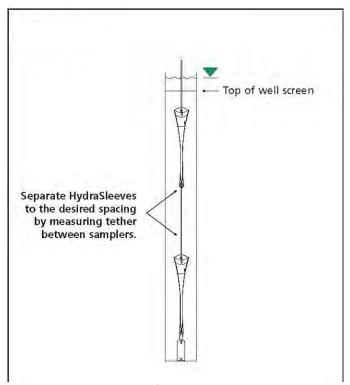


Figure 5. Alternative method for deploying multiple HydraSleeves.

In either case, when attaching multiple HydraSleeves in series, more weight may be required to hold the samplers in place in the well than would be required with a single sampler. Recovery of multiple samplers and collection of samples is done in the same manner as for single sampler deployments.

Post-Sampling Activities

The recovered HydraSleeve and the sample discharge tubing should be disposed as per the solid waste management plan for the site. To prepare for the next sampling event, a new HydraSleeve can be deployed in the well (as described previously) and left in the well until the next sampling event, at which time it can be recovered.

The weight and weight clip can be reused on this sampler after they have been thoroughly cleaned as per the site equipment decontamination plan. The tether may be dedicated to the well and reused or discarded at the discretion of sampling personnel.

References

McAlary, T. A. and J. F. Barker, 1987, Volatilization Losses of Organics During Ground-Water Sampling From Low-Permeability Materials, <u>Ground-Water Monitoring Review</u>, Vol. 7, No. 4, pp. 63-68

Parsons, 2005, Results Report for the Demonstration of No-Purge Ground-Water Sampling Devices at Former McClellan Air Force Base, California; Contract F44650-99-D-0005, Delivery Order DKO1, U.S. Army Corps of Engineers (Omaha District), U.S. Air Force Center for Environmental Excellence, and U.S. Air Force Real Property Agency

Robin, M. J. L. and R. W. Gillham, 1987, Field Evaluation of Well Purging Procedures, <u>Ground-Water Monitoring Review</u>, Vol. 7, No. 4, pp. 85-93

STANDARD OPERATING PROCEDURE

Direct-Push Technology Groundwater Sampling

Purpose

This technical practice provides guidance for collection of groundwater samples through direct-push technology methods.

Scope and Applicability

This technical practice provides guidance on equipment, materials, and procedures for collection of grab groundwater samples using direct-push technology (DPT) (e.g., Geoprobe®) sampling methods. Grab samples are collected from an aquifer for screening purposes only and are not designed to be used for risk assessment. Refer to the specific requirements of the project Workplan when using this SOP during field activities.

Equipment / Materials

- Truck or track-mounted hydraulic percussion hammer, licensed New Jersey driller, and associated equipment
- Direct-push (e.g., Geoprobe□) sampling rods and lead rod with retractable slotted screen sampler (e.g., Geoprobe SP15/16 sampler)
- Polyethylene sampling tubing and stainless steel foot/check valve
- Bucket(s) for purge water
- 55-gallon drum(s) for purge and decontamination water
- Peristaltic pump (if needed)
- Pre-cleaned laboratory supplied sample containers
- Personal Protective Equipment as specified in the project specific health and safety plan
- Photoionization detector
- Field Documentation

Field Preparation

Prior to the start of intrusive activities, the Field Team Leader (FTL) shall ensure that the following activities have been completed:

- Verify proposed sample locations and sample depths per the project specific planning documents (Work Plan and Quality Assurance Project Plan).
- Locate and mark planned sampling locations and verify utility clearance prior to intrusive subsurface drilling. Verify that the independent utility clearance service, along with entities associated with the New Jersey One Call, have marked utilities at all drilling locations. Confirm with the Project Manager that clearance and access-agreements and/or

Permission to enter each drill location have been obtained.

- Pre-identify any potential site access logistical issues. Note any slope stability, overhead obstruction, car parking or other physical constraints that could hinder or preclude drilling activities.
- Establish the decontamination area away from (and preferably up wind of) potentially contaminated areas where possible.
- Decontaminate non-disposable equipment and downhole tools that may come in contact with contaminants prior to use in accordance with SOP-08 (Equipment Decontamination). In accordance with the New Jersey Department of Environmental Protection Field Sampling Procedures Manual (NJDEP, August 2005), all downhole equipment must be decontaminated between each use and sample collection tubing must not be reused.
- Verify permitting requirements (if needed) are in place.

Procedures / Guidelines

- 1. An expendable drive point should be attached to the bottom of the groundwater sampler rod. The driller will use the drill rig hydraulic percussion hammer to drive the rod assembly to the appropriate depth. Once the desired depth is reached, the driller will pull up on the drill rods to expose the discrete sampler slotted screen. The discrete sampler is typically 4 feet in length. Record the actual depth of the drill rods and discrete sampler.
- 2. Insert the stainless steel foot or check valve (or "Waterra pump") into the bottom end of the polyethylene tubing and insert tubing through the rods so that the end of the tubing is approximately at the mid-point of the screen. Alternatively, if using a peristaltic pump, insert polyethylene tubing connected to the peristaltic pump through the rods. Record the depth of the screened interval and depth of the tubing.
- 3. When using a foot/check valve method, move the tubing up and down in a smooth fluid motion so that the end of the tubing does not exceed the length of the screened interval. You can purge the water more quickly to clear up the turbidity, but reduce the flow when collecting the sample. When using a peristaltic pump, you can also increase flow during purging and reduce during sampling.
- 4. Purge groundwater from the screened interval prior to sampling. Amount of groundwater purged will vary dependent on the amount of fine material in the sampling interval and will be determined in the field on a case-by-case basis. Purging should be performed until turbidity has visually cleared; however, purging requirements should be checked with your Project Manager during planning (e.g. 1-3 well volumes, turbidity <100 NTU, timed interval, etc). A plan should also be made for when you purge a location dry.
- 5. Purge the water into a bucket or drum and collect field parameters (e.g. turbidity, DO, temp, etc.) from the effluent stream.

- 6. Fill all sample containers, beginning with the containers for VOC analysis, if applicable. Whether using the foot/check valve or peristaltic pump, be sure to minimize cavitation or air bubbles in the poly tubing during pumping that could impact VOC analysis.
- 7. Remove polyethylene sampling tubing from the rods. Remove the foot valve and discard polyethylene tubing per the site-specific waste management plan.
- 8. IDW will be containerized and managed in 55-gallon drums and characterized in accordance with SOP-11 (Sampling of Investigation Derived Waste).
- 9. The subcontractor will abandon the borehole in accordance with SOP-15 (Monitoring Well and Borehole Abandonment).

Key Checks / Items

- All fluids and cuttings must be containerized at the borehole. It is unacceptable for basins, diverter heads or any apparatus to leak or spray materials. Corrective actions must be implemented immediately by the drilling subcontractor. Unsatisfactory containment is cause for a stop work order.
- Refer to the Health and Safety Plan for appropriate health and safety precautions.

References

NJDEP, August 2005. Field Sampling Procedures Manual, Section 5.2.1.12 Direct Push Technology. Available at < http://www.nj.gov/dep/srp/guidance/fspm/>. Accessed July 10, 2013.

N.J.A.C. 7:26E, November, 2009. "Technical Requirements for Site Remediation". Available at http://www.nj.gov/dep/rules/nj_env_law.html Accessed July 10, 2013.

Low-Flow Groundwater Sampling Procedures

Purpose

The following describes the procedures for the collection of groundwater samples using the low-stress (low-flow) method. Methods were developed in accordance with procedures presented in USEPA publications.

Scope and Applicability

This procedure is applicable for monitoring wells that are 1 inch in diameter or greater, and is considered to be appropriate for collections of VOCs, SVOCs, PCBs, and metals. This procedure is not appropriate for the collection of LNAPLs or DNAPLs. Operations manuals should be consulted for specific calibration and operating procedures.

Equipment/Materials

The following list presents the equipment needed for low-flow groundwater sampling of organic site-related constituents, as specified in the FSP.

- Electronic water level indicator with an accuracy of 0.01 foot.
- Electronic oil/water interface probe with an accuracy of 0.01 foot.
- Sampling pump with adjustable flow rate. Must be either gear driven, helical driven, air-activated piston, or low-flow centrifugal. An adjustable-rate peristaltic pump can be used when the depth to water is 20 feet or less if the other pump types are not readily available.
- Teflon® or Teflon®-lined polyethylene tubing.
- An appropriate power source for the sampling pump being used.
- A graduated container to determine volume and a watch to monitor flow rate and time.
- YSI Model 6920 (or comparable) multi-parameter meter with flow-through cell.
 At a minimum, the meter must be capable of measuring pH, ORP, DO, turbidity,
 specific conductance, and temperature.
- Calibration solutions for the multi-parameter meter.
- Decontamination supplies including 10 percent methanol rinse, non-phosphate soap, and distilled water, paper towels, and plastic sheeting.
- Sample bottles and coolers for submittal to the laboratory

1

- Peristaltic pump, disposable Teflon® tubing, and 0.45μ cellulose acetate filters for filtering dissolved metals samples
- Field notebook, sample data sheets, chain-of-custody forms, and custody seals.
- Ice for sample coolers.
- Appropriate PPE.
- PID, explosimeter, and oxygen meter (LEL/O2) and calibration gases, as appropriate.
- Tool box.
- 55-gallon drum or 5-gallon buckets, with covers, to contain purge water.

During the preparation for the field event, the list should be reviewed and modified, as appropriate, to accommodate sample collection of additional analytes or other site-related activities.

Procedures/Guidelines

The following activities shall be completed before the start of purging and sampling:

- 1. Calibrate the multi-parameter meter, PID, and LEL/O2 meter. Record all calibration information in the field notebook.
- 2. Begin sampling at the monitoring well with the lowest concentrations of site-related constituents based on the results of the previous sampling event. Exceptions may be necessary to accommodate site-specific conditions. If no previous groundwater data are available, results of a MIP investigation may be used to determine areas of higher VOCs.
- 3. Inspect the protective well cover, concrete pad, inner well casing, and locking cap of the monitoring well and record observations in the field notebook. Polyethylene sheeting should be placed on the ground to minimize the potential for sampling equipment to contact the soil. Monitoring, purging, and sampling equipment should be placed on the sheeting.
- 4. Monitor the headspace of the well with the PID and LEL/O2 meters immediately after removing the inner casing cap. Readings should be noted in the field notebook. Refer to the site-specific HSP for required actions based on PID and LEL/O2 readings.
- 5. Measure the depth to water in the well. Also check the well for nonaqueous-phase liquids using the oil/water interface probe. Total well depth measurement using the oil/water interface probe should not be collected until all samples have been collected to minimize turbidity generated in the well. Measurements will be recorded on sample data sheets and in the field notebook.

Purging and Sampling Activities

Procedures for purging and sampling are as follows:

- 1. Slowly lower the pump and tubing into the monitoring well until the pump intake is set near the midpoint of the screened interval. Record the depth of the pump intake (feet below top of inner well casing) in the field notebook.
- 2. Re-measure the depth to water and record the information on the sample data sheets. Leave the water level indicator in the well.
- 3. Place the multi-parameter meter into the flow-through cell. Connect the discharge end of the tubing from the pump to the flow-through cell of the multi-parameter probe. Place the flow-through cell discharge tubing into the 55-gallon drum or a 5-gallon bucket for collection of purge water.
- 4. Set the flow rate on the pump to the lowest setting, turn the pump on, and slowly increase the flow rate until water begins to flow. Using a graduated cylinder to monitor the flow rate, adjust the pump until a rate of 50 to 500 mL per minute is reached. Maintain a steady flow rate while keeping drawdown to less than 0.33 foot. If drawdown is greater than 0.33 foot, reduce the pumping rate. If a drawdown of less than 0.33 foot cannot be achieved, continue purging and record the groundwater levels and flow rate every 5 minutes.
- 5. Provided the drawdown does not exceed 0.33 foot (see above), record the discharge rates and drawdown on the sampling data sheets every 5 minutes, and continue purging at a flow rate to minimize drawdown. A minimum of one tubing volume must be purged before recording water quality parameters.
- 6. After a minimum of one tubing volume has been purged, record the values of the water quality parameters. After the initial measurement, record the water quality parameter readings concurrently with the discharge rate and drawdown measurements.
- 7. Continue purging until three successive readings of the water quality field parameters stabilize, following the criteria in Table 1, below. When the water quality parameters stabilize, collect the samples.

TABLE 1
Stabilization Criteria with References for Water-Quality-Indicator Parameters*

Parameter	Stabilization Criteria
рН	± 0.1
Specific Electrical Conductance (SEC)	± 3%
Oxidation-Reduction Potential (ORP)	± 10 millivolts
Turbidity	\pm 10% (when turbidity is greater than 10 nephelometric turbidity units)
Dissolved Oxygen (DO)	\pm 0.3 milligrams per liter

^{*}USEPA, 2002.

- 8. If a stabilized drawdown in the well cannot be maintained at less than 0.33 foot and the water level is approaching the top of the well screen, reduce the flow rate or turn the pump off for 15 minutes and allow for recovery. The pump should not be turned off if it does not have a check valve installed inline with the tubing to prevent water flowing out of the tubing into the well. If the pump must be turned off and no check valve is present, the discharge end of the tubing should be clamped to minimize the potential for water to flow back into the well. After 15 minutes, resume pumping, at a lower rate, if possible. If water levels again approach the top of the well screen, turn the pump off and allow another 15 minutes for recovery. If two tubing volumes have been removed (including the volume in the flow-through cell and tubing), collect a sample when the pump is turned on. Record this information in the field notebook so that adjustments can be made for the next sampling event.
- 9. For collection of samples, pumping rates should be maintained to minimize disturbance of the water column. The discharge tubing should be disconnected from the input of the flow-through cell and samples collected directly from the pump discharge tubing. Samples shall be collected in the following order: VOCs, dissolved gases, anions and alkalinity, ammonia, sulfide, TOC, total metals and dissolved metals last. Sample bottles for VOCs and/or dissolved gasses should always be filled first to ensure minimal release of volatiles and dissolved gasses. The dissolved metals require a filter to be attached to the discharge tubing and therefore should be the last sample collected as to avoid spreading any contamination that may have occurred during filter use.
 - 9a. **Collection of VOCs and dissolved gasses**. Slowly fill one 40mL VOA vial to the top without overflowing (creating a convex meniscus on the top) and cap. Turn the vial upside down and tap to ensure the absence of air bubbles. Repeat this procedure for all the vials.
- 10. Upon completion of sample collection, remove the pump from the well, decontaminate the pump, and dispose of the tubing, if it is not dedicated.

Key Checks/Items

None.

STANDARD OPERATING PROCEDURE

Surface Water Volatile Organic Compound Sampling

Purpose

This technical practice provides guidance for sampling volatile organic compounds (VOCs) in surface water.

Scope and Applicability

This technical practice provides guidance on equipment, materials, and procedures for collecting representative VOC samples from surface water. Refer to the specific requirements of the project Workplan when using this SOP during field activities.

Example Equipment / Materials

- Sample vials, clean latex or surgical gloves, pH meter
- Hydrochloric acid (HCl) for preservation (not needed if sample bottles come prepreserved from the laboratory)
- A pH meter or pH indicating paper (not needed if sample bottles come pre-preserved from the laboratory)
- Surgical or latex gloves

Procedures / Guidelines

- 1. Sample VOCs before sampling other analyte groups.
- 2. When sampling for VOCs, evaluate the area around each sampling point for possible sources of air contamination by VOCs. Products that may give off VOCs or could possibly contaminate a sample include perfumes and cosmetics, skin applied pharmaceuticals, automotive products (e.g., gasoline, starting fluid, windshield deicers, carburetor cleaners) and household paint products (e.g., paint strippers, thinners, turpentine). If possible, either remove the source from sampling area during the sample transfer or move upwind of the potential source. If neither is possible, then document the potential source of air contamination in the field log.
- 3. When collecting surface water samples, always start from the downstream location and move upstream. If sampling from a boat equipped with a motor, avoid collecting samples from the rear of the boat where exhaust is introduced into the water.

WDC042870001.ZIP 1

- 4. (This step is not needed if the bottles come pre-preserved from the laboratory.) To determine the amount of hydrochloric acid needed to properly preserve each sample at each location, fill a 40-mL test vial with the sample, add one drop of hydrochloric acid, mix gently, and check pH. Repeat cycle (if necessary) until a pH of 2 or less is achieved, counting the number of drops of required. Discard the test vial and add an equal number of drops of hydrochloric acid to each sample vial.
- 5. Leave sample vials uncapped for as short a time as possible.
- 6. Wear clean latex or surgical gloves.
- 7. Fill the VOC sample vial immediately. Gently transfer water from sampling apparatus into sample vials allowing water stream to strike inner wall of vial to minimize turbulence and formation of air bubbles. Do not rinse sample vials before filling.
- 8. Fill sample vial with a minimum of turbulence until the water forms a visible convex, positive meniscus at the vial brim.
- 9. Replace cap by gently setting it on the water meniscus. Take care to not entrap air bubbles in vial. Tighten firmly, but do not overtighten.
- 10. Invert the vial and tap it lightly. If you see air bubbles in sample, do not add more sample. Use another vial to collect another sample. Repeat if necessary until a proper sample (one without air bubbles) is obtained.
- 11. When sampling multiple points with a common sampling device, thoroughly decontaminate between uses. Whenever possible, move from areas with the least contamination to areas with the highest contamination.

Key Checks / Items

- Check for possible sources of contamination (e.g., engine exhaust) and remove them, if possible.
- Fill the vial slowly, with as little turbulence as possible.
- Check for air bubbles.

WDC042870001.ZIP 2